1
|
Machado-Junior PA, Dias MSS, de Souza ABF, Lopes LSE, Menezes TP, Talvani A, Brochard L, Bezerra FS. A short duration of mechanical ventilation alters redox status in the diaphragm and aggravates inflammation in septic mice. Respir Physiol Neurobiol 2024; 331:104361. [PMID: 39433197 DOI: 10.1016/j.resp.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Mechanical ventilation (MV) is a life support method used to treat patients with respiratory failure. High tidal volumes during MV can cause ventilator-induced lung injury (VILI), but also affect other organs, such as the diaphragm (Dia) causing ventilator-induced diaphragmatic dysfunction (VIDD). VIDD is often associated with a complicated course on MV. Sepsis can induce inflammation and oxidative stress, contributing to the impairment of the Dia and worsening of the prognosis. This study evaluated the additive or synergistic effects of a short course of mechanical ventilation on Dia in healthy and septic adult mice. METHODS 32 adult male C57BL/6 mice were randomly into four groups: Control (CG), non-ventilated animals instilled with saline solution (PBS1x); Lipopolysaccharide (LPS), non-ventilated animals instilled with PBS solution containing lipopolysaccharide; Mechanical Ventilation (MV) for 1 h, ventilated animals instilled with PBS solution; and Mechanical Ventilation and LPS (MV+LPS), ventilated animals instilled with PBS solution containing LPS. At the end of the experimental protocol, the animals were euthanized, then blood and diaphragm tissue samples were collected. RESULTS Evaluation of leukocyte/blood parameters and diaphragm muscle showed that MV, LPS and the combination of both were able to increase neutrophil count, creatine kinase, inflammatory mediators and oxidative stress in all groups compared to the control. MV and sepsis combined had additive effects on inflammation and lipid peroxidation. CONCLUSIONS A short course of Mechanical ventilation promotes inflammation and oxidative stress and, its combination with sepsis further increases local and systemic inflammation.
Collapse
Affiliation(s)
- Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Marcelo Santiago Soares Dias
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Leonardo Spinelli Estevão Lopes
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Han XM, Dan J, Chen HQ, Wang Q, Luo LP, Feng JX, Wang TY, Sun J, Wang JL, Gu Y, Zhang W. Engineering an enzyme-like catalytic sensor for on-site dual-mode evaluation of total antioxidant capacity. Mikrochim Acta 2024; 191:465. [PMID: 39012354 DOI: 10.1007/s00604-024-06537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
A novel Fe-MoOx nanozyme, engineered with enhanced peroxidase (POD)-like activity through strategic doping and the creation of oxygen vacancies, is introduced to catalyze the oxidation of TMB with high efficiency. Furthermore, Fe-MoOx is responsive to single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms related to antioxidants and can serve as a desirable nanozyme for total antioxidant capacity (TAC) determination. The TAC colorimetric platform can reach a low LOD of 0.512 μM in solution and 24.316 μM in the smartphone-mediated RGB hydrogel (AA as the standard). As proof of concept, the practical application in real samples was explored. The work paves a promising avenue to design diverse nanozymes for visual on-site inspection of food quality.
Collapse
Affiliation(s)
- Xi Mei Han
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Hao Qian Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lin Pin Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jian Xing Feng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tian Yu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130000, China
| | - Jian Long Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Xu G, Song P, Xia L. Difunctional AuNPs@PVP with oxidase-like activity for SERRS detection of total antioxidant capacity. Talanta 2024; 270:125554. [PMID: 38150967 DOI: 10.1016/j.talanta.2023.125554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Assessing the total antioxidant capacity (TAC) of foods plays a significant role in dietary guidance and disease risk reduction. Therefore, building a simple, rapid, and sensitive sensing method for detecting TAC possesses broad application prospects. Herein, we constructed a novel nanozyme catalyzed‒surface-enhanced Raman resonance scattering (SERRS) sensing strategy for analysis of TAC based on polyvinylpyrrolidone coated gold nanoparticles (AuNPs@PVP) that was synthesized by one step reduction method. AuNPs@PVP not only served as the SERRS substrate but also possessed high oxidase activity which can catalyze 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by generating hydroxyl radicals (•OH) and superoxide anion free radical (•O2-). According to the inhibiting effect of antioxidants, ascorbic acid (AA) was selected as the representative for TAC detection. The linear range and limit of detection (LOD) were determined to be 10-8‒10-5 M and 0.6 nM, respectively. More importantly, the proposed nanozyme catalyzed‒SERRS strategy has been successfully applied to the detection of TAC in fruit juices, demonstrating promising potential in the field of food supervision and healthcare applications.
Collapse
Affiliation(s)
- Guangda Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang, 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
4
|
Izumino H, Tajima G, Tasaki O, Inokuma T, Hatachi G, Takagi K, Miyazaki T, Matsumoto K, Tsuchiya T, Sato S, Nagayasu T. Balance of the prooxidant and antioxidant system is associated with mortality in critically ill patients. J Clin Biochem Nutr 2023; 72:157-164. [PMID: 36936878 PMCID: PMC10017322 DOI: 10.3164/jcbn.22-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/06/2022] [Indexed: 01/28/2023] Open
Abstract
It is well known that oxidative stress causes certain diseases and organ damage. However, roles of oxidative stress in the acute phase of critical patients remain to be elucidated. This study aimed to investigate the balance of oxidative and antioxidative system and to clarify the association between oxidative stress and mortality in critically ill patients. This cohort study enrolled 247 patients transported to our emergency department by ambulance. Blood was drawn on hospital arrival, and serum derivatives of reactive oxidant metabolites (dROMs, oxidative index) and biological antioxidant potential (BAP, antioxidative index) were measured. Modified ratio (MR) is also calculated as BAP/dROMs/7.51. There were 197 survivors and 50 non-survivors. In the non-survivors, dROMs were significantly lower (274 vs 311, p<0.01), BAP was significantly higher (2,853 vs 2,138, p<0.01), and MR was significantly higher (1.51 vs 0.92, p<0.01) compared to those in the survivors. The AUC of MR was similar to that for the APACHE II score. Contrary to our expectations, higher BAP and lower dROMs were observed on admission in non-survivors. This may suggest that the antioxidative system is more dominant in the acute phase of severe insults and that the balance toward a higher antioxidative system is associated with mortality.
Collapse
Affiliation(s)
- Hiroo Izumino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Goro Tajima
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Emergency Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- To whom correspondence should be addressed. E-mail:
| | - Osamu Tasaki
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Emergency Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takamitsu Inokuma
- Acute and Critical Care Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Katsunori Takagi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Han X, Liu L, Gong H, Luo L, Han Y, Fan J, Xu C, Yue T, Wang J, Zhang W. Dextran-stabilized Fe-Mn bimetallic oxidase-like nanozyme for total antioxidant capacity assay of fruit and vegetable food. Food Chem 2022; 371:131115. [PMID: 34555710 DOI: 10.1016/j.foodchem.2021.131115] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/14/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The total antioxidant capacity (TAC) has become increasingly vital for evaluating antioxidant food quality in the field of healthcare. Herein, a convenient and sensitive method for TAC assay was proposed based on the absorbance difference of reaction systems between various antioxidants existed in food and Dex-FeMnzyme/oxTMB. Under the optimum condition, the limit of detection (LOD) of the colorimetric sensor was 1.17 μM with the linear concentration range from 1 μM to 30 μM. The analysis results demonstrated the excellent feasibility of practical application in fruit and vegetable food, which offered a new avenue for the establishment of colorimetric biosensors.
Collapse
Affiliation(s)
- Ximei Han
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ling Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huiyu Gong
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yaru Han
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiawen Fan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chenfei Xu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Oxidant/Antioxidant Status Is Impaired in Sepsis and Is Related to Anti-Apoptotic, Inflammatory, and Innate Immunity Alterations. Antioxidants (Basel) 2022; 11:antiox11020231. [PMID: 35204114 PMCID: PMC8868413 DOI: 10.3390/antiox11020231] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is considered pivotal in the pathophysiology of sepsis. Oxidants modulate heat shock proteins (Hsp), interleukins (IL), and cell death pathways, including apoptosis. This multicenter prospective observational study was designed to ascertain whether an oxidant/antioxidant imbalance is an independent sepsis discriminator and mortality predictor in intensive care unit (ICU) patients with sepsis (n = 145), compared to non-infectious critically ill patients (n = 112) and healthy individuals (n = 89). Serum total oxidative status (TOS) and total antioxidant capacity (TAC) were measured by photometric testing. IL-6, -8, -10, -27, Hsp72/90 (ELISA), and selected antioxidant biomolecules (Ζn, glutathione) were correlated with apoptotic mediators (caspase-3, capsase-9) and the central anti-apoptotic survivin protein (ELISA, real-time PCR). A wide scattering of TOS, TAC, and TOS/TAC in all three groups was demonstrated. Septic patients had an elevated TOS/TAC, compared to non-infectious critically ill patients and healthy individuals (p = 0.001). TOS/TAC was associated with severity scores, procalcitonin, IL-6, -10, -27, IFN-γ, Hsp72, Hsp90, survivin protein, and survivin isoforms -2B, -ΔΕx3, -WT (p < 0.001). In a propensity probability (age-sex-adjusted) logistic regression model, only sepsis was independently associated with TOS/TAC (Exp(B) 25.4, p < 0.001). The AUCTOS/TAC (0.96 (95% CI = 0.93–0.99)) was higher than AUCTAC (z = 20, p < 0.001) or AUCTOS (z = 3.1, p = 0.002) in distinguishing sepsis. TOS/TAC, TOS, survivin isoforms -WT and -2B, Hsp90, IL-6, survivin protein, and repressed TAC were strong predictors of mortality (p < 0.01). Oxidant/antioxidant status is impaired in septic compared to critically ill patients with trauma or surgery and is related to anti-apoptotic, inflammatory, and innate immunity alterations. The unpredicted TOS/TAC imbalance might be related to undefined phenotypes in patients and healthy individuals.
Collapse
|
7
|
Glutathione Reductase Is Associated with the Clinical Outcome of Septic Shock in the Patients Treated Using Continuous Veno-Venous Haemofiltration. ACTA ACUST UNITED AC 2021; 57:medicina57070689. [PMID: 34356970 PMCID: PMC8307392 DOI: 10.3390/medicina57070689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022]
Abstract
Background and objectives: At present, there is insufficient evidence to support the use of continuous veno-venous haemofiltration (CVVH) in the early treatment of septic shock. This study focuses on the association between survival and different parameters of oxidative stress (RedOx). Thereby, we evaluated whether RedOx markers are associated with the outcome of septic shock in patients under early-initiated CVVH treatment. Materials and Methods: We conducted a prospective observational study of 65 patients with septic shock who started CVVH within 12 h after hospital admission. Blood samples were taken from each patient prior to the start of CVVH. The following RedOx markers were measured: glutathione peroxidase, glutathione reductase (GR), total antioxidant capacity, superoxide dismutase, nitric oxide, malondialdehyde and 4-hydroxynonenal. The odds ratio (OR) was calculated using binary logistic regression and stepwise multivariable regression. Results: The 65 patients had a median age of 66 years and 39 were male. Based on the outcome, the patients were divided into two groups—non-survivors (n = 29) and survivors (n = 36)—and the levels of RedOx markers were compared between them. Of all the markers, only higher GR activity was found to be significantly associated with the fatal outcome; 100.3 U/L versus 60.5 U/L, OR = 1.027 (95% CI, 1.010–1.044). Following adjustment for the sequential organ failure assessment score and other parameters, GR activity still presented a significant association with the fatal outcome, OR = 1.020 (95% CI, 1.002–1.038). Conclusions: GR activity is associated with in-hospital fatal outcomes among septic shock patients under early-initiated CVVH treatment. Septic shock patients who have a lower GR activity at hospital admission may have a favourable outcome of the early initiation of CVVH.
Collapse
|
8
|
McKeever L, Peterson SJ, Lateef O, Braunschweig C. The Influence of Timing in Critical Care Nutrition. Annu Rev Nutr 2021; 41:203-222. [PMID: 34143642 DOI: 10.1146/annurev-nutr-111120-114108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proper timing of critical care nutrition has long been a matter of controversy. Critical illness waxes and wanes in stages, creating a dynamic flux in energy needs that we have only begun to examine. Furthermore, response to nutrition support likely differs greatly at the level of the individual patient in regard to genetic status, disease stage, comorbidities, and more. We review the observational and randomized literature concerning timing in nutrition support, discuss mechanisms of harm in feeding critically ill patients, and highlight the role of precision nutrition for moving the literature beyond the realm of blunt population averages into one that accounts for the patient-specific complexities of critical illness and host genetics. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Liam McKeever
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19063, USA;
| | - Sarah J Peterson
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Omar Lateef
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, Illinois 60612, USA
| | - Carol Braunschweig
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois 60612, USA;
| |
Collapse
|
9
|
Lymphaticovenous Anastomosis Supermicrosurgery Decreases Oxidative Stress and Increases Antioxidant Capacity in the Serum of Lymphedema Patients. J Clin Med 2021; 10:jcm10071540. [PMID: 33917571 PMCID: PMC8038828 DOI: 10.3390/jcm10071540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Excess lymphedematous tissue causes excessive oxidative stress in lymphedema. Lymphaticovenous anastomosis (LVA) supermicrosurgery is currently emerging as the first-line surgical intervention for lymphedema. No data are available regarding the changes in serum proteins correlating to oxidative stress and antioxidant capacity before and after LVA. METHODS A total of 26 patients with unilateral lower limb lymphedema confirmed by lymphoscintigraphy were recruited, and venous serum samples were collected before (pre-LVA) and after LVA (post-LVA). In 16 patients, the serum proteins were identified by isobaric tags for relative and absolute quantitation-based quantitative proteomic analysis with subsequent validation of protein expression by enzyme-linked immunosorbent assay. An Oxidative Stress Panel Kit was used on an additional 10 patients. Magnetic resonance (MR) volumetry was used to measure t limb volume six months after LVA. RESULTS This study identified that catalase (CAT) was significantly downregulated after LVA (pre-LVA vs. post-LVA, 2651 ± 2101 vs. 1448 ± 593 ng/mL, respectively, p = 0.033). There were significantly higher levels of post-LVA serum total antioxidant capacity (pre-LVA vs. post-LVA, 441 ± 81 vs. 488 ± 59 µmole/L, respectively, p = 0.031) and glutathione peroxidase (pre-LVA vs. post-LVA, 73 ± 20 vs. 92 ± 29 U/g, respectively, p = 0.018) than pre-LVA serum. In addition, after LVA, there were significantly more differences between post-LVA and pre-LVA serum levels of CAT (good outcome vs. fair outcome, -2593 ± 2363 vs. 178 ± 603 ng/mL, respectively, p = 0.021) and peroxiredoxin-2 (PRDX2) (good outcome vs. fair outcome, -7782 ± 7347 vs. -397 ± 1235 pg/mL, respectively, p = 0.037) in those patients with good outcomes (≥40% volume reduction in MR volumetry) than those with fair outcomes (<40% volume reduction in MR volumetry). CONCLUSIONS The study revealed that following LVA, differences in some specific oxidative stress markers and antioxidant capacity can be found in the serum of patients with lymphedema.
Collapse
|
10
|
Morvaridzadeh M, Sadeghi E, Agah S, Fazelian S, Rahimlou M, Kern FG, Heshmati S, Omidi A, Persad E, Heshmati J. Effect of ginger (Zingiber officinale) supplementation on oxidative stress parameters: A systematic review and meta-analysis. J Food Biochem 2021; 45:e13612. [PMID: 33458848 DOI: 10.1111/jfbc.13612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 11/29/2022]
Abstract
A wide variety of antioxidant properties are attributed to ginger (Zingiber officinale) and several randomized controlled trials (RCTs) have investigated the effect of ginger intake on major oxidative stress (OS) parameters. We conducted a systematic review and meta-analysis to evaluate the effects of using ginger to improve OS levels. Medline, Scopus, ISI Web of Science, EMBASE, and the Cochrane Central Register of Controlled Trials were systematically searched up until March 2020 to gather RCTs that evaluated the impact of ginger intake on the levels and activity of OS parameters in adult subjects. Means and standard deviations for relevant OS variables were extracted and evaluated to assess the quality of the trials based on the Cochrane risk-of-bias tool for randomized trials. The gathered data were pooled and expressed as standardized mean difference (SMD) with 95% Confidence Intervals (95% CI). Twelve trials were included in this review. Ginger intake was shown to significantly increase glutathione peroxidase (GPx) activity (SMD: 1.64; 95% CI: 0.43, 2.85; I2 = 86.8%) and total antioxidant capacity (TAC) (SMD: 0.40; 95% CI: 0.06, 0.73; I2 = 42.8%) and significantly decrease malondialdehyde (MDA) levels (SMD: -0.69; 95% CI: -1.26, -0.12; I2 = 85.8%) compared to control groups. Ginger supplementation also non-significantly associated with an increase in CAT activity (SMD: 1.09; 95% CI: -0.07, 2.25; I2 = 87.6%). This systematic review and meta-analysis presents convincing evidence supporting the efficacy of ginger supplementation on improving OS levels. PRACTICAL IMPLICATIONS: In health sciences, OS, due to its pivotal role in the pathophysiology of several chronic diseases, is a subject with a long history. Recent research strives for a safe, ideal, and effective antioxidant. Ginger is herbal medicine, which has been widely used in traditional and complementary medicine. Proving the antioxidant effect and potential benefit of ginger has positive clinical implications for the application of this practical herb.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Siavash Fazelian
- Clinical Development and Researches Unit, Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehran Rahimlou
- Nutrition Department, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Shilan Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhosein Omidi
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Emma Persad
- Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
YILDIZ H. Thiol/disulphide homeostasis in intensive care unit patients with sepsis and septic shock. Turk J Med Sci 2020; 50:811-816. [PMID: 32233178 PMCID: PMC7379464 DOI: 10.3906/sag-1905-148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background/aim Sepsis is a condition caused by infection followed by unregulated inflammatory response which may lead to organ dysfunction. The aim of this study is to be the first in the literature and it has been designed to show the thiol/disulphide changes in patients with sepsis and septic shock and their correlation with acute phase reactants. Material and methods A total of 113 patients (septic shock 53 and sepsis 60) and 60 healthy control subjects have been enrolled in this study from the period February 2018 to 2019. The patients were divided in 2 groups: nonsurvivors (74) and survivors (39). The investigation includes measurements of native thiol, total thiol, dynamic disulphide bond, oxidized thiol ratio, reduced thiol ratio and thiol oxidation reduction ratio, erythrocyte sedimentation rate, C-reactive protein, and procalcitonin. Results The findings of this study suggest that changes in thiol levels play a role in the pathogenesis of patients with sepsis and septic shock. Conclusions Thiol/disulphide homeostasis is impaired in patients with sepsis and septic shock. Understanding the role of thiol/ disulphide homeostasis in sepsis and septic shock may provide different therapeutic intervention strategies for patients.
Collapse
Affiliation(s)
- Hamit YILDIZ
- Department of Internal Medical Sciences and Critical Care, Faculty of Medicine, Gaziantep University, GaziantepTurkey
| |
Collapse
|
12
|
Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol 2020; 11:93-118. [PMID: 31905019 DOI: 10.1146/annurev-food-032519-051708] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional foods is a very popular term in the social and scientific media; consequently, food producers have invested resources in the development of processed foods that may provide added functional benefits to consumers' well-being. Because of intrinsic regulation and end-of-use purposes in different countries, worldwide meanings and definitions of this term are still unclear. Hence, here we standardize this definition and propose a guideline to attest that some ingredients or foods truly deserve this special designation. Furthermore, focus is directed at the most recent studies and practical guidelines that can be used to develop and test the efficacy of potentially functional foods and ingredients. The most widespread functional ingredients, such as polyunsaturated fatty acids (PUFAs), probiotics/prebiotics/synbiotics, and antioxidants, and their technological means of delivery in food products are described. The review discusses the steps that food companies should take to ensure that their developed food product is truly functional.
Collapse
Affiliation(s)
- Daniel Granato
- Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-0250 Espoo, Finland;
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science, Education and Technology of Rio de Janeiro (IFRJ), 20260-100 Rio de Janeiro, Brazil
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Karimi A, Ghodsi R, Kooshki F, Karimi M, Asghariazar V, Tarighat-Esfanjani A. Therapeutic effects of curcumin on sepsis and mechanisms of action: A systematic review of preclinical studies. Phytother Res 2019; 33:2798-2820. [PMID: 31429161 DOI: 10.1002/ptr.6467] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Sepsis is a complex disease that begins with an infectious disorder and causes excessive immune responses. Curcumin is considered as an active component of turmeric that can improve the condition in sepsis due to its anti-inflammatory and antioxidant properties. PubMed, Embase, Google Scholar, Web of Science, and Scopus databases were searched. Searching was not limited to a specific publication period. Only English-language original articles, which had examined the effect of curcumin on sepsis, were included. At first, 1,098 articles were totally found, and 209 articles were selected after excluding duplicated data; 46 articles were remained due to the curcumin effects on sepsis. These included 23 in vitro studies and 23 animal studies. Our results showed that curcumin and various analogs of curcumin can have an inhibitory effect on sepsis-induced complications. Curcumin has the ability to inhibit the inflammatory, oxidative coagulation factors, and regulation of immune responses in sepsis. Despite the promising evidence of the therapeutic effects of curcumin on the sepsis complication, further studies seem necessary to investigate its effect and possible mechanisms of action in human studies.
Collapse
Affiliation(s)
- Arash Karimi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Ghodsi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Kooshki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Karimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|