1
|
Duggal A, Scheraga R, Sacha GL, Wang X, Huang S, Krishnan S, Siuba MT, Torbic H, Dugar S, Mucha S, Veith J, Mireles-Cabodevila E, Bauer SR, Kethireddy S, Vachharajani V, Dalton JE. Forecasting disease trajectories in critical illness: comparison of probabilistic dynamic systems to static models to predict patient status in the intensive care unit. BMJ Open 2024; 14:e079243. [PMID: 38320842 PMCID: PMC10860023 DOI: 10.1136/bmjopen-2023-079243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Conventional prediction models fail to integrate the constantly evolving nature of critical illness. Alternative modelling approaches to study dynamic changes in critical illness progression are needed. We compare static risk prediction models to dynamic probabilistic models in early critical illness. DESIGN We developed models to simulate disease trajectories of critically ill COVID-19 patients across different disease states. Eighty per cent of cases were randomly assigned to a training and 20% of the cases were used as a validation cohort. Conventional risk prediction models were developed to analyse different disease states for critically ill patients for the first 7 days of intensive care unit (ICU) stay. Daily disease state transitions were modelled using a series of multivariable, multinomial logistic regression models. A probabilistic dynamic systems modelling approach was used to predict disease trajectory over the first 7 days of an ICU admission. Forecast accuracy was assessed and simulated patient clinical trajectories were developed through our algorithm. SETTING AND PARTICIPANTS We retrospectively studied patients admitted to a Cleveland Clinic Healthcare System in Ohio, for the treatment of COVID-19 from March 2020 to December 2022. RESULTS 5241 patients were included in the analysis. For ICU days 2-7, the static (conventional) modelling approach, the accuracy of the models steadily decreased as a function of time, with area under the curve (AUC) for each health state below 0.8. But the dynamic forecasting approach improved its ability to predict as a function of time. AUC for the dynamic forecasting approach were all above 0.90 for ICU days 4-7 for all states. CONCLUSION We demonstrated that modelling critical care outcomes as a dynamic system improved the forecasting accuracy of the disease state. Our model accurately identified different disease conditions and trajectories, with a <10% misclassification rate over the first week of critical illness.
Collapse
Affiliation(s)
- Abhijit Duggal
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rachel Scheraga
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Xiaofeng Wang
- Department of Qualitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shuaqui Huang
- Department of Qualitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sudhir Krishnan
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew T Siuba
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio, USA
| | - Heather Torbic
- Department of Pharmacy, Cleveland Clinic, Cleveland, Ohio, USA
| | - Siddharth Dugar
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio, USA
| | - Simon Mucha
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joshua Veith
- Department of Critical Care, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Jarrod E Dalton
- Department of Qualitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Abstract
Sepsis is a heterogeneous disease state that is both common and consequential in critically ill patients. Unfortunately, the heterogeneity of sepsis at the individual patient level has hindered advances in the field beyond the current therapeutic standards, which consist of supportive care and antibiotics. This complexity has prompted attempts to develop a precision medicine approach, with research aimed towards stratifying patients into more homogeneous cohorts with shared biological features, potentially facilitating the identification of new therapies. Several investigators have successfully utilized leukocyte-derived mRNA and discovery-based approaches to subgroup patients on the basis of biological similarities defined by transcriptomic signatures. A critical next step is to develop a consensus sepsis subclassification system, which includes transcriptomic signatures as well as other biological and clinical data. This goal will require collaboration among various investigative groups, and validation in both existing data sets and prospective studies. Such studies are required to bring precision medicine to the bedside of critically ill patients with sepsis.
Collapse
|
3
|
Namas RA, Mi Q, Namas R, Almahmoud K, Zaaqoq AM, Abdul-Malak O, Azhar N, Day J, Abboud A, Zamora R, Billiar TR, Vodovotz Y. Insights into the Role of Chemokines, Damage-Associated Molecular Patterns, and Lymphocyte-Derived Mediators from Computational Models of Trauma-Induced Inflammation. Antioxid Redox Signal 2015; 23:1370-87. [PMID: 26560096 PMCID: PMC4685502 DOI: 10.1089/ars.2015.6398] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Traumatic injury elicits a complex, dynamic, multidimensional inflammatory response that is intertwined with complications such as multiple organ dysfunction and nosocomial infection. The complex interplay between inflammation and physiology in critical illness remains a challenge for translational research, including the extrapolation to human disease from animal models. RECENT ADVANCES Over the past decade, we and others have attempted to decipher the biocomplexity of inflammation in these settings of acute illness, using computational models to improve clinical translation. In silico modeling has been suggested as a computationally based framework for integrating data derived from basic biology experiments as well as preclinical and clinical studies. CRITICAL ISSUES Extensive studies in cells, mice, and human blunt trauma patients have led us to suggest (i) that while an adequate level of inflammation is required for healing post-trauma, inflammation can be harmful when it becomes self-sustaining via a damage-associated molecular pattern/Toll-like receptor-driven feed-forward circuit; (ii) that chemokines play a central regulatory role in driving either self-resolving or self-maintaining inflammation that drives the early activation of both classical innate and more recently recognized lymphoid pathways; and (iii) the presence of multiple thresholds and feedback loops, which could significantly affect the propagation of inflammation across multiple body compartments. FUTURE DIRECTIONS These insights from data-driven models into the primary drivers and interconnected networks of inflammation have been used to generate mechanistic computational models. Together, these models may be used to gain basic insights as well as serving to help define novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajaie Namas
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Akram M. Zaaqoq
- Department of Critical Care Medicine, University of Pittsburgh, Pennsylvania
| | - Othman Abdul-Malak
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nabil Azhar
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Judy Day
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Abstract
Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.
Collapse
Affiliation(s)
- Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854 ; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 ; Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
5
|
Clermont G, Zenker S. The inverse problem in mathematical biology. Math Biosci 2014; 260:11-5. [PMID: 25445734 DOI: 10.1016/j.mbs.2014.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/03/2014] [Indexed: 11/30/2022]
Abstract
Biological systems present particular challengers to model for the purposes of formulating predictions of generating biological insight. These systems are typically multi-scale, complex, and empirical observations are often sparse and subject to variability and uncertainty. This manuscript will review some of these specific challenges and introduce current methods used by modelers to construct meaningful solutions, in the context of preserving biological relevance. Opportunities to expand these methods are also discussed.
Collapse
Affiliation(s)
- Gilles Clermont
- Crisma Center, Departments of Critical Care Medicine, Mathematics, and Chemical Engineering, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA 16123, USA.
| | - Sven Zenker
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Sigmund-Freud-Str. 25, Bonn, 53105, Germany.
| |
Collapse
|
6
|
Vodovotz Y. Computational modelling of the inflammatory response in trauma, sepsis and wound healing: implications for modelling resilience. Interface Focus 2014; 4:20140004. [PMID: 25285195 DOI: 10.1098/rsfs.2014.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Resilience refers to the ability to recover from illness or adversity. At the cell, tissue, organ and whole-organism levels, the response to perturbations such as infections and injury involves the acute inflammatory response, which in turn is connected to and controlled by changes in physiology across all organ systems. When coordinated properly, inflammation can lead to the clearance of infection and healing of damaged tissues. However, when either overly or insufficiently robust, inflammation can drive further cell stress, tissue damage, organ dysfunction and death through a feed-forward process of inflammation → damage → inflammation. To address this complexity, we have obtained extensive datasets regarding the dynamics of inflammation in cells, animals and patients, and created data-driven and mechanistic computational simulations of inflammation and its recursive effects on tissue, organ and whole-organism (patho)physiology. Through this approach, we have discerned key regulatory mechanisms, recapitulated in silico key features of clinical trials for acute inflammation and captured diverse, patient-specific outcomes. These insights may allow for the determination of individual-specific tolerances to illness and adversity, thereby defining the role of inflammation in resilience.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery , University of Pittsburgh , W944 Starzl Biomedical Sciences Tower, 200 Lothrop Street, Pittsburgh, PA 15213 , USA
| |
Collapse
|
7
|
Vodovotz Y, An G, Androulakis IP. A Systems Engineering Perspective on Homeostasis and Disease. Front Bioeng Biotechnol 2013; 1:6. [PMID: 25022216 PMCID: PMC4090890 DOI: 10.3389/fbioe.2013.00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/16/2013] [Indexed: 01/06/2023] Open
Abstract
Engineered systems are coupled networks of interacting sub-systems, whose dynamics are constrained to requirements of robustness and flexibility. They have evolved by design to optimize function in a changing environment and maintain responses within ranges. Analysis, synthesis, and design of complex supply chains aim to identify and explore the laws governing optimally integrated systems. Optimality expresses balance between conflicting objectives while resiliency results from dynamic interactions among elements. Our increasing understanding of life’s multi-scale architecture suggests that living systems share similar characteristics with much to be learned about biological complexity from engineered systems. If health reflects a dynamically stable integration of molecules, cell, tissues, and organs; disease indicates displacement compensated for and corrected by activation and combination of feedback mechanisms through interconnected networks. In this article, we draw analogies between concepts in systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Gary An
- Department of Surgery, The University of Chicago , Chicago, IL , USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University , Piscataway, NJ , USA ; Department of Chemical and Biochemical Engineering, Rutgers University , Piscataway, NJ , USA ; Department of Surgery, Rutgers Robert Wood Johnson Medical School , New Brunswick, NJ , USA
| |
Collapse
|
8
|
Combined in silico, in vivo, and in vitro studies shed insights into the acute inflammatory response in middle-aged mice. PLoS One 2013; 8:e67419. [PMID: 23844008 PMCID: PMC3699569 DOI: 10.1371/journal.pone.0067419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2−/NO3− data from “middle-aged” (6–8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for “young” (2–3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging.
Collapse
|
9
|
Dong Y, Chbat NW, Gupta A, Hadzikadic M, Gajic O. Systems modeling and simulation applications for critical care medicine. Ann Intensive Care 2012; 2:18. [PMID: 22703718 PMCID: PMC3464892 DOI: 10.1186/2110-5820-2-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/15/2012] [Indexed: 12/27/2022] Open
Abstract
Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area.
Collapse
Affiliation(s)
- Yue Dong
- Multidisciplinary Epidemiology and Translational Research in Intensive Care, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | |
Collapse
|
10
|
de Kok S, Kozak BU, Pronk JT, van Maris AJA. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Res 2012; 12:387-97. [PMID: 22404754 DOI: 10.1111/j.1567-1364.2012.00799.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/15/2012] [Accepted: 02/26/2012] [Indexed: 11/28/2022] Open
Abstract
Free-energy (ATP) conservation during product formation is crucial for the maximum product yield that can be obtained, but often overlooked in metabolic engineering strategies. Product pathways that do not yield ATP or even demand input of free energy (ATP) require an additional pathway to supply the ATP needed for product formation, cellular maintenance, and/or growth. On the other hand, product pathways with a high ATP yield may result in excess biomass formation at the expense of the product yield. This mini-review discusses the importance of the ATP yield for product formation and presents several opportunities for engineering free-energy (ATP) conservation, with a focus on sugar-based product formation by Saccharomyces cerevisiae. These engineering opportunities are not limited to the metabolic flexibility within S. cerevisiae itself, but also expression of heterologous reactions will be taken into account. As such, the diversity in microbial sugar uptake and phosphorylation mechanisms, carboxylation reactions, product export, and the flexibility of oxidative phosphorylation via the respiratory chain and H(+) -ATP synthase can be used to increase or decrease free-energy (ATP) conservation. For product pathways with a negative, zero or too high ATP yield, analysis and metabolic engineering of the ATP yield of product formation will provide a promising strategy to increase the product yield and simplify process conditions.
Collapse
Affiliation(s)
- Stefan de Kok
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Delft, The Netherlands
| | | | | | | |
Collapse
|
11
|
McGuire MF, Iyengar MS, Mercer DW. Computational approaches for translational clinical research in disease progression. J Investig Med 2012; 59:893-903. [PMID: 21712727 DOI: 10.2310/jim.0b013e318224d8cc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Today, there is an ever-increasing amount of biological and clinical data available that could be used to enhance a systems-based understanding of disease progression through innovative computational analysis. In this article, we review a selection of published research regarding computational methods, primarily from systems biology, which support translational research from the molecular level to the bedside, with a focus on applications in trauma and critical care. Trauma is the leading cause of mortality in Americans younger than 45 years, and its rapid progression offers both opportunities and challenges for computational analysis of trends in molecular patterns associated with outcomes and therapeutic interventions.This review presents methods and domain-specific examples that may inspire the development of new algorithms and computational methods that use both molecular and clinical data for diagnosis, prognosis, and therapy in disease progression.
Collapse
Affiliation(s)
- Mary F McGuire
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, TX 77030, USA.
| | | | | |
Collapse
|
12
|
Santiago LA, Oh BC, Dash PK, Holcomb JB, Wade CE. A clinical comparison of penetrating and blunt traumatic brain injuries. Brain Inj 2012; 26:107-25. [DOI: 10.3109/02699052.2011.635363] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Cohen MJ. Use of models in identification and prediction of physiology in critically ill surgical patients. Br J Surg 2012; 99:487-93. [PMID: 22287099 DOI: 10.1002/bjs.7798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND With higher-throughput data acquisition and processing, increasing computational power, and advancing computer and mathematical techniques, modelling of clinical and biological data is advancing rapidly. Although exciting, the goal of recreating or surpassing in silico the clinical insight of the experienced clinician remains difficult. Advances toward this goal and a brief overview of various modelling and statistical techniques constitute the purpose of this review. METHODS A review of the literature and experience with models and physiological state representation and prediction after injury was undertaken. RESULTS A brief overview of models and the thinking behind their use for surgeons new to the field is presented, including an introduction to visualization and modelling work in surgical care, discussion of state identification and prediction, discussion of causal inference statistical approaches, and a brief introduction to new vital signs and waveform analysis. CONCLUSION Modelling in surgical critical care can provide a useful adjunct to traditional reductionist biological and clinical analysis. Ultimately the goal is to model computationally the clinical acumen of the experienced clinician.
Collapse
Affiliation(s)
- M J Cohen
- Department of Surgery, University of California San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, Ward 3A, San Francisco, California 94110, USA.
| |
Collapse
|
14
|
Abstract
Sepsis is a clinical entity in which complex inflammatory and physiological processes are mobilized, not only across a range of cellular and molecular interactions, but also in clinically relevant physiological signals accessible at the bedside. There is a need for a mechanistic understanding that links the clinical phenomenon of physiologic variability with the underlying patterns of the biology of inflammation, and we assert that this can be facilitated through the use of dynamic mathematical and computational modeling. An iterative approach of laboratory experimentation and mathematical/computational modeling has the potential to integrate cellular biology, physiology, control theory, and systems engineering across biological scales, yielding insights into the control structures that govern mechanisms by which phenomena, detected as biological patterns, are produced. This approach can represent hypotheses in the formal language of mathematics and computation, and link behaviors that cross scales and domains, thereby offering the opportunity to better explain, diagnose, and intervene in the care of the septic patient.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, University of Chicago, Chicago, IL 60637
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Rami A. Namas
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yoram Vodovotz
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
15
|
McGuire MF, Iyengar MS, Mercer DW. Computational approaches for translational clinical research in disease progression. J Investig Med 2011; 59. [PMID: 21712727 PMCID: PMC3196807 DOI: 10.231/jim.0b013e318224d8cc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Today, there is an ever-increasing amount of biological and clinical data available that could be used to enhance a systems-based understanding of disease progression through innovative computational analysis. In this article, we review a selection of published research regarding computational methods, primarily from systems biology, which support translational research from the molecular level to the bedside, with a focus on applications in trauma and critical care. Trauma is the leading cause of mortality in Americans younger than 45 years, and its rapid progression offers both opportunities and challenges for computational analysis of trends in molecular patterns associated with outcomes and therapeutic interventions.This review presents methods and domain-specific examples that may inspire the development of new algorithms and computational methods that use both molecular and clinical data for diagnosis, prognosis, and therapy in disease progression.
Collapse
Affiliation(s)
- Mary F. McGuire
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston TX USA,Contact: Mary F. McGuire, School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin, #600, Houston, TX 77030 USA, , 1-832-364-6734
| | - M. Sriram Iyengar
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston TX USA
| | - David W. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha NE USA
| |
Collapse
|
16
|
Sepsis: Something old, something new, and a systems view. J Crit Care 2011; 27:314.e1-11. [PMID: 21798705 DOI: 10.1016/j.jcrc.2011.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/08/2011] [Accepted: 05/19/2011] [Indexed: 01/01/2023]
Abstract
Sepsis is a clinical syndrome characterized by a multisystem response to a microbial pathogenic insult consisting of a mosaic of interconnected biochemical, cellular, and organ-organ interaction networks. A central thread that connects these responses is inflammation that, while attempting to defend the body and prevent further harm, causes further damage through the feed-forward, proinflammatory effects of damage-associated molecular pattern molecules. In this review, we address the epidemiology and current definitions of sepsis and focus specifically on the biologic cascades that comprise the inflammatory response to sepsis. We suggest that attempts to improve clinical outcomes by targeting specific components of this network have been unsuccessful due to the lack of an integrative, predictive, and individualized systems-based approach to define the time-varying, multidimensional state of the patient. We highlight the translational impact of computational modeling and other complex systems approaches as applied to sepsis, including in silico clinical trials, patient-specific models, and complexity-based assessments of physiology.
Collapse
|
17
|
An G, Mi Q, Dutta-Moscato J, Vodovotz Y. Agent-based models in translational systems biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:159-171. [PMID: 20835989 DOI: 10.1002/wsbm.45] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, Northwestern University, Chicago, IL 60611.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA 15260.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Joyeeta Dutta-Moscato
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213.,Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
18
|
An G, Bartels J, Vodovotz Y. In Silico Augmentation of the Drug Development Pipeline: Examples from the study of Acute Inflammation. Drug Dev Res 2010; 72:187-200. [PMID: 21552346 DOI: 10.1002/ddr.20415] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The clinical translation of promising basic biomedical findings, whether derived from reductionist studies in academic laboratories or as the product of extensive high-throughput and -content screens in the biotechnology and pharmaceutical industries, has reached a period of stagnation in which ever higher research and development costs are yielding ever fewer new drugs. Systems biology and computational modeling have been touted as potential avenues by which to break through this logjam. However, few mechanistic computational approaches are utilized in a manner that is fully cognizant of the inherent clinical realities in which the drugs developed through this ostensibly rational process will be ultimately used. In this article, we present a Translational Systems Biology approach to inflammation. This approach is based on the use of mechanistic computational modeling centered on inherent clinical applicability, namely that a unified suite of models can be applied to generate in silico clinical trials, individualized computational models as tools for personalized medicine, and rational drug and device design based on disease mechanism.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, University of Chicago, Chicago, IL 60637
| | | | | |
Collapse
|
19
|
Pathway analysis in microarray data: a comparison of two different pathway analysis devices in the same data set. Shock 2010; 35:245-51. [PMID: 20926982 DOI: 10.1097/shk.0b013e3181fc904d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oligonucleotide microarray technology has been developed to a very powerful and favorable biotechnique. However, it is an explicit challenge to judge the potential biological meaning of such extensive amounts of data. There are various-commercially available or free-software applications for pathway analyses on microarray data on the market. The aim of the present study was to test whether pathway analyses on the same data set using different commercially available devices lead to roughly comparable or massively diverging results and, if so, to give potential explanations. Two different commercially available pathway analysis programs (GeneGo and Pathway Studio 6) have been elected. The programs have been compared concerning their different analyses tools, underlying databases, database constructions, and network-building algorithms. The same data set has been uploaded into two different programs. Pathway analysis was performed according to the following three criteria: the five top networks, the five top diseases, and the five top canonical networks that are associated with the uploaded gene list. The different programs differ in extracting their information from the literature, in database construction, and network-building algorithms. The "top networks," as suggested by the programs as to be "most important," substantially differ from each other and share only one same gene. Concerning the most represented diseases in the data set, there are certain overlaps but no uniform results in the different applications. Pathway analyses of microarray data using preformed software devices offer valuable options for investigating on the biological relevance and function of a focus gene set. However, there is no standard in constructing such programs. This leads to substantial differences when investigating on the same data set using different devices. The intention of this work is to sensitize for the potentialities and also pitfalls doing pathway analysis using automated software tools.
Collapse
|
20
|
Geris L, Schugart R, Van Oosterwyck H. In silico design of treatment strategies in wound healing and bone fracture healing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:2683-2706. [PMID: 20439269 DOI: 10.1098/rsta.2010.0056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Wound and bone fracture healing are natural repair processes initiated by trauma. Over the last decade, many mathematical models have been established to investigate the healing processes in silico, in addition to ongoing experimental work. In recent days, the focus of the mathematical models has shifted from simulation of the healing process towards simulation of the impaired healing process and the in silico design of treatment strategies. This review describes the most important causes of failure of the wound and bone fracture healing processes and the experimental models and methods used to investigate and treat these impaired healing cases. Furthermore, the mathematical models that are described address these impaired healing cases and investigate various therapeutic scenarios in silico. Examples are provided to illustrate the potential of these in silico experiments. Finally, limitations of the models and the need for and ability of these models to capture patient specificity and variability are discussed.
Collapse
Affiliation(s)
- L Geris
- Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, Katholieke Universiteit Leuven, , Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | | | | |
Collapse
|
21
|
Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, Sarkar J, Squires RH, Okonkwo DO, Gerlach J, Zamora R, Luckhart S, Ermentrout B, An G. Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol 2010; 32:181-95. [PMID: 20170421 PMCID: PMC3134151 DOI: 10.3109/08923970903369867] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is a complex, non-linear process central to many of the diseases that affect both developed and emerging nations. A systems-based understanding of inflammation, coupled to translational applications, is therefore necessary for efficient development of drugs and devices, for streamlining analyses at the level of populations, and for the implementation of personalized medicine. We have carried out an iterative and ongoing program of literature analysis, generation of prospective data, data analysis, and computational modeling in various experimental and clinical inflammatory disease settings. These simulations have been used to gain basic insights into the inflammatory response under baseline, gene-knockout, and drug-treated experimental animals for in silico studies associated with the clinical settings of sepsis, trauma, acute liver failure, and wound healing to create patient-specific simulations in polytrauma, traumatic brain injury, and vocal fold inflammation; and to gain insight into host-pathogen interactions in malaria, necrotizing enterocolitis, and sepsis. These simulations have converged with other systems biology approaches (e.g., functional genomics) to aid in the design of new drugs or devices geared towards modulating inflammation. Since they include both circulating and tissue-level inflammatory mediators, these simulations transcend typical cytokine networks by associating inflammatory processes with tissue/organ impacts via tissue damage/dysfunction. This framework has now allowed us to suggest how to modulate acute inflammation in a rational, individually optimized fashion. This plethora of computational and intertwined experimental/engineering approaches is the cornerstone of Translational Systems Biology approaches for inflammatory diseases.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Personalized medicine is a major goal for the future of healthcare, and we suggest that computational simulations are necessary in order to achieve it. Inflammatory diseases, both acute and chronic, represent an area in which personalized medicine is especially needed, given the high level of individual variability that characterizes these diseases. We have created such simulations, and have used them to gain basic insights into the inflammatory response under baseline, gene-knockout, and drug-treated experimental animals; for in silico experiments and clinical trials in sepsis, trauma, and wound healing; and to create patient-specific simulations in polytrauma, traumatic brain injury, and vocal fold inflammation. Since they include both circulating and tissue-level inflammatory mediators, these simulations transcend typical cytokine networks by associating inflammatory processes with tissue/organ damage via tissue damage/dysfunction. We suggest that computational simulations are the cornerstone of Translational Systems Biology approaches for inflammatory diseases.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
23
|
Abstract
OBJECTIVE To propose ways in which clinical trials in intensive care can be improved. METHODS An international roundtable conference was convened focused on improvement in three broad areas: translation of new knowledge from bench to bedside; design and conduct of clinical trials; and clinical trial infrastructure and environment. RESULTS The roundtable recommendations were: improvement in clinical trials is a multistep process from better preclinical studies to better clinical trial methodology; new technologies should be used to improve models of critical illness; diseasomes and theragnostics will aid inpatient population selection and more appropriate targeting of interventions; broader study end points should include morbidity as well as mortality; more multicenter studies should be conducted by national and international networks or clinical trials groups; and better collaboration is needed with the industry. CONCLUSIONS There was broad agreement among the roundtable participants regarding a number of explicit opportunities for the improvement of clinical trials in critical care.
Collapse
|
24
|
Foteinou P, Yang E, Androulakis IP. NETWORKS, BIOLOGY AND SYSTEMS ENGINEERING: A CASE STUDY IN INFLAMMATION. Comput Chem Eng 2009; 33:2028-2041. [PMID: 20161495 PMCID: PMC2796781 DOI: 10.1016/j.compchemeng.2009.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biological systems can be modeled as networks of interacting components across multiple scales. A central problem in computational systems biology is to identify those critical components and the rules that define their interactions and give rise to the emergent behavior of a host response. In this paper we will discuss two fundamental problems related to the construction of transcription factor networks and the identification of networks of functional modules describing disease progression. We focus on inflammation as a key physiological response of clinical and translational importance.
Collapse
Affiliation(s)
- P.T. Foteinou
- Biomedical Engineering Department, Rutgers University, 599 Taylor Road Piscataway, NJ 08854
| | - E. Yang
- Biomedical Engineering Department, Rutgers University, 599 Taylor Road Piscataway, NJ 08854
| | - I. P. Androulakis
- Biomedical Engineering Department, Rutgers University, 599 Taylor Road Piscataway, NJ 08854
- Chemical & Biochemical Engineering Department, Rutgers University, 98 Brett Road, Piscataway, NJ 08854
| |
Collapse
|
25
|
Qutub AA, Mac Gabhann F, Karagiannis ED, Vempati P, Popel AS. Multiscale models of angiogenesis. ACTA ACUST UNITED AC 2009; 28:14-31. [PMID: 19349248 DOI: 10.1109/memb.2009.931791] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular disease, cancer, stroke, neurodegeneration, diabetes, inflammation, asthma, obesity, arthritis--the list of conditions that involve angiogenesis reads like main chapters in a book on pathology. Angiogenesis, the growth of capillaries from preexisting vessels, also occurs in normal physiology, in response to exercise or in the process of wound healing.Why and when is angiogenesis prevalent? What controls the process? How can we intelligently control it? These are the key questions driving researchers in fields as diverse as cell biology, oncology, cardiology, neurology, biomathematics, systems biology, and biomedical engineering. As bioengineers, we approach angiogenesis as a complex, interconnected system of events occurring in sequence and in parallel, on multiple levels, triggered by a main stimulus, e.g., hypoxia.
Collapse
Affiliation(s)
- Amina A Qutub
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
26
|
Hai CM. Mechanistic systems biology of inflammatory gene expression in airway smooth muscle as tool for asthma drug development. Curr Drug Discov Technol 2009; 5:279-88. [PMID: 19075608 DOI: 10.2174/157016308786733582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is compelling evidence that airway smooth muscle cells may function as inflammatory cells in the airway system by producing multiple inflammatory cytokines in response to a large array of external stimuli such as acetylcholine, bradykinin, inflammatory cytokines, and toll-like receptor activators. However, how multiple extracellular stimuli interact in the regulation of inflammatory gene expression in an airway smooth muscle cell remains poorly understood. This review addresses the mechanistic systems biology of inflammatory gene expression in airway smooth muscle by discussing: a) redundancy underlying multiple stimulus-product relations in receptor-mediated inflammatory gene expression, and their regulation by convergent activation of Erk1/2 mitogen-activated protein kinase (MAPK), b) Erk1/2 MAPK-dependent induction of phosphatase expression as a negative feedback mechanism in the robust maintenance of inflammatory gene expression, and c) cyclooxygenase 2-dependent regulation of the differential temporal dynamics of early and late inflammatory gene expression. It is becoming recognized that a single-target approach is unlikely to be effective for the treatment of inflammatory airway diseases because airway inflammation is a result of complex interactions among multiple inflammatory mediators and cells types in the airway system. Understanding the mechanistic systems biology of inflammatory gene expression in airway smooth muscle and other cell types in the airway system may lead to the development of multi-target drug regimens for the treatment of inflammatory airway diseases such as asthma.
Collapse
Affiliation(s)
- Chi-Ming Hai
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Box G-B3, 171 Meeting Street, Providence, Rhode Island 02912, USA.
| |
Collapse
|
27
|
A model of TLR4 signaling and tolerance using a qualitative, particle–event-based method: Introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 2009; 217:43-52. [DOI: 10.1016/j.mbs.2008.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/02/2008] [Accepted: 10/02/2008] [Indexed: 12/12/2022]
|
28
|
Abstract
Chemostat cultivation of micro-organisms offers unique opportunities for experimental manipulation of individual environmental parameters at a fixed, controllable specific growth rate. Chemostat cultivation was originally developed as a tool to study quantitative aspects of microbial growth and metabolism. Renewed interest in this cultivation method is stimulated by the availability of high-information-density techniques for systemic analysis of microbial cultures, which require high reproducibility and careful experimental design. Genome-wide analysis of transcript levels with DNA micro-arrays is currently the most commonly applied of these high-information-density analysis tools for microbial gene expression. Based on published studies on the yeast Saccharomyces cerevisiae, a critical overview is presented of the possibilities and pitfalls associated with the combination of chemostat cultivation and transcriptome analysis with DNA micro-arrays. After a brief introduction to chemostat cultivation and micro-array analysis, key aspects of experimental design of chemostat-based micro-array experiments are discussed. The main focus of this review is on key biological concepts that can be accessed by chemostat-based micro-array analysis. These include effects of specific growth rate on transcriptional regulation, context-dependency of transcriptional responses, correlations between transcript profiles and contribution of the corresponding proteins to cellular function and fitness, and the analysis and application of evolutionary adaptation during prolonged chemostat cultivation. It is concluded that, notwithstanding the incompatibility of chemostat cultivation with high-throughput analysis, integration of chemostat cultivation with micro-array analysis and other high-information-density analytical approaches (e.g. proteomics and metabolomics techniques) offers unique advantages in terms of reproducibility and experimental design in comparison with standard batch cultivation systems. Therefore, chemostat cultivation and derived methods for controlled cultivation of micro-organisms are anticipated to become increasingly important in microbial physiology and systems biology.
Collapse
|
29
|
Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 2008; 217:53-63. [PMID: 18835283 DOI: 10.1016/j.mbs.2008.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/16/2008] [Accepted: 08/21/2008] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Intracellular signaling/synthetic pathways are being increasingly extensively characterized. However, while these pathways can be displayed in static diagrams, in reality they exist with a degree of dynamic complexity that is responsible for heterogeneous cellular behavior. Multiple parallel pathways exist and interact concurrently, limiting the ability to integrate the various identified mechanisms into a cohesive whole. Computational methods have been suggested as a means of concatenating this knowledge to aid in the understanding of overall system dynamics. Since the eventual goal of biomedical research is the identification and development of therapeutic modalities, computational representation must have sufficient detail to facilitate this 'engineering' process. Adding to the challenge, this type of representation must occur in a perpetual state of incomplete knowledge. We present a modeling approach to address this challenge that is both detailed and qualitative. This approach is termed 'dynamic knowledge representation,' and is intended to be an integrated component of the iterative cycle of scientific discovery. METHODS BioNetGen (BNG), a software platform for modeling intracellular signaling pathways, was used to model the toll-like receptor 4 (TLR-4) signal transduction cascade. The informational basis of the model was a series of reference papers on modulation of (TLR-4) signaling, and some specific primary research papers to aid in the characterization of specific mechanistic steps in the pathway. This model was detailed with respect to the components of the pathway represented, but qualitative with respect to the specific reaction coefficients utilized to execute the reactions. Responsiveness to simulated lipopolysaccharide (LPS) administration was measured by tumor necrosis factor (TNF) production. Simulation runs included evaluation of initial dose-dependent response to LPS administration at 10, 100, 1000 and 10,000, and a subsequent examination of preconditioning behavior with increasing LPS at 10, 100, 1000 and 10,000 and a secondary dose of LPS at 10,000 administered at approximately 27h of simulated time. Simulations of 'knockout' versions of the model allowed further examination of the interactions within the signaling cascade. RESULTS The model demonstrated a dose-dependent TNF response curve to increasing stimulus by LPS. Preconditioning simulations demonstrated a similar dose-dependency of preconditioning doses leading to attenuation of response to subsequent LPS challenge - a 'tolerance' dynamic. These responses match dynamics reported in the literature. Furthermore, the simulated 'knockout' results suggested the existence and need for dual negative feedback control mechanisms, represented by the zinc ring-finger protein A20 and inhibitor kappa B proteins (IkappaB), in order for both effective attenuation of the initial stimulus signal and subsequent preconditioned 'tolerant' behavior. CONCLUSIONS We present an example of detailed, qualitative dynamic knowledge representation using the TLR-4 signaling pathway, its control mechanisms and overall behavior with respect to preconditioning. The intent of this approach is to demonstrate a method of translating the extensive mechanistic knowledge being generated at the basic science level into an executable framework that can provide a means of 'conceptual model verification.' This allows for both the 'checking' of the dynamic consequences of a mechanistic hypothesis and the creation of a modular component of an overall model directed at the engineering goal of biomedical research. It is hoped that this paper will increase the use of knowledge representation and communication in this fashion, and facilitate the concatenation and integration of community-wide knowledge.
Collapse
|
30
|
Vodovotz Y, Constantine G, Rubin J, Csete M, Voit EO, An G. Mechanistic simulations of inflammation: current state and future prospects. Math Biosci 2008; 217:1-10. [PMID: 18835282 DOI: 10.1016/j.mbs.2008.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 07/11/2008] [Indexed: 12/15/2022]
Abstract
Inflammation is a normal, robust physiological process. It can also be viewed as a complex system that senses and attempts to resolve homeostatic perturbations initiated from within the body (for example, in autoimmune disease) or from the outside (for example, in infections). Virtually all acute and chronic diseases are either driven or modulated by inflammation. The complex interplay between beneficial and harmful arms of the inflammatory response may underlie the lack of fully effective therapies for many diseases. Mathematical modeling is emerging as a frontline tool for understanding the complexity of the inflammatory response. A series of articles in this issue highlights various modeling approaches to inflammation in the larger context of health and disease, from intracellular signaling to whole-animal physiology. Here we discuss the state of this emerging field. We note several common features of inflammation models, as well as challenges and prospects for future studies.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
31
|
Daun S, Rubin J, Vodovotz Y, Clermont G. Equation-based models of dynamic biological systems. J Crit Care 2008; 23:585-94. [PMID: 19056027 DOI: 10.1016/j.jcrc.2008.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 01/01/2023]
Abstract
The purpose of this review is to introduce differential equations as a simulation tool in the biological and clinical sciences. This modeling technique is very mature and has been a preferred tool of physiologists and bioengineers and of quantitative scientists in general to describe and predict the behavior of complex interacting systems. However, this methodology has not been widely used within clinical medicine due to a lack of familiarity with highly quantitative methods and a greater acquaintance with statistical modeling approaches based on inference and empirical data analysis. We will describe various aspects of equation-based modeling, including underlying assumptions, strengths, and weaknesses and provide specific examples of simple models. We conclude that the usefulness of quantitative modeling, including equation-based models, is ultimately linked to the quality and abundance of observation obtained on the system being modeled. Equation-based modeling, although potentially an integrative approach, is complementary to and extends the potential of traditional statistically based approaches to inference.
Collapse
Affiliation(s)
- Silvia Daun
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
32
|
An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J Theor Biol 2008; 253:843-53. [PMID: 18550083 DOI: 10.1016/j.jtbi.2008.04.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 11/23/2022]
Abstract
In previous work, we developed an 8-state nonlinear dynamic model of the acute inflammatory response, including activated phagocytic cells, pro- and anti-inflammatory cytokines, and tissue damage, and calibrated it to data on cytokines from endotoxemic rats. In the interest of parsimony, the present work employed parametric sensitivity and local identifiability analysis to establish a core set of parameters predominantly responsible for variability in model solutions. Parameter optimization, facilitated by varying only those parameters belonging to this core set, was used to identify an ensemble of parameter vectors, each representing an acceptable local optimum in terms of fit to experimental data. Individual models within this ensemble, characterized by their different parameter values, showed similar cytokine but diverse tissue damage behavior. A cluster analysis of the ensemble of models showed the existence of a continuum of acceptable models, characterized by compensatory mechanisms and parameter changes. We calculated the direct correlations between the core set of model parameters and identified three mechanisms responsible for the conversion of the diverse damage time courses to similar cytokine behavior in these models. Given that tissue damage level could be an indicator of the likelihood of mortality, our findings suggest that similar cytokine dynamics could be associated with very different mortality outcomes, depending on the balance of certain inflammatory elements.
Collapse
|
33
|
Lee B. Editorial Commentary:Digital Decision Making: Computer Models and Antibiotic Prescribing in the Twenty‐First Century. Clin Infect Dis 2008; 46:1139-41. [DOI: 10.1086/529441] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Abstract
Biomarkers of sepsis could allow early identification of high-risk patients, in whom aggressive interventions can be life-saving. Among those interventions are the immunomodulatory therapies, which will hopefully become increasingly available to clinicians. However, optimal use of such interventions will probably be patient specific and based on longitudinal profiles of such biomarkers. Modeling techniques that allow proper interpretation and classification of these longitudinal profiles, as they relate to patient characteristics, disease progression, and therapeutic interventions, will prove essential to the development of such individualized interventions. Once validated, these models may also prove useful in the rational design of future clinical trials and in the interpretation of their results. However, only a minority of mathematicians and statisticians are familiar with these newer techniques, which have undergone remarkable development during the past two decades. Interestingly, critical illness has the potential to become a key testing ground and field of application for these emerging modeling techniques, given the increasing availability of point-of-care testing and the need for titrated interventions in this patient population.
Collapse
Affiliation(s)
- Gilles Clermont
- CIRM (Center for Inflammation and Regenerative Modeling), Clinical Research, Investigation and Systems Modeling in Acute Illness (CRISMA) laboratory, Department of Critical Care Medicine, Terrace St, University of Pittsburgh Medical Center, Pittsburgh, Philadelphia 15261, USA
| |
Collapse
|
35
|
An G, Faeder J, Vodovotz Y. Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J Burn Care Res 2008; 29:277-85. [PMID: 18354282 PMCID: PMC3640324 DOI: 10.1097/bcr.0b013e31816677c8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pathophysiology of the burn patient manifests the full spectrum of the complexity of the inflammatory response. In the acute phase, inflammation may have negative effects via capillary leak, the propagation of inhalation injury, and development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later stage processes of wound healing. Despite the volume of information concerning the cellular and molecular processes involved in inflammation, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective clinical therapeutic regimens. Translational systems biology (TSB) is the application of dynamic mathematical modeling and certain engineering principles to biological systems to integrate mechanism with phenomenon and, importantly, to revise clinical practice. This study will review the existing applications of TSB in the areas of inflammation and wound healing, relate them to specific areas of interest to the burn community, and present an integrated framework that links TSB with traditional burn research.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
36
|
Lowry SF, Calvano SE. Challenges for modeling and interpreting the complex biology of severe injury and inflammation. J Leukoc Biol 2007; 83:553-7. [PMID: 17984288 DOI: 10.1189/jlb.0607377] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human injury is associated with inflammatory responses that are modulated by the acute and chronic activity of endogenous factors and exogenous interventions. A characteristic feature of chronic, severe inflammatory states is the diminished signal output variability of many organ systems, including innate immune responsiveness and endogenous neural and endocrine-mediated functions. The attenuation of signal/response variability and integration of feedback capacity may contribute to systemic and tissue-specific deterioration of function. Some well-intentioned therapies directed toward support of systemic and tissue functions may actually promote the loss of system(s) adaptability and contribute to adverse outcomes in severely stressed patients. In vivo and in silico models of stress, injury, and infection have yet to fully define the influences of ongoing stressful stimulae as well as genetic variation and epigenetic factors in the context of an evolving inflammatory state. Experimental and human models incorporating variable, antecedent stress(es) and altered neuroendocrine rhythms might approximate the altered adaptability in immune and organ function responses. Such models may also provide insights into the salient mechanisms of risk and outcome more precisely than do the constrained study conditions of current animal or human models of systemic inflammation.
Collapse
Affiliation(s)
- Stephen F Lowry
- UMDNJ, Robert Wood Johnson Medical School, 125 Paterson Street, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|