1
|
Lee BR, Lee HJ, Kim NH, Kim YS, Park KI. Increased Effect of Foot-and-Mouth Disease Virus Vaccine Structural Protein Antibody Positivity Rates in Piglets Orally Treated with Amino-Zinc Complex. Animals (Basel) 2023; 13:2027. [PMID: 37370536 DOI: 10.3390/ani13122027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious animal disease that occurs in cloven-hoofed animals including pigs. To prevent FMD, vaccines and adjuvants are routinely used to induce an immune response; however, it requires an extended period of time to produce sufficient antibodies to prevent viral infection. In this study, we evaluated the increased effectiveness of the FMD vaccine structural protein (SP) antibody by administrating the Amino-Zn adjuvant to 100 pigs from 3 test pig farms in their feed. The FMD vaccine antibody titer and immunological index were analyzed using an enzyme-linked immunosorbent assay (ELISA) kit, and the hematological and blood biochemical parameters were analyzed using an automatic blood analyzer. The titer of the FMD vaccine SP antibodies in the 0.2% Amino-Zn-administered group was significantly increased compared to that of the positive control group only injected with FMD vaccine at 4 weeks after the first vaccination and at 4, 8, and 16 weeks after the second vaccination (p < 0.05). The FMD vaccine SP antibody positive rate was 100% until shipment. The IFN-γ and IgA levels were significantly increased by Amino-Zn administration 4 weeks after the first vaccination and 4 weeks after the second vaccination (p < 0.05). On the other hand, serum AST, and CPK (p < 0.001) were significantly decreased by Amino-Zn administration. These results show that the administration of Amino-Zn is effective in enhancing the antibody titer and immunogenicity of the FMD vaccine and can be used as an oral adjuvant (OrAd) to prevent viral diseases, such as FMD.
Collapse
Affiliation(s)
- Byoung-Ryol Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hu-Jang Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Nam-Hoon Kim
- ZinexBio Corporation, Asan 31538, Republic of Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Kwang Il Park
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Tolo IE, Bajer PG, Wolf TM, Mor SK, Phelps NBD. Investigation of Cyprinid Herpesvirus 3 (CyHV-3) Disease Periods and Factors Influencing CyHV-3 Transmission in A Low Stocking Density Infection Trial. Animals (Basel) 2021; 12:ani12010002. [PMID: 35011108 PMCID: PMC8749781 DOI: 10.3390/ani12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Pathogens are the primary limitation to aquaculture production of fish and a major issue in consideration of the interface between cultured and wild populations of fishes worldwide. While rapid spread of fish pathogens between populations (wild or farmed) is generally anthropogenic and the result of trade, the mechanisms of transmission once a pathogen has been introduced to a fish population are not well understood. The most widespread pathogen impacting both aquaculture and wild populations of common carp (Cyprinus carpio, carp) is Cyprinid herpesvirus 3 (CyHV-3). To understand how CyHV-3 is transmitted in a population we conducted a series of infection trials, designed to determine the kinetics CyHV-3 infections, identify the contributions of direct and indirect forms of CyHV-3 transmission, and to determine the contributions of contact rate, viral load, pathogenicity, and contact type. We found that direct contact between fish was the primary mechanism of CyHV-3 transmission rather than transmission through contaminated water. Additionally, CyHV-3 transmission occurred primarily during the incubation period of CyHV-3, prior to the appearance of disease signs and disease-associated reduction in contact rate. Abstract Cyprinid herpesvirus 3 (CyHV-3) is the etiological agent of koi herpesvirus disease (KHVD) and important pathogen of aquaculture and wild populations of common carp worldwide. Understanding the relative contributions of direct and indirect transmission of CyHV-3 as well as the factors that drive CyHV-3 transmission can clarify the importance of environmental disease vectors and is valuable for informing disease modeling efforts. To study the mechanisms and factors driving CyHV-3 transmission we conducted infection trials that determined the kinetics of KHVD and the contributions of direct and indirect forms of CyHV-3 transmission, as well as the contributions of contact rate, viral load, pathogenicity and contact type. The incubation period of KHVD was 5.88 + 1.75 days and the symptomatic period was 5.31 + 0.87 days. Direct transmission was determined to be the primary mechanism of CyHV-3 transmission (OR = 25.08, 95%CI = 10.73–99.99, p = 4.29 × 10−18) and transmission primarily occurred during the incubation period of KHVD. Direct transmission decreased in the symptomatic period of disease. Transmissibility of CyHV-3 and indirect transmission increased during the symptomatic period of disease, correlating with increased viral loads. Additionally, potential virulence-transmission tradeoffs and disease avoidance behaviors relevant to CyHV-3 transmission were identified.
Collapse
Affiliation(s)
- Isaiah E. Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Przemyslaw G. Bajer
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Tiffany M. Wolf
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Sunil K. Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Nicholas B. D. Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA; (I.E.T.); (P.G.B.); (S.K.M.)
- Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
3
|
Stenfeldt C, Bertram MR, Smoliga GR, Hartwig EJ, Delgado AH, Arzt J. Duration of Contagion of Foot-And-Mouth Disease Virus in Infected Live Pigs and Carcasses. Front Vet Sci 2020; 7:334. [PMID: 32596275 PMCID: PMC7300267 DOI: 10.3389/fvets.2020.00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Data-driven modeling of incursions of high-consequence, transboundary pathogens of animals is a critical component of veterinary preparedness. However, simplifying assumptions and excessive use of proxy measures to compensate for gaps in available data may compromise modeled outcomes. The current investigation was prospectively designed to address two major gaps in current knowledge of foot-and-mouth disease virus (FMDV) pathogenesis in pigs: the end (duration) of the infectious period and the viability of FMDV in decaying carcasses. By serial exposure of sentinel groups of pigs to the same group of donor pigs infected by FMDV A24 Cruzeiro, it was demonstrated that infected pigs transmitted disease at 10 days post infection (dpi), but not at 15 dpi. Assuming a latent period of 1 day, this would result in a conservative estimate of an infectious duration of 9 days, which is considerably longer than suggested by a previous report from an experiment performed in cattle. Airborne contagion was diminished within two days of removal of infected pigs from isolation rooms. FMDV in muscle was inactivated within 7 days in carcasses stored at 4oC. By contrast, FMDV infectivity in vesicle epithelium harvested from intact carcasses stored under similar conditions remained remarkably high until the study termination at 11 weeks post mortem. The output from this study consists of experimentally determined data on contagion associated with FMDV-infected pigs. This information may be utilized to update parameterization of models used for foot-and-mouth disease outbreak simulations involving areas of substantial pig production.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Miranda R Bertram
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - George R Smoliga
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Ethan J Hartwig
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Amy H Delgado
- Monitoring and Modeling, Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| |
Collapse
|
4
|
Auty H, Mellor D, Gunn G, Boden LA. The Risk of Foot and Mouth Disease Transmission Posed by Public Access to the Countryside During an Outbreak. Front Vet Sci 2019; 6:381. [PMID: 31750321 PMCID: PMC6848457 DOI: 10.3389/fvets.2019.00381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 11/14/2022] Open
Abstract
During the 2001 UK FMD outbreak, local authorities restricted rural access to try to prevent further disease spread by people and animals, which had major socio-economic consequences for rural communities. This study describes the results of qualitative veterinary risk assessments to assess the likelihood of different recreational activities causing new outbreaks of foot and mouth disease, as part of contingency planning for future outbreaks. For most activities, the likelihood of causing new outbreaks of foot and mouth disease is considered to vary from very low to medium depending on the control zone (which is based on distance to the nearest infected premises), assuming compliance with specified mitigation strategies. The likelihood of new outbreaks associated with hunting, shooting, stalking, and equestrian activities is considered to be greater. There are areas of significant uncertainty associated with data paucity, particularly regarding the likelihood of transmission via fomites. This study provides scientific evidence to underpin refinement of rural access management plans and inform decision-making in future disease outbreaks.
Collapse
Affiliation(s)
- Harriet Auty
- Epidemiology Research Unit, Scotland's Rural College, Inverness, United Kingdom
| | - Dominic Mellor
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - George Gunn
- Epidemiology Research Unit, Scotland's Rural College, Inverness, United Kingdom
| | - Lisa A Boden
- The Global Academy of Agriculture and Food Security, The Royal (Dick) School of Veterinary Studies, The Roslin Institute, Midlothian, United Kingdom
| |
Collapse
|
5
|
Alexandersen S, Knowles NJ, Belsham GJ, Dekker A, Nfon C, Zhang Z, Koenen F. Picornaviruses. DISEASES OF SWINE 2019:641-684. [DOI: 10.1002/9781119350927.ch40] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Moreno-Torres KI, Brito BP, Branan MA, Rodriguez LL, Delgado AH, Stenfeldt C, Arzt J. Foot-and-Mouth Disease Infection Dynamics in Contact-Exposed Pigs Are Determined by the Estimated Exposure Dose. Front Vet Sci 2018; 5:167. [PMID: 30079340 PMCID: PMC6062637 DOI: 10.3389/fvets.2018.00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
The quantitative relationship between the exposure dose of foot-and-mouth disease virus (FMDV) and subsequent infection dynamics has been demonstrated through controlled inoculation studies in various species. However, similar quantitation of viral doses has not been achieved during contact exposure experiments due to the intrinsic difficulty of measuring the virus quantities exchanged between animals. In the current study, novel modeling techniques were utilized to investigate FMDV infection dynamics in groups of pigs that had been contact-exposed to FMDV-infected donors shedding varying levels of virus, as well as in pigs inoculated via the intra-oropharyngeal (IOP) route. Estimated virus exposure doses were modeled and were found to be statistically significantly associated with the dynamics of FMDV RNA detection in serum and oropharyngeal fluid (OPF), and with the time to onset of clinical disease. The minimum estimated shedding quantity in OPF that defined infectiousness of donor pigs was 6.55 log10 genome copy numbers (GCN)/ml (95% CI 6.11, 6.98), which delineated the transition from the latent to infectious phase of disease which occurred during the incubation phase. This quantity corresponded to a minimum estimated exposure dose of 5.07 log10 GCN/ml (95% CI 4.25, 5.89) in contact-exposed pigs. Thus, we demonstrated that a threshold quantity of FMDV detection in donor pigs was necessary in order to achieve transmission by direct contact. The outcomes from this investigation demonstrate that variability of infection dynamics which occurs during the progression of FMD in naturally exposed pigs can be partially attributed to variations in exposure dose. Moreover, these modeling approaches for dose-quantitation may be retrospectively applied to contact-exposure experiments or field scenarios. Hence, robust information could be incorporated into models used to evaluate FMD spread and control.
Collapse
Affiliation(s)
- Karla I Moreno-Torres
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States.,United States Department of Agriculture, Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Barbara P Brito
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Matthew A Branan
- United States Department of Agriculture, Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Amy H Delgado
- United States Department of Agriculture, Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States
| |
Collapse
|
7
|
Stenfeldt C, Pacheco JM, Brito BP, Moreno-Torres KI, Branan MA, Delgado AH, Rodriguez LL, Arzt J. Transmission of Foot-and-Mouth Disease Virus during the Incubation Period in Pigs. Front Vet Sci 2016; 3:105. [PMID: 27917386 PMCID: PMC5116750 DOI: 10.3389/fvets.2016.00105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Understanding the quantitative characteristics of a pathogen’s capability to transmit during distinct phases of infection is important to enable accurate predictions of the spread and impact of a disease outbreak. In the current investigation, the potential for transmission of foot-and-mouth disease virus (FMDV) during the incubation (preclinical) period of infection was investigated in seven groups of pigs that were sequentially exposed to a group of donor pigs that were infected by simulated-natural inoculation. Contact-exposed pigs were comingled with infected donors through successive 8-h time slots spanning from 8 to 64 h post-inoculation (hpi) of the donor pigs. The transition from latent to infectious periods in the donor pigs was clearly defined by successful transmission of foot-and-mouth disease (FMD) to all contact pigs that were exposed to the donors from 24 hpi and later. This onset of infectiousness occurred concurrent with detection of viremia, but approximately 24 h prior to the first appearance of clinical signs of FMD in the donors. Thus, the latent period of infection ended approximately 24 h before the end of the incubation period. There were significant differences between contact-exposed groups in the time elapsed from virus exposure to the first detection of FMDV shedding, viremia, and clinical lesions. Specifically, the onset and progression of clinical FMD were more rapid in pigs that had been exposed to the donor pigs during more advanced phases of disease, suggesting that these animals had received a higher effective challenge dose. These results demonstrate transmission and dissemination of FMD within groups of pigs during the incubation period of infection. Furthermore, these findings suggest that under current conditions, shedding of FMDV in oropharyngeal fluids is a more precise proxy for FMDV infectiousness than clinical signs of infection. These findings may impact modeling of the propagation of FMD outbreaks that initiate in pig holdings and should be considered when designing FMD control strategies.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Juan M Pacheco
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture , Greenport, NY , USA
| | - Barbara P Brito
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Karla I Moreno-Torres
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, United States Department of Agriculture, Fort Collins, CO, USA
| | - Matt A Branan
- Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, United States Department of Agriculture , Fort Collins, CO , USA
| | - Amy H Delgado
- Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, United States Department of Agriculture , Fort Collins, CO , USA
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture , Greenport, NY , USA
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture , Greenport, NY , USA
| |
Collapse
|
8
|
Pacheco JM, Stenfeldt C, Rodriguez LL, Arzt J. Infection Dynamics of Foot-and-Mouth Disease Virus in Cattle Following Intranasopharyngeal Inoculation or Contact Exposure. J Comp Pathol 2016; 155:314-325. [PMID: 27697284 DOI: 10.1016/j.jcpa.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023]
Abstract
For the purpose of developing an improved experimental model for studies of foot-and-mouth disease virus (FMDV) infection in cattle, three different experimental systems based on natural or simulated natural virus exposure were compared under standardized experimental conditions. Ante-mortem infection dynamics were characterized in cattle exposed to FMDV through a novel, simulated natural intranasopharyngeal (INP) inoculation system or through standardized and controlled systems of within- or between-species direct contact exposure (cattle-to-cattle or pig-to-cattle). All three systems were efficient in causing synchronous, generalized foot-and-mouth disease in cattle exposed to one of three different strains of FMDV representing serotypes O, A and Asia1. There was more within-group variation in the timing of clinical infection following natural and simulated natural virus exposure systems when compared with the conventionally used system of needle inoculation (intraepithelial lingual inoculation). However, the three optimized exposure systems described herein have the advantage of closely simulating field conditions by utilizing natural routes of primary infection, thereby facilitating engagement of mucosal host defence mechanisms. Overall, it is concluded that INP inoculation and standardized systems of direct contact exposure provide effective alternatives to conventional (needle) inoculation systems for studies in which it is desirable to simulate the natural biology of FMDV infection.
Collapse
Affiliation(s)
- J M Pacheco
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA
| | - C Stenfeldt
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - L L Rodriguez
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA
| | - J Arzt
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA.
| |
Collapse
|
9
|
Kinsley AC, Patterson G, VanderWaal KL, Craft ME, Perez AM. Parameter Values for Epidemiological Models of Foot-and-Mouth Disease in Swine. Front Vet Sci 2016; 3:44. [PMID: 27314002 PMCID: PMC4887472 DOI: 10.3389/fvets.2016.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
In the event of a foot-and-mouth disease (FMD) incursion, response strategies are required to control, contain, and eradicate the pathogen as efficiently as possible. Infectious disease simulation models are widely used tools that mimic disease dispersion in a population and that can be useful in the design and support of prevention and mitigation activities. However, there are often gaps in evidence-based research to supply models with quantities that are necessary to accurately reflect the system of interest. The objective of this study was to quantify values associated with the duration of the stages of FMD infection (latent period, subclinical period, incubation period, and duration of infection), probability of transmission (within-herd and between-herd via spatial spread), and diagnosis of a vesicular disease within a herd using a meta-analysis of the peer-reviewed literature and expert opinion. The latent period ranged from 1 to 7 days and incubation period ranged from 1 to 9 days; both were influenced by strain. In contrast, the subclinical period ranged from 0 to 6 days and was influenced by sampling method only. The duration of infection ranged from 1 to 10 days. The probability of spatial spread between an infected and fully susceptible swine farm was estimated as greatest within 5 km of the infected farm, highlighting the importance of possible long-range transmission through the movement of infected animals. Finally, while most swine practitioners are confident in their ability to detect a vesicular disease in an average sized swine herd, a small proportion expect that up to half of the herd would need to show clinical signs before detection via passive surveillance would occur. The results of this study will be useful in within- and between-herd simulation models to develop efficient response strategies in the event an FMD in swine populations of disease-free countries or regions.
Collapse
Affiliation(s)
- Amy C Kinsley
- Department of Veterinary Population Medicine, University of Minnesota , St. Paul, MN , USA
| | - Gilbert Patterson
- Department of Veterinary Population Medicine, University of Minnesota , St. Paul, MN , USA
| | - Kimberly L VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota , St. Paul, MN , USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota , St. Paul, MN , USA
| | - Andres M Perez
- Department of Veterinary Population Medicine, University of Minnesota , St. Paul, MN , USA
| |
Collapse
|
10
|
Stenfeldt C, Diaz-San Segundo F, de Los Santos T, Rodriguez LL, Arzt J. The Pathogenesis of Foot-and-Mouth Disease in Pigs. Front Vet Sci 2016; 3:41. [PMID: 27243028 PMCID: PMC4876306 DOI: 10.3389/fvets.2016.00041] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 12/05/2022] Open
Abstract
The greatest proportion of foot-and-mouth disease (FMD) clinical research has been dedicated to elucidating pathogenesis and enhancing vaccine protection in cattle with less efforts invested in studies specific to pigs. However, accumulated evidence from FMD outbreaks and experimental investigations suggest that critical components of FMD pathogenesis, immunology, and vaccinology cannot be extrapolated from investigations performed in cattle to explain or to predict outcomes of infection or vaccination in pigs. Furthermore, it has been shown that failure to account for these differences may have substantial consequences when FMD outbreaks occur in areas with dense pig populations. Recent experimental studies have confirmed some aspects of conventional wisdom by demonstrating that pigs are more susceptible to FMD virus (FMDV) infection via exposure of the upper gastrointestinal tract (oropharynx) than through inhalation of virus. The infection spreads rapidly within groups of pigs that are housed together, although efficiency of transmission may vary depending on virus strain and exposure intensity. Multiple investigations have demonstrated that physical separation of pigs is sufficient to prevent virus transmission under experimental conditions. Detailed pathogenesis studies have recently demonstrated that specialized epithelium within porcine oropharyngeal tonsils constitute the primary infection sites following simulated natural virus exposure. Furthermore, epithelium of the tonsil of the soft palate supports substantial virus replication during the clinical phase of infection, thus providing large amounts of virus that can be shed into the environment. Due to massive amplification and shedding of virus, acutely infected pigs constitute a considerable source of contagion. FMDV infection results in modulation of several components of the host immune response. The infection is ultimately cleared in association with a strong humoral response and, in contrast to ruminants, there is no subclinical persistence of FMDV in pigs. The aim of this review is to provide an overview of knowledge gained from experimental investigations of FMD pathogenesis, transmission, and host response in pigs. Details of the temporo-anatomic progression of infection are discussed in relation to specific pathogenesis events and the likelihood of transmission. Additionally, relevant aspects of the host immune response are discussed within contexts of conventional and novel intervention strategies of vaccination and immunomodulation.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA), Greenport, NY, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fayna Diaz-San Segundo
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA), Greenport, NY, USA; Department of Pathobiology and Veterinary Science, CANR, University of Connecticut, Storrs, CT, USA
| | - Teresa de Los Santos
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| | - Luis L Rodriguez
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| | - Jonathan Arzt
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| |
Collapse
|
11
|
Evaluation of Infectivity, Virulence and Transmission of FDMV Field Strains of Serotypes O and A Isolated In 2010 from Outbreaks in the Republic of Korea. PLoS One 2016; 11:e0146445. [PMID: 26735130 PMCID: PMC4703371 DOI: 10.1371/journal.pone.0146445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022] Open
Abstract
Since the early 2000s outbreaks of foot-and-mouth disease (FMD) have been described in several previously FMD-free Asian nations, including the Republic of Korea (South Korea). One outbreak with FMD virus (FDMV) serotype A and two with serotype O occurred in South Korea in 2010/2011. The causative viruses belonged to lineages that had been spreading in South East Asia, far East and East Asia since 2009 and presented a great threat to the countries in that region. Most FMDV strains infect ruminants and pigs, as it happened during the outbreaks of FMDV serotype O in South Korea. Contrastingly, the strain of serotype A affected only ruminants. Based upon these findings, the intention of the work described in the current report was to characterize and compare the infectivity, virulence and transmission of both strains under laboratory conditions in cattle and pigs, by direct inoculation and contact exposure. As expected, FMDV serotype O was highly virulent in both cattle and swine by contact exposure and direct inoculation. Surprisingly, FMDV serotype A was highly virulent in swine, but was less infectious in cattle by contact exposure to infected swine or cattle. Interestingly, similar quantities of aerosolized FMDV RNA were detected during experiments with viruses of serotypes O and A. Specific virus-host interaction of A/SKR/2010 could affect the transmission of this strain to cattle, and this may explain in part the limited spread of the serotype A epizootic.
Collapse
|
12
|
Mazzei M, Carrozza ML, Luisi E, Forzan M, Giusti M, Sagona S, Tolari F, Felicioli A. Infectivity of DWV associated to flower pollen: experimental evidence of a horizontal transmission route. PLoS One 2014; 9:e113448. [PMID: 25419704 PMCID: PMC4242645 DOI: 10.1371/journal.pone.0113448] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/24/2014] [Indexed: 11/19/2022] Open
Abstract
Deformed wing virus (DWV) is a honeybee pathogen whose presence is generally associated with infestation of the colony by the mite Varroa destructor, leading to the onset of infections responsible for the collapse of the bee colony. DWV contaminates bee products such as royal jelly, bee-bread and honey stored within the infected hive. Outside the hive, DWV has been found in pollen loads collected directly from infected as well as uninfected forager bees. It has been shown that the introduction of virus-contaminated pollen into a DWV-free hive results in the production of virus-contaminated food, whose role in the development of infected bees from virus-free eggs has been experimentally demonstrated. The aim of this study was twofold: (i) to ascertain the presence of DWV on pollen collected directly from flowers visited by honeybees and then quantify the viral load and (ii) determine whether the virus associated with pollen is infective. The results of our investigation provide evidence that DWV is present on pollen sampled directly from visited flowers and that, following injection in individuals belonging to the pollinator species Apis mellifera, it is able to establish an active infection, as indicated by the presence of replicating virus in the head of the injected bees. We also provide the first indication that the pollinator species Osmia cornuta is susceptible to DWV infection.
Collapse
Affiliation(s)
- Maurizio Mazzei
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | | | - Elena Luisi
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Mario Forzan
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Matteo Giusti
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Simona Sagona
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Francesco Tolari
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Antonio Felicioli
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
13
|
Dose-dependent responses of pigs infected with foot-and-mouth disease virus O/JPN/2010 by the intranasal and intraoral routes. Arch Virol 2014; 160:129-39. [DOI: 10.1007/s00705-014-2239-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
|
14
|
Infection dynamics of foot-and-mouth disease virus in pigs using two novel simulated-natural inoculation methods. Res Vet Sci 2014; 96:396-405. [DOI: 10.1016/j.rvsc.2014.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/03/2013] [Accepted: 01/26/2014] [Indexed: 11/23/2022]
|
15
|
Porphyre T, Auty HK, Tildesley MJ, Gunn GJ, Woolhouse MEJ. Vaccination against foot-and-mouth disease: do initial conditions affect its benefit? PLoS One 2013; 8:e77616. [PMID: 24204895 PMCID: PMC3815046 DOI: 10.1371/journal.pone.0077616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/11/2013] [Indexed: 11/29/2022] Open
Abstract
When facing incursion of a major livestock infectious disease, the decision to implement a vaccination programme is made at the national level. To make this decision, governments must consider whether the benefits of vaccination are sufficient to outweigh potential additional costs, including further trade restrictions that may be imposed due to the implementation of vaccination. However, little consensus exists on the factors triggering its implementation on the field. This work explores the effect of several triggers in the implementation of a reactive vaccination-to-live policy when facing epidemics of foot-and-mouth disease. In particular, we tested whether changes in the location of the incursion and the delay of implementation would affect the epidemiological benefit of such a policy in the context of Scotland. To reach this goal, we used a spatial, premises-based model that has been extensively used to investigate the effectiveness of mitigation procedures in Great Britain. The results show that the decision to vaccinate, or not, is not straightforward and strongly depends on the underlying local structure of the population-at-risk. With regards to disease incursion preparedness, simply identifying areas of highest population density may not capture all complexities that may influence the spread of disease as well as the benefit of implementing vaccination. However, if a decision to vaccinate is made, we show that delaying its implementation in the field may markedly reduce its benefit. This work provides guidelines to support policy makers in their decision to implement, or not, a vaccination-to-live policy when facing epidemics of infectious livestock disease.
Collapse
Affiliation(s)
- Thibaud Porphyre
- Epidemiology Group, Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- * E-mail:
| | - Harriet K. Auty
- Epidemiology Research Unit, Scotland’s Rural College, Inverness, United Kingdom
| | - Michael J. Tildesley
- Centre for Complexity Science, Zeeman Building, University of Warwick, Coventry, United Kingdom
| | - George J. Gunn
- Epidemiology Research Unit, Scotland’s Rural College, Inverness, United Kingdom
| | - Mark E. J. Woolhouse
- Epidemiology Group, Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Pacheco JM, Tucker M, Hartwig E, Bishop E, Arzt J, Rodriguez LL. Direct contact transmission of three different foot-and-mouth disease virus strains in swine demonstrates important strain-specific differences. Vet J 2012; 193:456-63. [PMID: 22342891 DOI: 10.1016/j.tvjl.2012.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 12/09/2011] [Accepted: 01/06/2012] [Indexed: 11/29/2022]
Abstract
A novel direct contact transmission model for the study of foot-and-mouth disease virus (FMDV) infection of swine was utilized to investigate transmission characteristics of three FMDV strains belonging to serotypes A, O and Asia1. Each strain demonstrated distinct transmission characteristics and required different exposure times to achieve successful contact transmission. While a 4h exposure was sufficient for strain A24 Cruzeiro (A24Cru), both O1 Manisa and Asia1 Shamir transmission required 18 h or more. Viral excretion levels from donors (for all three strains) and virus present in room air (for A24Cru and O1 Manisa) were evaluated and associated with clinical signs and observed transmission pattern. Although all directly inoculated donor animals showed acute FMD, A24Cru had the highest levels of viral shedding in saliva and nasal swabs followed by O1 Manisa and Asia1 Shamir. Virus levels in room air were higher and were detected longer for A24Cru than for O1 Manisa. These results provide direct evidence for important strain-specific variation in transmission characteristics and emphasize the need for thorough evaluation of different FMDV viral strains using a well defined contact transmission methodology. This information is critical for vaccine and biotherapeutic efficacy testing, pathogenesis and disease modeling of FMDV transmission.
Collapse
Affiliation(s)
- Juan M Pacheco
- Foreign Animal Disease Research Unit, Agriculture Research Service, US Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Tildesley MJ, Smith G, Keeling MJ. Modeling the spread and control of foot-and-mouth disease in Pennsylvania following its discovery and options for control. Prev Vet Med 2011; 104:224-39. [PMID: 22169708 DOI: 10.1016/j.prevetmed.2011.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 01/13/2023]
Abstract
In this paper, we simulate outbreaks of foot-and-mouth disease in the Commonwealth of Pennsylvania, USA - after the introduction of a state-wide movement ban - as they might unfold in the presence of mitigation strategies. We have adapted a model previously used to investigate FMD control policies in the UK to examine the potential for disease spread given an infection seeded in each county in Pennsylvania. The results are highly dependent upon the county of introduction and the spatial scale of transmission. Should the transmission kernel be identical to that for the UK, the epidemic impact is limited to fewer than 20 premises, regardless of the county of introduction. However, for wider kernels where infection can spread further, outbreaks seeded in or near the county with highest density of premises and animals result in large epidemics (>150 premises). Ring culling and vaccination reduce epidemic size, with the optimal radius of the rings being dependent upon the county of introduction. Should the kernel width exceed a given county-dependent threshold, ring culling is unable to control the epidemic. We find that a vaccinate-to-live policy is generally preferred to ring culling (in terms of reducing the overall number of premises culled), indicating that well-targeted control can dramatically reduce the risk of large scale outbreaks of foot-and-mouth disease occurring in Pennsylvania.
Collapse
Affiliation(s)
- Michael J Tildesley
- Centre for Complexity Science, Zeeman Building, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | |
Collapse
|
18
|
Singh R, Levitt AL, Rajotte EG, Holmes EC, Ostiguy N, vanEngelsdorp D, Lipkin WI, dePamphilis CW, Toth AL, Cox-Foster DL. RNA viruses in hymenopteran pollinators: evidence of inter-Taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One 2010; 5:e14357. [PMID: 21203504 PMCID: PMC3008715 DOI: 10.1371/journal.pone.0014357] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 11/22/2010] [Indexed: 11/19/2022] Open
Abstract
Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general.
Collapse
Affiliation(s)
- Rajwinder Singh
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Abby L. Levitt
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Edwin G. Rajotte
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Edward C. Holmes
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, Pennsylvania, United States of America
| | - Nancy Ostiguy
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Dennis vanEngelsdorp
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| | - W. Ian Lipkin
- Mailman School of Public Health, Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Claude W. dePamphilis
- Department of Biology, The Pennsylvania State University, Pennsylvania, United States of America
| | - Amy L. Toth
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Diana L. Cox-Foster
- Department of Entomology, The Pennsylvania State University, Pennsylvania, United States of America
| |
Collapse
|
19
|
Steinmeyer SH, Wilke CO, Pepin KM. Methods of modelling viral disease dynamics across the within- and between-host scales: the impact of virus dose on host population immunity. Philos Trans R Soc Lond B Biol Sci 2010; 365:1931-41. [PMID: 20478888 DOI: 10.1098/rstb.2010.0065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We study the epidemiology of a viral disease with dose-dependent replication and transmission by nesting a differential-equation model of the within-host viral dynamics inside a between-host epidemiological model. We use two complementary approaches for nesting the models: an agent-based (AB) simulation and a mean-field approximation called the growth-matrix (GM) model. We find that although infection rates and predicted case loads are somewhat different between the AB and GM models, several epidemiological parameters, e.g. mean immunity in the population and mean dose received, behave similarly across the methods. Further, through a comparison of our dose-dependent replication model against two control models that uncouple dose-dependent replication from transmission, we find that host immunity in a population after an epidemic is qualitatively different than when transmission depends on time-varying viral abundances within hosts. These results show that within-host dynamics and viral dose should not be neglected in epidemiological models, and that the simpler GM approach to model nesting provides a reasonable tradeoff between model complexity and accuracy of results.
Collapse
Affiliation(s)
- Shelby H Steinmeyer
- Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|