1
|
Nasiriani T, Nigjeh NA, Torabi S, Shaabani A. MIL-88-NH 2(Fe) conjugated pectin through a post-modification Ugi four-component reaction: A robust bio-based catalyst for the synthesis of cyclic carbonate via CO 2 fixation reaction. Carbohydr Polym 2024; 342:122418. [PMID: 39048205 DOI: 10.1016/j.carbpol.2024.122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The functionalization of materials via multicomponent reactions (MCRs) led to a recent surge in the interest of researchers, owing to the creation of exceptional properties in materials. Herein, a novel robust porous catalyst was prepared via the conjugation of MIL-88-NH2(Fe) and pectin (DAP/MIL-88-NH2(Fe)) through the post-modification Ugi four-component reaction (Ugi-4CR) for the first time. To achieve this aim, pectin was oxidized using sodium periodate as an oxidant agent to produce dialdehyde pectin (DAP). Next, the generated carbonyl functional groups participated in the Ugi-4CR of MIL-88-NH2(Fe), 4-methyl carboxylic acid, and cyclohexyl (c-hex) isocyanide to produce DAP/MIL-88-NH2(Fe) catalyst. The catalytic activity of the prepared bio-based catalyst was examined in producing cyclic carbonates through the chemical fixation of CO2 with epoxides in the presence of TBAB as a co-catalyst. Interestingly, catalytic experiments revealed that the prepared bio-based catalyst could be remarkably active regarding the CO2 fixation reaction and performed it in the shortest reaction time (1 h) via high CO2 adsorbent capacity. The outstanding benefits of the prepared bio-based catalyst include its non-hazardous nature, inexpensive, green and gentle reaction conditions, and ability to be reusable in several runs with slight loss of catalytic activity due to a more durable framework with high chemical and thermal stability.
Collapse
Affiliation(s)
- Tahereh Nasiriani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Neda Adabi Nigjeh
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Saeed Torabi
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 1983963113, Tehran, Iran.
| |
Collapse
|
2
|
Xu Z, Zhao YY, Chen L, Zhu CY, Li P, Gao W, Li JY, Zhang XM. Thermally activated bipyridyl-based Mn-MOFs with Lewis acid-base bifunctional sites for highly efficient catalytic cycloaddition of CO 2 with epoxides and Knoevenagel condensation reactions. Dalton Trans 2023; 52:3671-3681. [PMID: 36847359 DOI: 10.1039/d3dt00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Metal-organic frameworks (MOFs) have become preferred heterogeneous catalytic materials for many reactions due to their advantages such as porosity and abundant active sites. Here, a 3D Mn-MOF-1 [Mn2(DPP)(H2O)3]·6H2O (DPP = 2,6-di(2,4-dicarboxyphenyl)-4-(pyridine-4-yl)pyridine) was successfully synthesized under solvothermal conditions. This Mn-MOF-1 possesses a 3D structure constructed by the combination of a 1D chain and the DPP4- ligand and features a micropore with a 1D drum-like shaped channel. Interestingly, Mn-MOF-1 can maintain the structure unchanged by the removal of coordinated and lattice water molecules, whose activated state (denoted as Mn-MOF-1a) contains rich Lewis acid sites (tetra- and pentacoordinated Mn2+ ions) and Lewis base sites (Npyridine atoms). Furthermore, Mn-MOF-1a shows excellent stability, which can be used to catalyze CO2 cycloaddition reactions efficiently under eco-friendly, solvent-free conditions. In addition, the synergistic effect of Mn-MOF-1a resulted in its promising potential in Knoevenagel condensation under ambient conditions. More importantly, the heterogeneous catalyst Mn-MOF-1a can be recycled and reused without an obvious decrease of activity for at least 5 reaction cycles. This work not only paves the way for the construction of Lewis acid-base bifunctional MOFs based on pyridyl-based polycarboxylate ligands but also demonstrates that Mn-based MOFs hold great promise as a heterogeneous catalyst toward both CO2 epoxidation and Knoevenagel condensation reactions.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ya-Yu Zhao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Le Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Cai-Yong Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Wei Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| | - Ji-Yang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiu-Mei Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China.
| |
Collapse
|
3
|
Becerra J, Nguyen DT, Nair Gopalakrishnan V, Do TO. Chemically Bonded Plasmonic Triazole-Functionalized Au/Zeolitic Imidazole Framework (ZIF-67) for Enhanced CO 2 Photoreduction. CHEMSUSCHEM 2022; 15:e202201535. [PMID: 36121437 DOI: 10.1002/cssc.202201535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The design of functionalized metallic nanoparticles is considered an emerging technique to ensure the interaction between metal and semiconductor material. In the literature, this interface interaction is mainly governed by electrostatic or van der Waals forces, limiting the injection of electrons under light irradiation. To enhance the transfer of electrons between two compounds, close contact or chemical bonding at the interface is required. Herein, a new approach was reported for the synthesis of chemically bonded plasmonic Au NPs/ZIF-67 nanocomposites. The structure of ZIF-67 was grown on the surface of functionalized plasmonic Au NPs using 1H-1,2,4-triazole-3-thiol as the capping agent, which acted as both stabilizer of Au nanoparticles and a molecular linker for ZIF-67 formation. As a result, the synthesized material exhibited outstanding photocatalytic CO2 reduction with a methanol production rate of 2.70 mmol h-1 g-1 cat under sunlight irradiation. This work emphasizes that the diligent use of capping agents, with suitable functional groups, could facilitate the formation of intimate heterostructure for enhanced photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Jorge Becerra
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Duc-Trung Nguyen
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Vishnu Nair Gopalakrishnan
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| |
Collapse
|
4
|
Lv H, Chen H, Fan L, Zhang X. Nanocage-Based Tb 3+-Organic Framework for Efficiently Catalyzing the Cycloaddition Reaction of CO 2 with Epoxides and Knoevenagel Condensation. Inorg Chem 2022; 61:15558-15568. [DOI: 10.1021/acs.inorgchem.2c02302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
5
|
Parmar B, Patel P, Bhadu GR, Eringathodi S. Comparative Effect of Amino Functionality on the Performance of Isostructural Mixed‐Ligand MOFs Towards Multifunctional Catalytic Application. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bhavesh Parmar
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division and Centralized Instrument Facility Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Parth Patel
- Central Salt and Marine Chemicals Research Institute CSIR Inorganic Materials and Catalysis Division Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Gopala Ram Bhadu
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division and Centralized Instrument Facility Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Suresh Eringathodi
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division & Centralized Instrument Facility Lab 013, AESD&CIF,CSIR-CSMCRIG B Marg 364002 Bhavnagar INDIA
| |
Collapse
|
6
|
|
7
|
Tapiador J, Leo P, Rodríguez-Diéguez A, Choquesillo-Lazarte D, Calleja G, Orcajo G. A novel Zn-based-MOF for efficient CO2 adsorption and conversion under mild conditions. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Jun HJ, Yoo DK, Jhung SH. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Weng S, Dong J, Ma J, Bai J, Liu F, Liu M. Biocompatible anions-derived ionic liquids a sustainable media for CO2 conversion into quinazoline-2,4(1H,3H)-diones under additive-free conditions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Caldera-Villalobos M, Cabrera-Munguía DA, Becerra-Rodríguez JJ, Claudio-Rizo JA. Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal-organic frameworks. RSC Adv 2022; 12:3672-3686. [PMID: 35425396 PMCID: PMC8979324 DOI: 10.1039/d1ra08824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Metal-organic frameworks (MOFs) are microporous materials with high potential for biomedical applications. They are useful as drug delivery systems, antibacterials, and biosensors. Recently, composite materials comprised of polymer matrixes and MOFs have gained relevance in the biomedical field due to their high potential as materials to accelerate wound healing. In this work, we studied the potential applications of composite hydrogels containing MgMOF74, CaMOF74, and Zn(Atz)(Py). The composite hydrogels are biodegradable, being completely degraded after 15 days by the action of collagenase and papain. The composites showed high biocompatibility reaching cell viabilities up to 165.3 ± 8.6% and 112.3 ± 12.8% for porcine fibroblasts and human monocytes, respectively. The composites did not show hemolytic character and they showed antibacterial activity against Escherichia coli reaching up to 84 ± 5% of inhibition compared with amoxicillin (20 ppm). Further, the immunological assays revealed that the composites produce a favorable cell signaling stimulating the secretion of the TGF-β and MCP-1 cytokines and maintaining the secretion of TNF-α in normal levels. Finally, the composites showed potential to be used as controlled drug delivery systems reaching a release efficiency of 30.5 ± 2.5% for ketorolac. Finally, results revealed that ColGG-Zn(Atz)(Py) was the best formulation evaluated.
Collapse
Affiliation(s)
- Martín Caldera-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| | - Denis A Cabrera-Munguía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| | - Juan J Becerra-Rodríguez
- Universidad Politécnica de Pénjamo Carretera Irapuato - La Piedad Km 44 Pénjamo 36921 Guanajuato México
| | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| |
Collapse
|
11
|
Lv H, Chen H, Hu T, Zhang X. Nanocage-based {In 2Tm 2}-organic framework for efficiently catalyzing the cycloaddition reaction of CO 2 with epoxides and Knoevenagel condensation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of [In2Tm2(μ2-OH)2(CO2)10(H2O)2] clusters and H5BDCP ligand generated a highly robust nanoporous MOF with high catalytic performance in the cycloaddition reaction of epoxides with CO2 and Knoevenagel condensation.
Collapse
Affiliation(s)
- Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
12
|
Yue S, Qu HL, Song XX, Feng XN. Novel hydroxyl-functionalized ionic liquids as efficient catalysts for the conversion of CO 2 into cyclic carbonates under metal/halogen/cocatalyst/solvent-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00257d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmentally friendly synthesis route to carbonates from CO2 and epoxides catalysed by novel hydroxyl-functionalized ionic liquids under metal/halogen/cocatalyst/solvent-free conditions.
Collapse
Affiliation(s)
- Shuang Yue
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Hong-Liu Qu
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Xin-Xin Song
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Xuan-Nuo Feng
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| |
Collapse
|
13
|
Ghosh AK, Saha U, Biswas S, ALOthman ZA, Islam MA, Dolai M. Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aloke Kumar Ghosh
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| | - Urmila Saha
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700 073 West Bengal, India
| | - Surajit Biswas
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, 741 235 West Bengal, India
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, M13 9PL Manchester, U.K
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai, 721 404 West Bengal, India
| |
Collapse
|
14
|
Novel biomass-derived deep eutectic solvents promoted cycloaddition of CO2 with epoxides under mild and additive-free conditions. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Musa SG, Aljunid Merican ZM, Akbarzadeh O. Study on Selected Metal-Organic Framework-Based Catalysts for Cycloaddition Reaction of CO 2 with Epoxides: A Highly Economic Solution for Carbon Capture and Utilization. Polymers (Basel) 2021; 13:3905. [PMID: 34833202 PMCID: PMC8619864 DOI: 10.3390/polym13223905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
The level of carbon dioxide in the atmosphere is growing rapidly due to fossil fuel combustion processes, heavy oil, coal, oil shelter, and exhausts from automobiles for energy generation, which lead to depletion of the ozone layer and consequently result in global warming. The realization of a carbon-neutral environment is the main focus of science and academic researchers of today. Several processes were employed to minimize carbon dioxide in the air, some of which include the utilization of non-fossil sources of energy like solar, nuclear, and biomass-based fuels. Consequently, these sources were reported to have a relatively high cost of production and maintenance. The applications of both homogeneous and heterogeneous processes in carbon capture and storage were investigated in recent years and the focus now is on the conversion of CO2 into useful chemicals and compounds. It was established that CO2 can undergo cycloaddition reaction with epoxides under the influence of special catalysts to give cyclic carbonates, which can be used as value-added chemicals at a different level of pharmaceutical and industrial applications. Among the various catalysts studied for this reaction, metal-organic frameworks are now on the frontline as a potential catalyst due to their special features and easy synthesis. Several metal-organic framework (MOF)-based catalysts were studied for their application in transforming CO2 to organic carbonates using epoxides. Here, we report some recent studies of porous MOF materials and an in-depth discussion of two repeatedly used metal-organic frameworks as a catalyst in the conversion of CO2 to organic carbonates.
Collapse
Affiliation(s)
- Suleiman Gani Musa
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Department of Chemistry, Al-Qalam University Katsina, PMB 2137, Tafawa Balewa Way, Dutsin-ma Road, Katsina 820252, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia;
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
| | - Omid Akbarzadeh
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
16
|
Sun J, Li Z, Li X, Xue M, Yin J. DBU-Based Ionic Liquid Grafted SBA-15 Dual-Functional Catalyst for the Cycloaddition Reaction of CO2 and Epoxide. Catal Letters 2021. [DOI: 10.1007/s10562-021-03840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Sabri MA, Al Jitan S, Bahamon D, Vega LF, Palmisano G. Current and future perspectives on catalytic-based integrated carbon capture and utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148081. [PMID: 34091328 DOI: 10.1016/j.scitotenv.2021.148081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU' and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.
Collapse
Affiliation(s)
- Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Daniel Bahamon
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
18
|
Caldera-Villalobos M, Cabrera-Munguía DA, Flores-Guía TE, Viramontes-Gamboa G, Vargas-Correa JA, Cano-Salazar LF, Claudio-Rizo JA. Removal of water pollutants using composite hydrogels comprised of collagen, guar gum, and metal-organic frameworks. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02767-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Catalytic conversion of CO2: Electrochemically to ethanol and thermochemically to cyclic carbonates using nanoporous polytriazine. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Moumen E, Assen AH, Adil K, Belmabkhout Y. Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Xu N, Jiang Y, Sun W, Li J, Wang L, Jin Y, Zhang Y, Wang D, Duttwyler S. Gram-Scale Synthesis of an Ultrastable Microporous Metal-Organic Framework for Efficient Adsorptive Separation of C 2H 2/CO 2 and C 2H 2/CH 4. Molecules 2021; 26:molecules26175121. [PMID: 34500553 PMCID: PMC8433756 DOI: 10.3390/molecules26175121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
A highly water and thermally stable metal-organic framework (MOF) Zn2(Pydc)(Ata)2 (1, H2Pydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) was synthesized on a large scale using inexpensive commercially available ligands for efficient separation of C2H2 from CH4 and CO2. Compound 1 could take up 47.2 mL/g of C2H2 under ambient conditions but only 33.0 mL/g of CO2 and 19.1 mL/g of CH4. The calculated ideal absorbed solution theory (IAST) selectivities for equimolar C2H2/CO2 and C2H2/CH4 were 5.1 and 21.5, respectively, comparable to those many popular MOFs. The Qst values for C2H2, CO2, and CH4 at a near-zero loading in 1 were 43.1, 32.1, and 22.5 kJ mol−1, respectively. The practical separation performance for C2H2/CO2 mixtures was further confirmed by column breakthrough experiments.
Collapse
Affiliation(s)
- Nuo Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (N.X.); (Y.J.); (W.S.); (J.L.); (L.W.)
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (N.X.); (Y.J.); (W.S.); (J.L.); (L.W.)
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (N.X.); (Y.J.); (W.S.); (J.L.); (L.W.)
| | - Jiahao Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (N.X.); (Y.J.); (W.S.); (J.L.); (L.W.)
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (N.X.); (Y.J.); (W.S.); (J.L.); (L.W.)
| | - Yujie Jin
- Department of Chemistry, Yuquan Campus, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China;
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (N.X.); (Y.J.); (W.S.); (J.L.); (L.W.)
- Correspondence: (Y.Z.); (D.W.); (S.D.)
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (N.X.); (Y.J.); (W.S.); (J.L.); (L.W.)
- Correspondence: (Y.Z.); (D.W.); (S.D.)
| | - Simon Duttwyler
- Department of Chemistry, Yuquan Campus, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China;
- Correspondence: (Y.Z.); (D.W.); (S.D.)
| |
Collapse
|
22
|
Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Three-dimensional amino acid backbone Cu-aspartate metal–organic framework as a catalyst for the cycloaddition of propylene oxide and CO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01991-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Zhang B, Wang W, Liu B, Hou L. Indium metal-organic frameworks based on pyridylcarboxylate ligands and their potential applications. Dalton Trans 2021; 50:5713-5723. [PMID: 33949548 DOI: 10.1039/d1dt00504a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indium metal-organic frameworks (In-MOFs) based on pyridylcarboxylate ligands represent a subclass of MOFs featuring diverse structures, a high stability, and various properties. This review discusses the different aspects of In-MOFs including their design, synthesis and structures as well as their typical potential applications in adsorption and separation, catalysis, and chemical sensors. Importantly, the effect of pyridine on the properties and stability of frameworks has been carefully studied. The introduction of a pyridine group not only significantly enriches clusters of In3+ ions, but also enables flexible, controllably synthesized ionic or neutral frameworks to be fabricated. Based on this, we suggest that this type of In-metal organic framework (MOF) should receive more attention in the field of MOF design.
Collapse
Affiliation(s)
- Bin Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. and Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Weize Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
25
|
Yuan R, Chen H, Zhu QQ, He H. Rational fabrication of a porous Cd-organic framework for chemical fixation of CO2 and selective sorption of p-xylene over other isomers. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Abstract
Crystalline porous materials (CPM)-200-In and CPM-200-In/Mg metal-organic frameworks (MOFs) were synthesized by a solvothermal method and were characterized by using powder X-ray diffraction (PXRD), FT-IR, Brunauer–Emmett–Teller (BET), temperature programmed desorption (TPD), TGA, XPS, and SEM-EDS. They were used as heterogeneous catalysts for the cycloaddition of CO2 with epoxides and found to be highly efficient toward the cycloaddition reaction at moderate reaction conditions under solvent-free conditions. The catalyst was easily separated by a simple filtration and can be reused up to five consecutive times without any considerable decrease of its initial activity. CPM-200-In/Mg showed excellent catalytic performance in the cycloaddition reaction due to the synergistic role of the acidic sites and basic sites. A plausible reaction mechanism for the CPM-200-In/Mg MOF catalyzed cycloaddition reaction is proposed based on the experimental results and our previously reported DFT (Density Functional Theory) studies.
Collapse
|
27
|
Kumar R, Sahoo SC, Nanda PK. A
μ
4
‐Oxo Bridged Tetranuclear Zinc Complex as an Efficient Multitask Catalyst for CO
2
Conversion. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raman Kumar
- Department of Applied Science University Institute of Engineering and Technology Panjab University Chandigarh 160014 India
- Department of Chemistry and Center of Advance Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Subash C. Sahoo
- Department of Chemistry and Center of Advance Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Prasant K. Nanda
- Department of Applied Science University Institute of Engineering and Technology Panjab University Chandigarh 160014 India
| |
Collapse
|
28
|
Abazari R, Sanati S, Morsali A, Kirillov AM, Slawin AMZ, Carpenter-Warren CL. Simultaneous Presence of Open Metal Sites and Amine Groups on a 3D Dy(III)-Metal–Organic Framework Catalyst for Mild and Solvent-Free Conversion of CO2 to Cyclic Carbonates. Inorg Chem 2021; 60:2056-2067. [DOI: 10.1021/acs.inorgchem.0c03634] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Alexander M. Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenido Rovisco Pais, 1049-001 Lisbon, Portugal
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya strasse, Moscow 117198, Russia
| | - Alexandra M. Z. Slawin
- School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | | |
Collapse
|
29
|
Yang X, Zhou Y, Sun Z, Yang C, Tang D. Polydopamine assists the continuous growth of zeolitic imidazolate framework-8 on electrospun polyacrylonitrile fibers as efficient adsorbents for the improved removal of Cr( vi). NEW J CHEM 2021. [DOI: 10.1039/d1nj03080a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PDA coating assists the growth of ZIF-8 particles on PAN fibers to fabricate composite ZIF-8@PDA/PAN fibers as efficient adsorbents for Cr(vi) removal.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuhong Zhou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhaojie Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunhui Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dongyan Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
30
|
Bao C, Jiang Y, Zhao L, Li D, Xu P, Sun J. Aminoethylimidazole ionic liquid-grafted MIL-101-NH 2 heterogeneous catalyst for the conversion of CO 2 and epoxide without solvent and cocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj02590b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aminoethylimidazole IL-functionalized MIL-101-NHIM-NH2 catalyst efficiently catalyzes the cycloaddition reaction of CO2 and epoxide without solvent and cocatalyst, owing to the synergistic effects of Cr, –NH2 and Br− active sites.
Collapse
Affiliation(s)
- Chenglong Bao
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Yichen Jiang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Liyan Zhao
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Dazhi Li
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|
31
|
Wang Z, Wang Y, Xie Q, Fan Z, Shen Y. Aliphatic carboxylic acid as a hydrogen-bond donor for converting CO 2 and epoxide into cyclic carbonate under mild conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj01285a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The catalytic systems of aliphatic carboxylic acids/quaternary ammonium halides could efficiently convert the coupling of CO2 and epoxide into cyclic carbonates under mild conditions (80 °C and 4 bar CO2).
Collapse
Affiliation(s)
- Zheng Wang
- College of Food Science and Engineering
- Northwest University
- 710069 Xi’an
- China
| | - Yajun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- 710127 Xi’an
- China
| | - Qianjie Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- 710127 Xi’an
- China
| | - Zhiying Fan
- Chair of Inorganic and Metal–Organic Chemistry
- Department Chemistry & Catalysis Research Center
- Technical University of Munich (TUM)
- 85748 Garching
- Germany
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- 710127 Xi’an
- China
| |
Collapse
|
32
|
Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO 2 fixation into cyclic carbonates under mild conditions. Carbohydr Polym 2020; 256:117558. [PMID: 33483060 DOI: 10.1016/j.carbpol.2020.117558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
Searching for green, recyclable and highly efficient catalyst for the synthesis of cyclic carbonates from CO2 is of great importance because it is profitable for reducing the greenhouse effects and meets the principles of green chemistry. Herein, a series of cellulose nanocrystals, either the pristine or modified ones (TEMPO oxidized and Co(III)salen immobilized), were explored as catalysts for cycloaddition of epoxides and carbon dioxide. The impact of surface properties on the performance of the as-made catalysts was investigated. Co(III)-salen grafted cellulose nanocrystals was proven to be the most effective catalyst in this study, which could afford excellent yield up to 99 % after 24 h even under low CO2 pressures of 0.1 MPa. They can be easily recovered and reused for at least 4 times, demonstrating their excellent stability. We found that the surface functional groups such as enriched sulfate or carboxylic groups could also account for the enhanced catalytic activity. This work highlights the applications of green and sustainable nanoparticles in a cycloaddition reaction and offers a sustainable solution in industrial catalysis related to CO2 conversions.
Collapse
|
33
|
Liu A, Liang X, Yang Q, Ren X, Gao M, Yang Y, Ma T. Metal‐Organic‐Framework‐Derived Cobalt‐Doped Carbon Material for Electrochemical Ammonia Synthesis under Ambient Conditions. ChemElectroChem 2020. [DOI: 10.1002/celc.202001332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Anmin Liu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116023 China
| | - Xingyou Liang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116023 China
| | - Qiyue Yang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116023 China
| | - Xuefeng Ren
- School of Ocean Science and Technology Dalian University of Technology Panjin 124221 China
| | - Mengfan Gao
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116023 China
| | - Yanan Yang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116023 China
| | - Tingli Ma
- Department of Materials Science and Engineering China Jiliang University Hangzhou 310018 China
- Graduate School of Life Science and Systems Engineering Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu Kitakyushu Fukuoka 808-0196 Japan
| |
Collapse
|
34
|
Wang X, Yang L, Chen Y, Yang C, Lan J, Sun J. Metal-Free Triazine-Incorporated Organosilica Framework Catalyst for the Cycloaddition of CO2 to Epoxide under Solvent-Free Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Li Yang
- State Key Lab of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianwen Lan
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
35
|
Chen Y, Luo R, Ren Q, Zhou X, Ji H. Click-Based Porous Ionic Polymers with Intercalated High-Density Metalloporphyrin for Sustainable CO2 Transformation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yaju Chen
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Fine Chemical Industry Research Institute, School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinggang Ren
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiantai Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongbing Ji
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Fine Chemical Industry Research Institute, School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
36
|
Tavakoli Z. Catalytic CO2 fixation over a high-throughput synthesized copper terephthalate metal-organic framework. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Alp Arici T, Yeşilel OZ, Arici M. A water-stable 2D+2D→3D polycatenated coordination polymer for selective adsorption of methylene blue and detection of Fe3+ ion from aqueous solution. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Bansal A, Sharma R, Mohanty P. Nanocasted polytriazine-SBA-16 mesoporous composite for the conversion of CO2 to cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Niuniavaite D, Baltakys K, Dambrauskas T, Eisinas A, Rubinaite D, Jaskunas A. Microstructure, Thermal Stability, and Catalytic Activity of Compounds Formed in CaO-SiO 2-Cr(NO 3) 3-H 2O System. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1299. [PMID: 32630781 PMCID: PMC7407582 DOI: 10.3390/nano10071299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
In this work, the thermal stability, microstructure, and catalytic activity in oxidation reactions of calcium silicate hydrates formed in the CaO-SiO2-Cr(NO3)3-H2O system under hydrothermal conditions were examined in detail. Dry primary mixture with a molar ratio of CaO/SiO2 = 1.5 was mixed with Cr(NO3)3 solution (c = 10 g Cr3+/dm3) to reach a solution/solid ratio of the suspension of 10.0:1. Hydrothermal synthesis was carried out in unstirred suspensions at 175 °C for 16 h. It was determined that, after treatment, semicrystalline calcium silicate hydrates C-S-H(I) and/or C-S-H(II) with incorporated Cr3+ ions (100 mg/g) were formed. The results of in situ X-ray diffraction and simultaneous thermal analyses showed that the products were stable until 500 °C, while, at higher temperatures, they recrystallized to calcium chromate (CaCrO4, 550 °C) and wollastonite (800-850 °C). It was determined that both the surface area and the shape of the dominant pore changed during calcination. Propanol oxidation experiments showed that synthetic semicrystalline calcium silicate hydrates with intercalated chromium ions are able to exchange oxygen during the heterogeneous oxidation process. The obtained results were confirmed by XRD, STA, FT-IR, TEM, SEM, and BET methods, and by propanol oxidation experiments.
Collapse
Affiliation(s)
- Domante Niuniavaite
- Department of Silicate Technology, Kaunas University of Technology, Radvilenu 19, LT-50270 Kaunas, Lithuania; (D.N.); (T.D.); (A.E.); (D.R.)
| | - Kestutis Baltakys
- Department of Silicate Technology, Kaunas University of Technology, Radvilenu 19, LT-50270 Kaunas, Lithuania; (D.N.); (T.D.); (A.E.); (D.R.)
| | - Tadas Dambrauskas
- Department of Silicate Technology, Kaunas University of Technology, Radvilenu 19, LT-50270 Kaunas, Lithuania; (D.N.); (T.D.); (A.E.); (D.R.)
| | - Anatolijus Eisinas
- Department of Silicate Technology, Kaunas University of Technology, Radvilenu 19, LT-50270 Kaunas, Lithuania; (D.N.); (T.D.); (A.E.); (D.R.)
| | - Dovile Rubinaite
- Department of Silicate Technology, Kaunas University of Technology, Radvilenu 19, LT-50270 Kaunas, Lithuania; (D.N.); (T.D.); (A.E.); (D.R.)
| | - Andrius Jaskunas
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu 19, LT-50270 Kaunas, Lithuania;
| |
Collapse
|
40
|
Adenine-assisted synthesis of functionalized F-Mn-MOF-74 as an efficient catalyst with enhanced catalytic activity for the cycloaddition of carbon dioxide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Liu J, Zhao Y, Dang LL, Yang G, Ma LF, Li DS, Wang Y. Highly stable 3D porous HMOF with enhanced catalysis and fine color regulation by the combination of d- and p-ions when compared with those of its monometallic MOFs. Chem Commun (Camb) 2020; 56:8758-8761. [DOI: 10.1039/d0cc03111a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three comparable MOFs were yielded successfully. Among them, the highly stable HMOF is a porous 3D motif with lots of active sites, leading to the enhanced catalysis for CO2 conversion and fine color regulations of MOFs by doping different ions.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi’an 710127
| | - Ying Zhao
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi’an 710127
| | - Lu-Fang Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi’an 710127
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang 443002
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- College of Chemistry & Materials Science
- Northwest University
- Xi’an 710127
| |
Collapse
|
42
|
Guo F, Zhang X. Metal–organic frameworks for the energy-related conversion of CO2 into cyclic carbonates. Dalton Trans 2020; 49:9935-9947. [DOI: 10.1039/d0dt01516d] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MOFs are promising heterogeneous catalysts for chemical fixation of CO2 and epoxides into cyclic carbonates.
Collapse
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering
- Dezhou University
- Dezhou
- People's Republic of China
| |
Collapse
|