1
|
Deng J, Jhandey A, Zhu X, Yang Z, Yik KFP, Zuo Z, Lam TN. In silico drug absorption tract: An agent-based biomimetic model for human oral drug absorption. PLoS One 2018; 13:e0203361. [PMID: 30169515 PMCID: PMC6118387 DOI: 10.1371/journal.pone.0203361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 08/20/2018] [Indexed: 11/26/2022] Open
Abstract
Background An agent-based modeling approach has been suggested as an alternative to traditional, equation-based modeling methods for describing oral drug absorption. It enables researchers to gain a better understanding of the pharmacokinetic (PK) mechanisms of a drug. This project demonstrates that a biomimetic agent-based model can adequately describe the absorption and disposition kinetics both of midazolam and clonazepam. Methods An agent-based biomimetic model, in silico drug absorption tract (ISDAT), was built to mimic oral drug absorption in humans. The model consisted of distinct spaces, membranes, and metabolic enzymes, and it was altogether representative of human physiology relating to oral drug absorption. Simulated experiments were run with the model, and the results were compared to the referent data from clinical equivalence trials. Acceptable similarity was verified by pre-specified criteria, which included 1) qualitative visual matching between the clinical and simulated concentration-time profiles, 2) quantitative similarity indices, namely, weighted root mean squared error (RMSE), and weighted mean absolute percentage error (MAPE) and 3) descriptive similarity which requires less than 25% difference between key PK parameters calculated by the clinical and the simulated concentration-time profiles. The model and its parameters were iteratively refined until all similarity criteria were met. Furthermore, simulated PK experiments were conducted to predict bioavailability (F). For better visualization, a graphical user interface for the model was developed and a video is available in Supporting Information. Results Simulation results satisfied all three levels of similarity criteria for both drugs. The weighted RMSE was 0.51 and 0.92, and the weighted MAPE was 5.99% and 8.43% for midazolam and clonazepam, respectively. Calculated PK parameter values, including area under the curve (AUC), peak plasma drug concentration (Cmax), time to reach Cmax (Tmax), terminal elimination rate constant (Kel), terminal elimination half life (T1/2), apparent oral clearance (CL/F), and apparent volume of distribution (V/F), were reasonable compared to the referent values. The predicted absolute oral bioavailability (F) was 44% for midazolam (literature reported value, 31–72%) and 93% (literature reported value, ≥ 90%) for clonazepam. Conclusion The ISDAT met all the pre-specified similarity criteria for both midazolam and clonazepam, and demonstrated its ability to describe absorption kinetics of both drugs. Therefore, the validated ISDAT can be a promising platform for further research into the use of similar in silico models for drug absorption kinetics.
Collapse
Affiliation(s)
- Jianyuan Deng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Anika Jhandey
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Xiao Zhu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Zhibo Yang
- Department of Computer Science, Stony Brook University, Stony Brook, NY, United States of America
| | - Kin Fu Patrick Yik
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tai Ning Lam
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
2
|
Namas R, Ghuma A, Hermus L, Zamora R, Okonkwo D, Billiar T, Vodovotz Y. The Acute Inflammatory Response in Trauma /Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects. Libyan J Med 2016. [DOI: 10.3402/ljm.v4i3.4824] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | | | - L. Hermus
- Martini Hospital, Department of Surgery, Groningen, Netherlands
| | | | | | | | - Y. Vodovotz
- Department of Surgery
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
Namas RA, Mi Q, Namas R, Almahmoud K, Zaaqoq AM, Abdul-Malak O, Azhar N, Day J, Abboud A, Zamora R, Billiar TR, Vodovotz Y. Insights into the Role of Chemokines, Damage-Associated Molecular Patterns, and Lymphocyte-Derived Mediators from Computational Models of Trauma-Induced Inflammation. Antioxid Redox Signal 2015; 23:1370-87. [PMID: 26560096 PMCID: PMC4685502 DOI: 10.1089/ars.2015.6398] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Traumatic injury elicits a complex, dynamic, multidimensional inflammatory response that is intertwined with complications such as multiple organ dysfunction and nosocomial infection. The complex interplay between inflammation and physiology in critical illness remains a challenge for translational research, including the extrapolation to human disease from animal models. RECENT ADVANCES Over the past decade, we and others have attempted to decipher the biocomplexity of inflammation in these settings of acute illness, using computational models to improve clinical translation. In silico modeling has been suggested as a computationally based framework for integrating data derived from basic biology experiments as well as preclinical and clinical studies. CRITICAL ISSUES Extensive studies in cells, mice, and human blunt trauma patients have led us to suggest (i) that while an adequate level of inflammation is required for healing post-trauma, inflammation can be harmful when it becomes self-sustaining via a damage-associated molecular pattern/Toll-like receptor-driven feed-forward circuit; (ii) that chemokines play a central regulatory role in driving either self-resolving or self-maintaining inflammation that drives the early activation of both classical innate and more recently recognized lymphoid pathways; and (iii) the presence of multiple thresholds and feedback loops, which could significantly affect the propagation of inflammation across multiple body compartments. FUTURE DIRECTIONS These insights from data-driven models into the primary drivers and interconnected networks of inflammation have been used to generate mechanistic computational models. Together, these models may be used to gain basic insights as well as serving to help define novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajaie Namas
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Akram M. Zaaqoq
- Department of Critical Care Medicine, University of Pittsburgh, Pennsylvania
| | - Othman Abdul-Malak
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nabil Azhar
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Judy Day
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Vodovotz Y. Computational modelling of the inflammatory response in trauma, sepsis and wound healing: implications for modelling resilience. Interface Focus 2014; 4:20140004. [PMID: 25285195 DOI: 10.1098/rsfs.2014.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Resilience refers to the ability to recover from illness or adversity. At the cell, tissue, organ and whole-organism levels, the response to perturbations such as infections and injury involves the acute inflammatory response, which in turn is connected to and controlled by changes in physiology across all organ systems. When coordinated properly, inflammation can lead to the clearance of infection and healing of damaged tissues. However, when either overly or insufficiently robust, inflammation can drive further cell stress, tissue damage, organ dysfunction and death through a feed-forward process of inflammation → damage → inflammation. To address this complexity, we have obtained extensive datasets regarding the dynamics of inflammation in cells, animals and patients, and created data-driven and mechanistic computational simulations of inflammation and its recursive effects on tissue, organ and whole-organism (patho)physiology. Through this approach, we have discerned key regulatory mechanisms, recapitulated in silico key features of clinical trials for acute inflammation and captured diverse, patient-specific outcomes. These insights may allow for the determination of individual-specific tolerances to illness and adversity, thereby defining the role of inflammation in resilience.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery , University of Pittsburgh , W944 Starzl Biomedical Sciences Tower, 200 Lothrop Street, Pittsburgh, PA 15213 , USA
| |
Collapse
|
5
|
Innate immunity in disease: insights from mathematical modeling and analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:227-43. [PMID: 25480644 DOI: 10.1007/978-1-4939-2095-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The acute inflammatory response is a complex defense mechanism that has evolved to respond rapidly to injury, infection, and other disruptions in homeostasis. This robust responsiveness to biological stress likely endows the host with increased fitness, but over-robust or inadequate inflammation predisposes the host to various diseases. Importantly, well-compartmentalized inflammation is generally beneficial, but spillover of inflammation into the blood is a hallmark-and likely also a driver-of self-maintaining inflammation. The blood is also a key entry point and immunological interface for vectors of parasitic diseases, diseases that themselves incite systemic inflammation. The complex role of inflammation in health and disease has made this biological system difficult to understand comprehensively and modulate rationally for therapeutic purposes. Consequently, systems approaches have been applied in order to characterize dynamical properties and identify key control points in inflammation. This process begins with the collection of high-dimensional, experimental, and clinical data, followed by data reduction and data-driven modeling that finally informs mechanistic computational models for analysis, prediction, and rational modulation. These studies have suggested that the overall architecture of the inflammatory response includes a multiscale positive feedback from inflammation → tissue damage → inflammation, which is often inadequately controlled by negative feedback from anti-inflammatory mediators. Given the importance of the blood interface for the inflammatory response, and the accessibility of this compartment both as an immunological sampling reservoir for vectors as well as for diagnosis and therapy, we suggest that any rational efforts at modulating inflammation via the blood compartment must involve computational modeling.
Collapse
|
6
|
Abstract
OBJECTIVES To familiarize clinicians with advances in computational disease modeling applied to trauma and sepsis. DATA SOURCES PubMed search and review of relevant medical literature. SUMMARY Definitions, key methods, and applications of computational modeling to trauma and sepsis are reviewed. CONCLUSIONS Computational modeling of inflammation and organ dysfunction at the cellular, organ, whole-organism, and population levels has suggested a positive feedback cycle of inflammation → damage → inflammation that manifests via organ-specific inflammatory switching networks. This structure may manifest as multicompartment "tipping points" that drive multiple organ dysfunction. This process may be amenable to rational inflammation reprogramming.
Collapse
|
7
|
An G, Nieman G, Vodovotz Y. Toward computational identification of multiscale "tipping points" in acute inflammation and multiple organ failure. Ann Biomed Eng 2012; 40:2414-24. [PMID: 22527009 DOI: 10.1007/s10439-012-0565-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/02/2012] [Indexed: 12/25/2022]
Abstract
Sepsis accounts annually for nearly 10% of total U.S. deaths, costing nearly $17 billion/year. Sepsis is a manifestation of disordered systemic inflammation. Properly regulated inflammation allows for timely recognition and effective reaction to injury or infection, but inadequate or overly robust inflammation can lead to Multiple Organ Dysfunction Syndrome (MODS). There is an incongruity between the systemic nature of disordered inflammation (as the target of inflammation-modulating therapies), and the regional manifestation of organ-specific failure (as the subject of organ support), that presents a therapeutic dilemma: systemic interventions can interfere with an individual organ system's appropriate response, yet organ-specific interventions may not help the overall system reorient itself. Based on a decade of systems and computational approaches to deciphering acute inflammation, along with translationally-motivated experimental studies in both small and large animals, we propose that MODS evolves due to the feed-forward cycle of inflammation → damage → inflammation. We hypothesize that inflammation proceeds at a given, "nested" level or scale until positive feedback exceeds a "tipping point." Below this tipping point, inflammation is contained and manageable; when this threshold is crossed, inflammation becomes disordered, and dysfunction propagates to a higher biological scale (e.g., progressing from cellular, to tissue/organ, to multiple organs, to the organism). Finally, we suggest that a combination of computational biology approaches involving data-driven and mechanistic mathematical modeling, in close association with studies in clinically relevant paradigms of sepsis/MODS, are necessary in order to define scale-specific "tipping points" and to suggest novel therapies for sepsis.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
8
|
Narang V, Decraene J, Wong SY, Aiswarya BS, Wasem AR, Leong SR, Gouaillard A. Systems immunology: a survey of modeling formalisms, applications and simulation tools. Immunol Res 2012; 53:251-65. [PMID: 22528121 DOI: 10.1007/s12026-012-8305-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Cohen MJ. Use of models in identification and prediction of physiology in critically ill surgical patients. Br J Surg 2012; 99:487-93. [PMID: 22287099 DOI: 10.1002/bjs.7798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND With higher-throughput data acquisition and processing, increasing computational power, and advancing computer and mathematical techniques, modelling of clinical and biological data is advancing rapidly. Although exciting, the goal of recreating or surpassing in silico the clinical insight of the experienced clinician remains difficult. Advances toward this goal and a brief overview of various modelling and statistical techniques constitute the purpose of this review. METHODS A review of the literature and experience with models and physiological state representation and prediction after injury was undertaken. RESULTS A brief overview of models and the thinking behind their use for surgeons new to the field is presented, including an introduction to visualization and modelling work in surgical care, discussion of state identification and prediction, discussion of causal inference statistical approaches, and a brief introduction to new vital signs and waveform analysis. CONCLUSION Modelling in surgical critical care can provide a useful adjunct to traditional reductionist biological and clinical analysis. Ultimately the goal is to model computationally the clinical acumen of the experienced clinician.
Collapse
Affiliation(s)
- M J Cohen
- Department of Surgery, University of California San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, Ward 3A, San Francisco, California 94110, USA.
| |
Collapse
|
10
|
Kim M, Christley S, Alverdy JC, Liu D, An G. Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect (Larchmt) 2012; 13:18-32. [PMID: 22217195 DOI: 10.1089/sur.2011.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a complex disease involving prematurity, enteral feeding, and bacterial effects. We propose that the underlying initial condition in its pathogenesis is reduced ability of the neonatal gut epithelial cells (NGECs) to clear oxidative stress (OS), and that when such a NGEC population is exposed to enteral feeding, the increased metabolic OS tips the population toward apoptosis, inflammation, bacterial activation, and eventual necrosis. The multi-factorial complexity of NEC requires characterization with computational modeling, and herein, we used an agent-based model (ABM) to instantiate and examine our unifying hypothesis of the pathogenesis of NEC. METHODS An ABM of the neonatal gut was created with NGEC computational agents incorporating rules for pathways for OS, p53, tight junctions, Toll-like receptor (TLR)-4, nitric oxide, and nuclear factor-kappa beta (NF-κB). The modeled bacteria activated TLR-4 on contact with NGECs. Simulations included parameter sweeps of OS response, response to feeding, addition of bacteria, and alterations in gut mucus production. RESULTS The ABM reproduced baseline cellular respiration and clearance of OS. Reduction in OS clearance consistent with clinical NEC led to senescence, apoptosis, or inflammation, with disruption of tight junctions, but rarely to NGEC necrosis. An additional "hit" of bacteria activating TLR-4 potentiated a shift to NGEC necrosis across the entire population. The mucus layer was modeled to limit bacterial-NGEC interactions and reduce this effect, but concomitant apoptosis in the goblet cell population reduced the efficacy of the mucus layer and limited its protective effect in simulated experiments. This finding suggests a means by which increased apoptosis at the cellular population level can lead to a transition to the necrosis outcome. CONCLUSIONS Our ABM incorporates known components of NEC and demonstrates that impaired OS management can lead to apoptosis and inflammation of NGECs, rendering the system susceptible to an additional insult involving regionalized mucus barrier failure and TLR-4 activation, which potentiates the necrosis outcome. This type of integrative dynamic knowledge representation can be a useful adjunct to help guide and contextualize research.
Collapse
Affiliation(s)
- Moses Kim
- Department of Surgery, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
11
|
Seal JB, Alverdy JC, Zaborina O, An G. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis. Theor Biol Med Model 2011; 8:33. [PMID: 21929759 PMCID: PMC3184268 DOI: 10.1186/1742-4682-8-33] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/19/2011] [Indexed: 01/07/2023] Open
Abstract
Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Conclusions/Significance Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research.
Collapse
Affiliation(s)
- John B Seal
- Department of Surgery, University of Chicago, 5841 South Maryland Ave, MC 5031, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Dupuytren's disease (DD) is an ill-defined fibroproliferative disorder of the palm of the hands leading to digital contracture. DD commonly occurs in individuals of northern European extraction. Cellular components and processes associated with DD pathogenesis include altered gene and protein expression of cytokines, growth factors, adhesion molecules, and extracellular matrix components. Histology has shown increased but varying levels of particular types of collagen, myofibroblasts and myoglobin proteins in DD tissue. Free radicals and localised ischaemia have been suggested to trigger the proliferation of DD tissue. Although the existing available biological information on DD may contain potentially valuable (though largely uninterpreted) information, the precise aetiology of DD remains unknown. Systems biology combines mechanistic modelling with quantitative experimentation in studies of networks and better understanding of the interaction of multiple components in disease processes. Adopting systems biology may be the ideal approach for future research in order to improve understanding of complex diseases of multifactorial origin. In this review, we propose that DD is a disease of several networks rather than of a single gene, and show that this accounts for the experimental observations obtained to date from a variety of sources. We outline how DD may be investigated more effectively by employing a systems biology approach that considers the disease network as a whole rather than focusing on any specific single molecule.
Collapse
Affiliation(s)
- Samrina Rehman
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, M1 7DN, UK
| | - Royston Goodacre
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, M1 7DN, UK
| | - Philip J Day
- Quantitative Molecular Medicine Research, CIGMR, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, M1 7DN, UK
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, M1 7DN, UK
| | - Hans V Westerhoff
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, M1 7DN, UK
- Netherlands Institute for Systems Biology, VU University Amsterdam, NL-1081 HV, The Netherlands
| |
Collapse
|
13
|
Mi Q, Li NYK, Ziraldo C, Ghuma A, Mikheev M, Squires R, Okonkwo DO, Verdolini-Abbott K, Constantine G, An G, Vodovotz Y. Translational systems biology of inflammation: potential applications to personalized medicine. Per Med 2010; 7:549-559. [PMID: 21339856 PMCID: PMC3041597 DOI: 10.2217/pme.10.45] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A central goal of industrialized nations is to provide personalized, preemptive and predictive medicine, while maintaining healthcare costs at a minimum. To do so, we must confront and gain an understanding of inflammation, a complex, nonlinear process central to many diseases that affect both industrialized and developing nations. Herein, we describe the work aimed at creating a rational, engineering-oriented and evidence-based synthesis of inflammation geared towards rapid clinical application. This comprehensive approach, which we call 'Translational Systems Biology', to date has been utilized for in silico studies of sepsis, trauma/hemorrhage/traumatic brain injury, acute liver failure and wound healing. This framework has now allowed us to suggest how to modulate acute inflammation in a rational and individually optimized fashion using engineering principles applied to a biohybrid device. We suggest that we are on the cusp of fulfilling the promise of in silico modeling for personalized medicine for inflammatory disease.
Collapse
Affiliation(s)
- Qi Mi
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Sports Medicine & Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicole Yee-Key Li
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cordelia Ziraldo
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ali Ghuma
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maxim Mikheev
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Squires
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, PA, USA
| | - Katherine Verdolini-Abbott
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory Constantine
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Departments of Mathematics & Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary An
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Yoram Vodovotz
- Center for Inflammation & Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, Sarkar J, Squires RH, Okonkwo DO, Gerlach J, Zamora R, Luckhart S, Ermentrout B, An G. Translational systems approaches to the biology of inflammation and healing. Immunopharmacol Immunotoxicol 2010; 32:181-95. [PMID: 20170421 PMCID: PMC3134151 DOI: 10.3109/08923970903369867] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is a complex, non-linear process central to many of the diseases that affect both developed and emerging nations. A systems-based understanding of inflammation, coupled to translational applications, is therefore necessary for efficient development of drugs and devices, for streamlining analyses at the level of populations, and for the implementation of personalized medicine. We have carried out an iterative and ongoing program of literature analysis, generation of prospective data, data analysis, and computational modeling in various experimental and clinical inflammatory disease settings. These simulations have been used to gain basic insights into the inflammatory response under baseline, gene-knockout, and drug-treated experimental animals for in silico studies associated with the clinical settings of sepsis, trauma, acute liver failure, and wound healing to create patient-specific simulations in polytrauma, traumatic brain injury, and vocal fold inflammation; and to gain insight into host-pathogen interactions in malaria, necrotizing enterocolitis, and sepsis. These simulations have converged with other systems biology approaches (e.g., functional genomics) to aid in the design of new drugs or devices geared towards modulating inflammation. Since they include both circulating and tissue-level inflammatory mediators, these simulations transcend typical cytokine networks by associating inflammatory processes with tissue/organ impacts via tissue damage/dysfunction. This framework has now allowed us to suggest how to modulate acute inflammation in a rational, individually optimized fashion. This plethora of computational and intertwined experimental/engineering approaches is the cornerstone of Translational Systems Biology approaches for inflammatory diseases.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Personalized medicine is a major goal for the future of healthcare, and we suggest that computational simulations are necessary in order to achieve it. Inflammatory diseases, both acute and chronic, represent an area in which personalized medicine is especially needed, given the high level of individual variability that characterizes these diseases. We have created such simulations, and have used them to gain basic insights into the inflammatory response under baseline, gene-knockout, and drug-treated experimental animals; for in silico experiments and clinical trials in sepsis, trauma, and wound healing; and to create patient-specific simulations in polytrauma, traumatic brain injury, and vocal fold inflammation. Since they include both circulating and tissue-level inflammatory mediators, these simulations transcend typical cytokine networks by associating inflammatory processes with tissue/organ damage via tissue damage/dysfunction. We suggest that computational simulations are the cornerstone of Translational Systems Biology approaches for inflammatory diseases.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery; Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
16
|
Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS One 2010; 5:e9249. [PMID: 20174629 PMCID: PMC2823776 DOI: 10.1371/journal.pone.0009249] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/27/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. METHODOLOGY/PRINCIPAL FINDINGS An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. CONCLUSIONS/SIGNIFICANCE The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.
Collapse
Affiliation(s)
- Xu Dong
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Panagiota T. Foteinou
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steven E. Calvano
- Department of Surgery, University of Medicine and Dentristry of New Jersey Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Stephen F. Lowry
- Department of Surgery, University of Medicine and Dentristry of New Jersey Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Ioannis P. Androulakis
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
17
|
Tuberculosis research: going forward with a powerful "translational systems biology" approach. Tuberculosis (Edinb) 2010; 90:7-8. [PMID: 20045665 DOI: 10.1016/j.tube.2009.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 11/23/2022]
Abstract
Due to the complexity of the immune response to a Mycobacterium tuberculosis infection, identifying new, effective therapies and vaccines to combat it has been a problematic issue. Although many advances have been made in understanding particular mechanisms involved, they have, to date, proved insufficient to provide real breakthroughs in this area of tuberculosis research. The term "Translational Systems Biology" has been formally proposed to describe the use of experimental findings combined with mathematical modeling and/or engineering principles to understand complex biological processes in an integrative fashion for the purpose of enhancing clinical practice. This opinion piece discusses the importance of using a Translational Systems Biology approach for tuberculosis research as a means by which to go forward with the potential for significant breakthroughs to occur.
Collapse
|
18
|
Abstract
Inflammation is a complex, multiscale biological response to threats - both internal and external - to the body, which is also required for proper healing of injured tissue. In turn, damaged or dysfunctional tissue stimulates further inflammation. Despite continued advances in characterizing the cellular and molecular processes involved in the interactions between inflammation and tissue damage, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective therapies for various inflammatory conditions. We have suggested the concept of translational systems biology, defined as a focused application of computational modeling and engineering principles to pathophysiology primarily in order to revise clinical practice. This chapter reviews the existing, translational applications of computational simulations and related approaches as applied to inflammation.
Collapse
|
19
|
Namas R, Ghuma A, Hermus L, Zamora R, Okonkwo DO, Billiar TR, Vodovotz Y. The acute inflammatory response in trauma / hemorrhage and traumatic brain injury: current state and emerging prospects. Libyan J Med 2009; 4:97-103. [PMID: 21483522 PMCID: PMC3066737 DOI: 10.4176/090325] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partially propagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP's). DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and non-human primates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS and TBI in the near future.
Collapse
|
20
|
Kotlan B, Stroncek DF, Marincola FM. Turning laboratory findings into therapy: a marathon goal that has to be reached. Pol Arch Intern Med 2009; 119:586-94. [PMID: 19776705 PMCID: PMC3528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mission of translational research involves difficult tasks to be accomplished for its ultimate goal, i.e., the introduction of novel, effective therapeutic strategies in the clinic to diminish human suffering and cure life-threatening diseases. Translational research (also referred to as translational medicine) facilitates the translation of investment in biomedical research into successful medical treatment. This includes the transfer of diagnostic and therapeutic advances by proving their efficacy in large evidence-based trials. Through the study of humans novel insights about disease are brought back to the laboratory to identify new, observation-based strategies. This "two-way road" ("bench to bedside and bedside to bench") process includes formulating guidelines for drug development and principles for new therapeutic strategies; initiating clinical investigations that provide the biological basis for new therapies, and related clinical trials; defining therapeutic targets and clinical endpoints. It requires a systematic approach beginning with specimen sampling, patient data collection, laboratory investigations, data analysis, preclinical testing, clinical trials, treatment efficacy monitoring, and finally the evaluation of therapeutic result. The marathon well symbolizes the enormous efforts undertaken by clinicians, scientists, regulators, ethicists, patient advocates, drug developers, and others, coordinately attempting to overcome obstacles along this road toward the final "marathon goal in medicine".
Collapse
Affiliation(s)
- Beatrix Kotlan
- Center of Surgical and Molecular Tumor Pathology, National Institute of Oncology, Budapest, Hungary
| | - David F. Stroncek
- Chief Cell Processing Section, Department of Transfusion Medicine, National Institute of Health, Bethesda, MD, United States
| | - Francesco M. Marincola
- Chief Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Center for Human Immunology, National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Abstract
Systems biology expands on general systems theory as the "omics'' era rapidly progresses. Although systems biology has been institutionalized as an interdisciplinary framework in the biosciences, it is not yet apparent in nursing. This article introduces systems biology for nursing science by presenting an overview of the theory. This framework for the study of organisms from molecular to environmental levels includes iterations of computational modeling, experimentation, and theory building. Synthesis of complex biological processes as whole systems rather than isolated parts is emphasized. Pros and cons of systems biology are discussed, and relevance of systems biology to nursing is described. Nursing research involving molecular, physiological, or biobehavioral questions may be guided by and contribute to the developing science of systems biology. Nurse scientists can proactively incorporate systems biology into their investigations as a framework for advancing the interdisciplinary science of human health care. Systems biology has the potential to advance the research and practice goals of the National Institute for Nursing Research in the National Institutes of Health Roadmap initiative.
Collapse
Affiliation(s)
- Sandra A Founds
- Department of Health Promotion and Development, School of Nursing, and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15090, USA.
| |
Collapse
|
22
|
Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Translational potential of systems-based models of inflammation. Clin Transl Sci 2009; 2:85-9. [PMID: 20443873 PMCID: PMC5350791 DOI: 10.1111/j.1752-8062.2008.00051.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A critical goal of translational research is to convert basic science to clinically relevant actions related to disease prevention, diagnosis, and eventually enable physicians to identify and evaluate treatment strategies. Integrated initiatives are identified as valuable in uncovering the mechanism underpinning the progression of human diseases. Tremendous opportunities have emerged in the context of systems biology that aims at the deconvolution of complex phenomena to their constituent elements and the quantification of the dynamic interactions between these components through the development of appropriate computational and mathematical models. In this review, we discuss the potential role systems-based translation research can have in the quest to better understand and modulate the inflammatory response.
Collapse
Affiliation(s)
- P T Foteinou
- Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
23
|
Vodovotz Y, Constantine G, Rubin J, Csete M, Voit EO, An G. Mechanistic simulations of inflammation: current state and future prospects. Math Biosci 2008; 217:1-10. [PMID: 18835282 DOI: 10.1016/j.mbs.2008.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 07/11/2008] [Indexed: 12/15/2022]
Abstract
Inflammation is a normal, robust physiological process. It can also be viewed as a complex system that senses and attempts to resolve homeostatic perturbations initiated from within the body (for example, in autoimmune disease) or from the outside (for example, in infections). Virtually all acute and chronic diseases are either driven or modulated by inflammation. The complex interplay between beneficial and harmful arms of the inflammatory response may underlie the lack of fully effective therapies for many diseases. Mathematical modeling is emerging as a frontline tool for understanding the complexity of the inflammatory response. A series of articles in this issue highlights various modeling approaches to inflammation in the larger context of health and disease, from intracellular signaling to whole-animal physiology. Here we discuss the state of this emerging field. We note several common features of inflammation models, as well as challenges and prospects for future studies.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
24
|
An G, Faeder J, Vodovotz Y. Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J Burn Care Res 2008; 29:277-85. [PMID: 18354282 PMCID: PMC3640324 DOI: 10.1097/bcr.0b013e31816677c8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pathophysiology of the burn patient manifests the full spectrum of the complexity of the inflammatory response. In the acute phase, inflammation may have negative effects via capillary leak, the propagation of inhalation injury, and development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later stage processes of wound healing. Despite the volume of information concerning the cellular and molecular processes involved in inflammation, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective clinical therapeutic regimens. Translational systems biology (TSB) is the application of dynamic mathematical modeling and certain engineering principles to biological systems to integrate mechanism with phenomenon and, importantly, to revise clinical practice. This study will review the existing applications of TSB in the areas of inflammation and wound healing, relate them to specific areas of interest to the burn community, and present an integrated framework that links TSB with traditional burn research.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|