1
|
Su L, Liu S, Long Y, Chen C, Chen K, Chen M, Chen Y, Cheng Y, Cui Y, Ding Q, Ding R, Duan M, Gao T, Gu X, He H, He J, Hu B, Hu C, Huang R, Huang X, Jiang H, Jiang J, Lan Y, Li J, Li L, Li L, Li W, Li Y, Lin J, Luo X, Lyu F, Mao Z, Miao H, Shang X, Shang X, Shang Y, Shen Y, Shi Y, Sun Q, Sun W, Tang Z, Wang B, Wang H, Wang H, Wang L, Wang L, Wang S, Wang Z, Wang Z, Wei D, Wu J, Wu Q, Xing X, Yang J, Yang X, Yu J, Yu W, Yu Y, Yuan H, Zhai Q, Zhang H, Zhang L, Zhang M, Zhang Z, Zhao C, Zheng R, Zhong L, Zhou F, Zhu W. Chinese experts' consensus on the application of intensive care big data. Front Med (Lausanne) 2024; 10:1174429. [PMID: 38264049 PMCID: PMC10804886 DOI: 10.3389/fmed.2023.1174429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/09/2023] [Indexed: 01/25/2024] Open
Abstract
The development of intensive care medicine is inseparable from the diversified monitoring data. Intensive care medicine has been closely integrated with data since its birth. Critical care research requires an integrative approach that embraces the complexity of critical illness and the computational technology and algorithms that can make it possible. Considering the need of standardization of application of big data in intensive care, Intensive Care Medicine Branch of China Health Information and Health Care Big Data Society, Standard Committee has convened expert group, secretary group and the external audit expert group to formulate Chinese Experts' Consensus on the Application of Intensive Care Big Data (2022). This consensus makes 29 recommendations on the following five parts: Concept of intensive care big data, Important scientific issues, Standards and principles of database, Methodology in solving big data problems, Clinical application and safety consideration of intensive care big data. The consensus group believes this consensus is the starting step of application big data in the field of intensive care. More explorations and big data based retrospective research should be carried out in order to enhance safety and reliability of big data based models of critical care field.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Liu
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chaodong Chen
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Kai Chen
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yaolong Chen
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yisong Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yating Cui
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Ding
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tao Gao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaohua Gu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongli He
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jiawei He
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaobo Huang
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Huizhen Jiang
- Department of Information Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Jiang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Yunping Lan
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jun Li
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Linfeng Li
- Medical Data Research Institute, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenxiong Li
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yongzai Li
- Information Network Center, QiLu Hospital, ShanDong University, Jinan, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xufei Luo
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lyu
- Department of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopu Shang
- Department of Information Management, Beijing Jiaotong University, Beijing, China
| | - Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Shen
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Yinghuan Shi
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Qihang Sun
- British Chinese Society of Health Informatics, Beijing, China
| | - Weijun Sun
- Faculty of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zhiyun Tang
- Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Emergency and Intensive Care Unit Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Haijun Wang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Luhao Wang
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Sicong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhanwen Wang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Zhong Wang
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wei
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Jianfeng Wu
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xuezhong Xing
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jin Yang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Xianghong Yang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuan Yu
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Yuan
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Qian Zhai
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Hao Zhang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Meng Zhang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunguang Zhao
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lei Zhong
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiguo Zhu
- Department of General Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Kneyber MCJ, Khemani RG, Bhalla A, Blokpoel RGT, Cruces P, Dahmer MK, Emeriaud G, Grunwell J, Ilia S, Katira BH, Lopez-Fernandez YM, Rajapreyar P, Sanchez-Pinto LN, Rimensberger PC. Understanding clinical and biological heterogeneity to advance precision medicine in paediatric acute respiratory distress syndrome. THE LANCET. RESPIRATORY MEDICINE 2023; 11:197-212. [PMID: 36566767 PMCID: PMC10880453 DOI: 10.1016/s2213-2600(22)00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Paediatric acute respiratory distress syndrome (PARDS) is a heterogeneous clinical syndrome that is associated with high rates of mortality and long-term morbidity. Factors that distinguish PARDS from adult acute respiratory distress syndrome (ARDS) include changes in developmental stage and lung maturation with age, precipitating factors, and comorbidities. No specific treatment is available for PARDS and management is largely supportive, but methods to identify patients who would benefit from specific ventilation strategies or ancillary treatments, such as prone positioning, are needed. Understanding of the clinical and biological heterogeneity of PARDS, and of differences in clinical features and clinical course, pathobiology, response to treatment, and outcomes between PARDS and adult ARDS, will be key to the development of novel preventive and therapeutic strategies and a precision medicine approach to care. Studies in which clinical, biomarker, and transcriptomic data, as well as informatics, are used to unpack the biological and phenotypic heterogeneity of PARDS, and implementation of methods to better identify patients with PARDS, including methods to rapidly identify subphenotypes and endotypes at the point of care, will drive progress on the path to precision medicine.
Collapse
Affiliation(s)
- Martin C J Kneyber
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Critical Care, Anaesthesiology, Peri-operative and Emergency Medicine, University of Groningen, Groningen, Netherlands.
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anoopindar Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert G T Blokpoel
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Pablo Cruces
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mary K Dahmer
- Department of Pediatrics, Division of Critical Care, University of Michigan, Ann Arbor, MI, USA
| | - Guillaume Emeriaud
- Department of Pediatrics, CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Jocelyn Grunwell
- Department of Pediatrics, Division of Critical Care, Emory University, Atlanta, GA, USA
| | - Stavroula Ilia
- Pediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Bhushan H Katira
- Department of Pediatrics, Division of Critical Care Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Yolanda M Lopez-Fernandez
- Pediatric Intensive Care Unit, Department of Pediatrics, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Bizkaia, Spain
| | - Prakadeshwari Rajapreyar
- Department of Pediatrics (Critical Care), Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - L Nelson Sanchez-Pinto
- Department of Pediatrics (Critical Care), Northwestern University Feinberg School of Medicine and Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Peter C Rimensberger
- Division of Neonatology and Paediatric Intensive Care, Department of Paediatrics, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Short B, Serra A, Tariq A, Moitra V, Brodie D, Patel S, Baldwin MR, Yip NH. Implementation of lung protective ventilation order to improve adherence to low tidal volume ventilation: A RE-AIM evaluation. J Crit Care 2021; 63:167-174. [PMID: 33004237 PMCID: PMC7979571 DOI: 10.1016/j.jcrc.2020.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Lung protective ventilation (LPV), defined as a tidal volume (Vt) ≤8 cc/kg of predicted body weight, reduces ventilator-induced lung injury but is applied inconsistently. MATERIALS AND METHODS We conducted a prospective, quasi-experimental, cohort study of adults mechanically ventilated admitted to intensive care units (ICU) in the year before, year after, and second year after implementation of an electronic medical record based LPV order, and a cross-sectional qualitative study of ICU providers regarding their perceptions of the order. We applied the Reach, Efficacy, Adoption, Implementation, and Maintenance (RE-AIM) framework to evaluate the implementation. RESULTS There were 1405, 1424, and 1342 in the control, adoption, and maintenance cohorts, representing 95% of mechanically ventilated adult ICU patients. The overall prevalence of LPV increased from 65% to 73% (p < 0.001, adjusted-OR for LPV adherence: 1.9, 95% CI 1.5-2.3), but LPV adherence in women was approximately 30% worse than in men (women: 44% to 56% [p < 0.001],men: 79% to 86% [p < 0.001]). ICU providers noted difficulty obtaining an accurate height measurement and mistrust of the Vt calculation as barriers to implementation. LPV adherence increased further in the second year post implementation. CONCLUSION We designed and implemented an LPV order that sustainably improved LPV adherence across diverse ICUs.
Collapse
Affiliation(s)
- Briana Short
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons/NewYork-Presbyterian Hospital, New York, NY, United States of America.
| | - Alexis Serra
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons/NewYork-Presbyterian Hospital, New York, NY, United States of America
| | - Abdul Tariq
- The Value Institute at NewYork-Presbyterian Hospital, New York, NY, United States of America
| | - Vivek Moitra
- Department of Anesthesia, Columbia University Vagelos College of Physicians & Surgeons/NewYork-Presbyterian Hospital, New York, NY, United States of America
| | - Daniel Brodie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons/NewYork-Presbyterian Hospital, New York, NY, United States of America
| | - Sapana Patel
- The New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, United States of America; Department of Psychiatry, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, United States of America
| | - Matthew R Baldwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons/NewYork-Presbyterian Hospital, New York, NY, United States of America
| | - Natalie H Yip
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons/NewYork-Presbyterian Hospital, New York, NY, United States of America
| |
Collapse
|