1
|
Gras-Martín L, Plaza-Diaz A, Zarate-Tamames B, Vera-Artazcoz P, Torres OH, Bastida C, Soy D, Ruiz-Ramos J. Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review. Antibiotics (Basel) 2024; 13:801. [PMID: 39334976 PMCID: PMC11428266 DOI: 10.3390/antibiotics13090801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Knowledge about the behavior of antibiotics in critically ill patients has been increasing in recent years. Some studies have concluded that a high percentage may be outside the therapeutic range. The most likely cause of this is the pharmacokinetic variability of critically ill patients, but it is not clear which factors have the greatest impact. The aim of this systematic review is to identify risk factors among critically ill patients that may exhibit significant pharmacokinetic alterations, compromising treatment efficacy and safety. (2) Methods: The search included the PubMed, Web of Science, and Embase databases. (3) Results: We identified 246 observational studies and ten clinical trials. The most studied risk factors in the literature were renal function, weight, age, sex, and renal replacement therapy. Risk factors with the greatest impact included renal function, weight, renal replacement therapy, age, protein or albumin levels, and APACHE or SAPS scores. (4) Conclusions: The review allows us to identify which critically ill patients are at a higher risk of not reaching therapeutic targets and helps us to recognize the extensive number of risk factors that have been studied, guiding their inclusion in future studies. It is essential to continue researching, especially in real clinical practice and with clinical outcomes.
Collapse
Affiliation(s)
- Laura Gras-Martín
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adrián Plaza-Diaz
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Borja Zarate-Tamames
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Paula Vera-Artazcoz
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Olga H Torres
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Geriatric Unit, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Carla Bastida
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Dolors Soy
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Jesús Ruiz-Ramos
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Gatti M, Cojutti PG, Pea F. Impact of attaining aggressive vs. conservative PK/PD target on the clinical efficacy of beta-lactams for the treatment of Gram-negative infections in the critically ill patients: a systematic review and meta-analysis. Crit Care 2024; 28:123. [PMID: 38627763 PMCID: PMC11020314 DOI: 10.1186/s13054-024-04911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND To perform a systematic review with meta-analysis with the dual intent of assessing the impact of attaining aggressive vs. conservative beta-lactams PK/PD target on the clinical efficacy for treating Gram-negative infections in critical patients, and of identifying predictive factors of failure in attaining aggressive PK/PD targets. METHODS Two authors independently searched PubMed-MEDLINE and Scopus database from inception to 23rd December 2023, to retrieve studies comparing the impact of attaining aggressive vs. conservative PK/PD targets on clinical efficacy of beta-lactams. Independent predictive factors of failure in attaining aggressive PK/PD targets were also assessed. Aggressive PK/PD target was considered a100%fT>4xMIC, and clinical cure rate was selected as primary outcome. Meta-analysis was performed by pooling odds ratios (ORs) extrapolated from studies providing adjustment for confounders using a random-effects model with inverse variance method. RESULTS A total of 20,364 articles were screened, and 21 observational studies were included in the meta-analysis (N = 4833; 2193 aggressive vs. 2640 conservative PK/PD target). Attaining aggressive PK/PD target was significantly associated with higher clinical cure rate (OR 1.69; 95% CI 1.15-2.49) and lower risk of beta-lactam resistance development (OR 0.06; 95% CI 0.01-0.29). Male gender, body mass index > 30 kg/m2, augmented renal clearance and MIC above the clinical breakpoint emerged as significant independent predictors of failure in attaining aggressive PK/PD targets, whereas prolonged/continuous infusion administration of beta-lactams resulted as protective factor. The risk of bias was moderate in 19 studies and severe in the other 2. CONCLUSIONS Attaining aggressive beta-lactams PK/PD targets provided significant clinical benefits in critical patients. Our analysis could be useful to stratify patients at high-risk of failure in attaining aggressive PK/PD targets.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Pier Giorgio Cojutti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
3
|
Ragonnet G, Guilhaumou R, Hanafia O, Néant N, Denante S, Vanel N, Honoré S, Michel F. Continuous infusion of beta-lactam antibiotics in pediatric intensive care unit: A monocenter before/after implementation study. Anaesth Crit Care Pain Med 2024; 43:101354. [PMID: 38360404 DOI: 10.1016/j.accpm.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
CONTEXT Beta-lactam continuous infusion (CI) is currently recommended in adult intensive care units to achieve target concentrations. In pediatric intensive care (PICU), few studies suggest the value of Beta-lactam CI to achieve target concentration. Our objective was to analyze the impact of Beta-lactam CI protocolization on the achievement of target concentration in PICU patients. MATERIAL AND METHODS We conducted a single-center retrospective study in patients with beta-lactam treatment for more than 2 days and at least one sample for therapeutic drug monitoring (TDM). From January 2018 to February 2022 (period 1, P1), BL were administered as an intermittent infusion with TDM upon request. From February to September 2022 (period 2, P2), Beta-lactam CI with TDM at day one was protocolized. The primary endpoint concerned achieving fT>4× Minimum Inhibitory Concentration = 100%. RESULTS In P1, 214 assays involved 103 patients; in P2, 199 assays involved 72 patients. Target concentration achievement was more frequent in P2 (P2 = 73.7% vs. P1 = 29.1%; p < 0.001). At day 5/6 after Beta-lactam initiation, c-reactive protein concentrations were P1 = 84.9 ± 79.2 mg/L; P2 = 53.7±49.8 mg/L (p < 0.05). In the multivariable logistic regression model: P2, BSA, and albumin were positively associated with target achievement; urea, and male sex were negatively associated with target achievement. The daily average cost of beta-lactam vial consumption per child was: P1 = 5.04 ± 2.6 € vs. P2 = 3.21 ± 2.7 € (p-value < 0.001). The daily average reconstitution time of Beta-lactam syringes per child was: P1 = 23.5 ± 8.7 min, P2 = 13.9 ± 9.2 min (p-value < 0.001). CONCLUSION Protocolization of Beta-lactam continuous infusion was associated with more frequent target concentration achievements in PICU. This implementation could be cost-effective and nurse time-saving.
Collapse
Affiliation(s)
- Gwendoline Ragonnet
- Pharmacie à Usage Intérieur Centre Hospitalo-Universitaire Timone, 13385 Marseille Cedex 5, France.
| | - Romain Guilhaumou
- Aix Marseille Univ, APHM, Institut des Neurosciences des Systèmes, Inserm UMR 11600, Service de Pharmacologie Clinique et PharmaSurveillance, 13385 Marseille Cedex 5, France
| | - Omar Hanafia
- Pharmacie à Usage Intérieur Centre Hospitalo-Universitaire Timone, 13385 Marseille Cedex 5, France
| | - Nadège Néant
- Laboratoire de Pharmacocinétique et Toxicologie, 13385 Marseille Cedex 5, France
| | - Solène Denante
- Réanimation Pédiatrique Centre Hospitalo-universitaire Timone, 13385 Marseille Cedex 5, France
| | - Noémie Vanel
- Réanimation Pédiatrique Centre Hospitalo-universitaire Timone, 13385 Marseille Cedex 5, France
| | - Stéphane Honoré
- Pharmacie à Usage Intérieur Centre Hospitalo-Universitaire Timone, 13385 Marseille Cedex 5, France; Aix Marseille Univ, EA 3279, CEReSS, Research Centre on Health Services and Quality of Life, Observatoire des Médicaments, Dispositifs Médicaux et Innovations Thérapeutiques (OMéDIT PACA Corse), Marseille, France
| | - Fabrice Michel
- Réanimation Pédiatrique Centre Hospitalo-universitaire Timone, 13385 Marseille Cedex 5, France
| |
Collapse
|
4
|
Guilhaumou R, Chevrier C, Setti JL, Jouve E, Marsot A, Julian N, Blin O, Simeone P, Lagier D, Mokart D, Bruder N, Garnier M, Velly L. β-Lactam Pharmacokinetic/Pharmacodynamic Target Attainment in Intensive Care Unit Patients: A Prospective, Observational, Cohort Study. Antibiotics (Basel) 2023; 12:1289. [PMID: 37627709 PMCID: PMC10451857 DOI: 10.3390/antibiotics12081289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The aims of this study were to describe pharmacokinetic/pharmacodynamic target attainment in intensive care unit (ICU) patients treated with continuously infused ß-lactam antibiotics, their associated covariates, and the impact of dosage adjustment. METHODS This prospective, observational, cohort study was performed in three ICUs. Four ß-lactams were continuously infused, and therapeutic drug monitoring (TDM) was performed at days 1, 4, and 7. The primary pharmacokinetic/pharmacodynamic target was an unbound ß-lactam plasma concentration four times above the bacteria's minimal inhibitory concentration during the whole dosing interval. The demographic and clinical covariates associated with target attainment were evaluated. RESULTS A total of 170 patients were included (426 blood samples). The percentages of empirical ß-lactam underdosing at D1 were 66% for cefepime, 43% for cefotaxime, 47% for ceftazidime, and 14% for meropenem. Indexed creatinine clearance was independently associated with treatment underdose if increased (adjusted odds ratio per unit, 1.01; 95% CI, 1.00 to 1.01; p = 0.014) or overdose if decreased (adjusted odds ratio per unit, 0.95; 95% CI, 0.94 to 0.97; p < 0.001). Pharmacokinetic/pharmacodynamic target attainment was significantly increased after ß-lactam dosage adjustment between day 1 and day 4 vs. no adjustment (53.1% vs. 26.2%; p = 0.018). CONCLUSIONS This study increases our knowledge on the optimization of ß-lactam therapy in ICU patients. A large inter- and intra-patient variability in plasmatic concentrations was observed, leading to inadequate exposure. A combined indexed creatinine clearance and TDM approach enables adequate dosing for better pharmacokinetic/pharmacodynamic target attainment.
Collapse
Affiliation(s)
- Romain Guilhaumou
- Department of Clinical Pharmacology and Pharmacosurveillance, La Timone University Hospital; 13005 Marseille, France
- Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM UMR 1106, 13005 Marseille, France
| | - Constance Chevrier
- Department of Clinical Pharmacology and Pharmacosurveillance, La Timone University Hospital; 13005 Marseille, France
- Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM UMR 1106, 13005 Marseille, France
| | - Jean Loup Setti
- University Hospital Timone, Department of Anaesthesiology and Critical Care Medicine, APHM, Aix Marseille University, 13005 Marseille, France; (J.L.S.); (P.S.); (D.L.)
| | - Elisabeth Jouve
- Department of Clinical Pharmacology and Pharmacosurveillance, La Timone University Hospital; 13005 Marseille, France
- Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM UMR 1106, 13005 Marseille, France
| | - Amélie Marsot
- Faculté de Pharmacie, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Nathan Julian
- University Hospital Timone, Department of Anaesthesiology and Critical Care Medicine, APHM, Aix Marseille University, 13005 Marseille, France; (J.L.S.); (P.S.); (D.L.)
| | - Olivier Blin
- Department of Clinical Pharmacology and Pharmacosurveillance, La Timone University Hospital; 13005 Marseille, France
- Institut de Neurosciences des Systèmes, Aix Marseille University, INSERM UMR 1106, 13005 Marseille, France
| | - Pierre Simeone
- University Hospital Timone, Department of Anaesthesiology and Critical Care Medicine, APHM, Aix Marseille University, 13005 Marseille, France; (J.L.S.); (P.S.); (D.L.)
- Inst Neurosci Timone, INT, CNRS, Aix Marseille University, UMR7289, 13005 Marseille, France
| | - David Lagier
- University Hospital Timone, Department of Anaesthesiology and Critical Care Medicine, APHM, Aix Marseille University, 13005 Marseille, France; (J.L.S.); (P.S.); (D.L.)
- C2VN, Inserm 1263, Inra 1260, Aix Marseille Université, 13005 Marseille, France
| | - Djamel Mokart
- Department of Anaesthesiology and Critical Care Medicine, Institut Paoli-Calmette, 13009 Marseille, France
| | - Nicolas Bruder
- University Hospital Timone, Department of Anaesthesiology and Critical Care Medicine, APHM, Aix Marseille University, 13005 Marseille, France; (J.L.S.); (P.S.); (D.L.)
| | - Marc Garnier
- Sorbonne University, GRC29, APHP, DMU DREAM, Rive Droite, Site Tenon, 75020 Paris, France
- Département d’Anesthésie-Réanimation et Médecine Périopératoire, CHU de Clermont-Ferrand, University Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Lionel Velly
- University Hospital Timone, Department of Anaesthesiology and Critical Care Medicine, APHM, Aix Marseille University, 13005 Marseille, France; (J.L.S.); (P.S.); (D.L.)
- Inst Neurosci Timone, INT, CNRS, Aix Marseille University, UMR7289, 13005 Marseille, France
| |
Collapse
|
5
|
Chiriac U, Richter D, Frey OR, Röhr AC, Helbig S, Hagel S, Liebchen U, Weigand MA, Brinkmann A. Software- and TDM-Guided Dosing of Meropenem Promises High Rates of Target Attainment in Critically Ill Patients. Antibiotics (Basel) 2023; 12:1112. [PMID: 37508207 PMCID: PMC10376356 DOI: 10.3390/antibiotics12071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Various studies have reported insufficient beta-lactam concentrations in critically ill patients. The optimal dosing strategy for beta-lactams in critically ill patients, particularly in septic patients, is an ongoing matter of discussion. This retrospective study aimed to evaluate the success of software-guided empiric meropenem dosing (CADDy, Calculator to Approximate Drug-Dosing in Dialysis) with subsequent routine meropenem measurements and expert clinical pharmacological interpretations. Adequate therapeutic drug exposure was defined as concentrations of 8-16 mg/L, whereas concentrations of 16-24 mg/L were defined as moderately high and concentrations >24 mg/L as potentially harmful. A total of 91 patients received meropenem as a continuous infusion (229 serum concentrations), of whom 60% achieved 8-16 mg/L, 23% achieved 16-24 mg/L, and 10% achieved unnecessarily high and potentially harmful meropenem concentrations >24 mg/L in the first 48 h using the dosing software. No patient showed concentrations <2 mg/L using the dosing software in the first 48 h. With a subsequent TDM-guided dose adjustment, therapeutic drug exposure was significantly (p ≤ 0.05) enhanced to 70%. No patient had meropenem concentrations >24 mg/L with TDM-guided dose adjustments. The combined use of dosing software and consecutive TDM promised a high rate of adequate therapeutic drug exposures of meropenem in patients with sepsis and septic shock.
Collapse
Affiliation(s)
- Ute Chiriac
- Department of Pharmacy, Heidelberg University Hospital, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany
| | - Daniel Richter
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Otto R Frey
- Department of Clinical Pharmacy, Heidenheim Hospital, Schlosshaustraße 100, 89522 Heidenheim, Germany
| | - Anka C Röhr
- Department of Clinical Pharmacy, Heidenheim Hospital, Schlosshaustraße 100, 89522 Heidenheim, Germany
| | - Sophia Helbig
- Department of Clinical Pharmacy, Heidenheim Hospital, Schlosshaustraße 100, 89522 Heidenheim, Germany
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital-Friedrich Schiller University Jena, 07740 Jena, Germany
| | - Uwe Liebchen
- Department of Anaesthesiology, University Hospital LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Alexander Brinkmann
- Department of Anesthesiology, Heidenheim Hospital, Schlosshaustraße 100, 89522 Heidenheim, Germany
| |
Collapse
|
6
|
Stašek J, Keller F, Kočí V, Klučka J, Klabusayová E, Wiewiorka O, Strašilová Z, Beňovská M, Škardová M, Maláska J. Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients—A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030568. [PMID: 36978435 PMCID: PMC10044408 DOI: 10.3390/antibiotics12030568] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Beta-lactam antibiotics remain one of the most preferred groups of antibiotics in critical care due to their excellent safety profiles and their activity against a wide spectrum of pathogens. The cornerstone of appropriate therapy with beta-lactams is to achieve an adequate plasmatic concentration of a given antibiotic, which is derived primarily from the minimum inhibitory concentration (MIC) of the specific pathogen. In a critically ill patient, the plasmatic levels of drugs could be affected by many significant changes in the patient’s physiology, such as hypoalbuminemia, endothelial dysfunction with the leakage of intravascular fluid into interstitial space and acute kidney injury. Predicting antibiotic concentration from models based on non-critically ill populations may be misleading. Therapeutic drug monitoring (TDM) has been shown to be effective in achieving adequate concentrations of many drugs, including beta-lactam antibiotics. Reliable methods, such as high-performance liquid chromatography, provide the accurate testing of a wide range of beta-lactam antibiotics. Long turnaround times remain the main drawback limiting their widespread use, although progress has been made recently in the implementation of different novel methods of antibiotic testing. However, whether the TDM approach can effectively improve clinically relevant patient outcomes must be proved in future clinical trials.
Collapse
Affiliation(s)
- Jan Stašek
- Department of Internal Medicine and Cardiology, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Keller
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Kočí
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Jozef Klučka
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Eva Klabusayová
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Ondřej Wiewiorka
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Zuzana Strašilová
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Miroslava Beňovská
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Markéta Škardová
- Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Jan Maláska
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
- 2nd Department of Anaesthesiology University Hospital Brno, 620 00 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
7
|
Hypoalbuminemia and Pharmacokinetics: When the Misunderstanding of a Fundamental Concept Leads to Repeated Errors over Decades. Antibiotics (Basel) 2023; 12:antibiotics12030515. [PMID: 36978382 PMCID: PMC10044130 DOI: 10.3390/antibiotics12030515] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Surprisingly, misinterpretation of the influence of hypoalbuminemia on pharmacokinetics and the clinical effects of drugs seems to be a current problem, even though hypoalbuminemia has no impact on the pharmacologically active exposure. Exceptions to this fact are highly protein-bound anaesthetics with high elimination capacity (i.e., <5 drugs on the market). To assess the frequency of misinterpretation of the influence of hypoalbuminemia on pharmacokinetics and the clinical effects of drugs between 1975 and 2021, a PubMed literature review was conducted. Each paragraph on albumin binding was classified as correct, ambiguous or incorrect, creating two acceptable categories: (1) content without any errors, and (2) content containing some incorrect and/or ambiguous statements. The analyses of these articles showed that fewer than 11% of articles contained no interpretation errors. In order to contain this misinterpretation, several measures are proposed: (1) Make the message accessible to a wide audience by offering a simplified and didactic video representation of the lack of impact of albumin binding to drugs. (2) Precise terminology (unbound/free form/concentration) should be used for highly bound drugs. (3) Unbound/free forms should be systematically quantified for highly plasma protein bound drugs for clinical trials as well as for therapeutic drug monitoring.
Collapse
|
8
|
Selig DJ, DeLuca JP, Chung KK, Pruskowski KA, Livezey JR, Nadeau RJ, Por ED, Akers KS. Pharmacokinetics of piperacillin and tazobactam in critically Ill patients treated with continuous kidney replacement therapy: A mini-review and population pharmacokinetic analysis. J Clin Pharm Ther 2022; 47:1091-1102. [PMID: 35352374 PMCID: PMC9544041 DOI: 10.1111/jcpt.13657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Timely and appropriate dosing of antibiotics is essential for the treatment of bacterial sepsis. Critically ill patients treated with continuous kidney replacement therapy (CKRT) often have physiologic derangements that affect pharmacokinetics (PK) of antibiotics and dosing may be challenging. We sought to aggregate previously published piperacillin and tazobactam (pip-tazo) pharmacokinetic data in critically ill patients undergoing CKRT to better understand pharmacokinetics of pip-tazo in this population and better inform dosing. METHODS The National Library of Medicine Database was searched for original research containing piperacillin or tazobactam clearance (CL) or volume of distribution (V) estimates in patients treated with CKRT. The search yielded 77 articles, of which 26 reported suitable estimates of CL or V. Of the 26 articles, 10 for piperacillin and 8 for tazobactam had complete information suitable for population pharmacokinetic modelling. Also included in the analysis was piperacillin and tazobactam PK data from 4 critically ill patients treated with CKRT in the Military Health System, 2 with burn and 2 without burn. RESULTS AND DISCUSSION Median and range of literature reported PK parameters for piperacillin (CL 2.76 L/hr, 1.4-7.92 L/hr, V 31.2 L, 16.77-42.27 L) and tazobactam (CL 2.34 L/hr, 0.72-5.2 L/hr, V 36.6 L, 26.2-58.87 L) were highly consistent with population estimates (piperacillin CL 2.7 L/hr, 95%CI 1.99-3.41 L/hr, V 25.83 22.07-29.59 L, tazobactam CL 2.49 L/hr, 95%CI 1.55-3.44, V 30.62 95%CI 23.7-37.54). The proportion of patients meeting pre-defined pharmacodynamic (PD) targets (median 88.7, range 71%-100%) was high despite significant mortality (median 44%, range 35%-60%). High mortality was predicted by baseline severity of illness (median APACHE II score 23, range 21-33.25). Choice of lenient or strict PD targets (ie 100%fT >MIC or 100%fT >4XMIC) had the largest impact on probability of target attainment (PTA), whereas presence or intensity of CKRT had minimal impact on PTA. WHAT IS NEW AND CONCLUSION Pip-tazo overexposure may be associated with increased mortality, although this is confounded by baseline severity of illness. Achieving adequate pip-tazo exposure is essential; however, risk of harm from overexposure should be considered when choosing a PD target and dose. If lenient PD targets are desired, doses of 2250-3375 mg every 6 h are reasonable for most patients receiving CKRT. However, if a strict PD target is desired, continuous infusion (at least 9000-13500 mg per day) may be required. However, some critically ill CKRT populations may need higher or lower doses and dosing strategies should be tailored to individuals based on all available clinical data including the specific critical care setting.
Collapse
Affiliation(s)
- Daniel J Selig
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, Maryland, USA
| | - Jesse P DeLuca
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, Maryland, USA
| | - Kevin K Chung
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kaitlin A Pruskowski
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,United States Army Institute of Surgical Research, US Army Burn Center, San Antonio, Texas, USA
| | - Jeffrey R Livezey
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Robert J Nadeau
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, Maryland, USA
| | - Elaine D Por
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, Maryland, USA
| | - Kevin S Akers
- United States Army Institute of Surgical Research, US Army Burn Center, San Antonio, Texas, USA
| |
Collapse
|
9
|
Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: a randomized controlled trial. Intensive Care Med 2022; 48:311-321. [PMID: 35106617 PMCID: PMC8866359 DOI: 10.1007/s00134-021-06609-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Insufficient antimicrobial exposure is associated with worse outcomes in sepsis. We evaluated whether therapeutic drug monitoring (TDM)-guided antibiotic therapy improves outcomes. METHODS Randomized, multicenter, controlled trial from January 2017 to December 2019. Adult patients (n = 254) with sepsis or septic shock were randomly assigned 1:1 to receive continuous infusion of piperacillin/tazobactam with dosing guided by daily TDM of piperacillin or continuous infusion with a fixed dose (13.5 g/24 h if eGFR ≥ 20 mL/min). Target plasma concentration was four times the minimal inhibitory concentration (range ± 20%) of the underlying pathogen, respectively, of Pseudomonas aeruginosa in empiric situation. Primary outcome was the mean of daily total Sequential Organ Failure Assessment (SOFA) score up to day 10. RESULTS Among 249 evaluable patients (66.3 ± 13.7 years; female, 30.9%), there was no significant difference in mean SOFA score between patients with TDM (7.9 points; 95% CI 7.1-8.7) and without TDM (8.2 points; 95% CI 7.5-9.0) (p = 0.39). Patients with TDM-guided therapy showed a lower 28-day mortality (21.6% vs. 25.8%, RR 0.8, 95% CI 0.5-1.3, p = 0.44) and a higher rate of clinical (OR 1.9; 95% CI 0.5-6.2, p = 0.30) and microbiological cure (OR 2.4; 95% CI 0.7-7.4, p = 0.12), but these differences did not reach statistical significance. Attainment of target concentration was more common in patients with TDM (37.3% vs. 14.6%, OR 4.5, CI 95%, 2.9-6.9, p < 0.001). CONCLUSION TDM-guided therapy showed no beneficial effect in patients with sepsis and continuous infusion of piperacillin/tazobactam with regard to the mean SOFA score. Larger studies with strategies to ensure optimization of antimicrobial exposure are needed to definitively answer the question.
Collapse
|
10
|
Richter DC, Heininger A, Chiriac U, Frey OR, Rau H, Fuchs T, Röhr AC, Brinkmann A, Weigand MA. Antibiotic Stewardship and Therapeutic Drug Monitoring of β-Lactam Antibiotics: Is There a Link? An Opinion Paper. Ther Drug Monit 2022; 44:103-111. [PMID: 34857694 DOI: 10.1097/ftd.0000000000000949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE In critically ill patients, changes in the pharmacokinetics (PK) of β-lactams can lead to significant variations in serum concentrations, with possibly detrimental effects on outcomes. The utilization of individually calculated doses, extended infusion regimen, and therapeutic drug monitoring (TDM)-guided dose adjustments can mitigate the PK changes and help to achieve and attain an individual PK target. METHODS We reviewed relevant literature from 2004 to 2021 using 4 search engines (PubMed, Web of Science, Scopus, and Google Scholar). Unpublished clinical data were also examined. RESULTS TDM-guided, individualized dosing strategies facilitated PK target attainment and improved patient outcomes. TDM-guided therapy is a core concept of individualized dosing that increases PK target attainment and identifies possible toxic β-lactam concentrations. CONCLUSIONS Individualized dosing and TDM facilitate the rational use of β-lactams and are integral for antibiotic stewardship interventions in critical care, affording the optimal exposure of both pathogen and drugs, along with enhanced treatment efficacy and reduced emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Daniel C Richter
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg
| | - Alexandra Heininger
- Department of Infectious Diseases and Hygiene, Mannheim University Hospital, Mannheim
| | - Ute Chiriac
- Department of Pharmacy, Heidelberg University Hospital, Heidelberg; and
| | | | - Heike Rau
- Departments of Clinical Pharmacy, and
| | - Thomas Fuchs
- Anesthesiology, Heidenheim Hospital, Heidenheim, Germany
| | | | | | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg
| |
Collapse
|
11
|
Ewoldt TMJ, Abdulla A, Hunfeld NGM, Muller AE, Gommers D, Polinder S, Koch BCP, Endeman H. Health Care Costs of Target Attainment for Beta-Lactam Antibiotics in Critically Ill Patients: A Retrospective Analysis of the EXPAT Study. Ther Drug Monit 2022; 44:224-229. [PMID: 33770020 PMCID: PMC8746885 DOI: 10.1097/ftd.0000000000000891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Optimizing beta-lactam antibiotic treatment is a promising method to reduce the length of intensive care unit (ICU) stay and therefore reduce ICU costs. We used data from the EXPAT trial to determine whether beta-lactam antibiotic target attainment is a cost determinant in the ICU. METHODS Patients included in the EXPAT trial were divided into target attainment and target nonattainment based on serum antibiotic levels. All hospital costs were extracted from the hospital administration system and categorized. RESULTS In total, 79 patients were included in the analysis. Target attainment showed a trend toward higher total ICU costs (€44,600 versus €28,200, P = 0.103). This trend disappeared when correcting for ICU length of stay (€2680 versus €2700). Renal replacement therapy was the most important cost driver. CONCLUSIONS Target attainment for beta-lactam antibiotics shows a trend toward higher total costs in ICU patients, which can be attributed to the high costs of a long stay in the ICU and renal replacement therapy.
Collapse
Affiliation(s)
| | | | | | - Anouk E. Muller
- Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Medical Microbiology, Haaglanden Medical Center, The Hague, the Netherlands; and
| | | | - Suzanne Polinder
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | |
Collapse
|
12
|
Personalized Antibiotic Therapy for the Critically Ill: Implementation Strategies and Effects on Clinical Outcome of Piperacillin Therapeutic Drug Monitoring-A Descriptive Retrospective Analysis. Antibiotics (Basel) 2021; 10:antibiotics10121452. [PMID: 34943664 PMCID: PMC8698194 DOI: 10.3390/antibiotics10121452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/29/2022] Open
Abstract
Therapeutic drug monitoring (TDM) is increasingly relevant for an individualized antibiotic therapy and subsequently a necessary tool to reduce multidrug-resistant pathogens, especially in light of diminishing antimicrobial capabilities. Critical illness is associated with profound pharmacokinetic and pharmacodynamic alterations, which challenge dose finding and the application of particularly hydrophilic drugs such as β-lactam antibiotics. Methods: Implementation strategy, potential benefit, and practicability of the developed standard operating procedures were retrospectively analyzed from January to December 2020. Furthermore, the efficacy of the proposed dosing target of piperacillin in critically ill patients was evaluated. Results: In total, 160 patients received piperacillin/tazobactam therapy and were subsequently included in the study. Of them, 114 patients received piperacillin/tazobactam by continuous infusion and had at least one measurement of piperacillin serum level according to the standard operating procedure. In total, 271 measurements were performed with an average level of 79.0 ± 46.0 mg/L. Seventy-one piperacillin levels exceeded 100 mg/L and six levels were lower than 22.5 mg/L. The high-level and the low-level group differed significantly in infection laboratory parameters (CRP (mg/dL) 20.18 ± 11.71 vs. 5.75 ± 5.33) and renal function [glomerular filtration rate (mL/min/1.75 m2) 40.85 ± 26.74 vs. 120.50 ± 70.48]. Conclusions: Piperacillin levels are unpredictable in critically ill patients. TDM during piperacillin/tazobactam therapy is highly recommended for all patients. Although our implementation strategy was effective, further strategies implemented into the daily clinical workflow might support the health care staff and increase the clinicians' alertness.
Collapse
|
13
|
Winiszewski H, Despres C, Puyraveau M, Lagoutte-Renosi J, Montange D, Besch G, Floury SP, Chaignat C, Labro G, Vettoretti L, Clairet AL, Capellier G, Vivet B, Piton G. β-lactam dosing at the early phase of sepsis: Performance of a pragmatic protocol for target concentration achievement in a prospective cohort study. J Crit Care 2021; 67:141-146. [PMID: 34768176 DOI: 10.1016/j.jcrc.2021.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE We hypothesized that a protocol of standardized fixed dose using prolonged infusion during the early phase of sepsis may avoid insufficient β-lactam concentrations. METHODS In this single center prospective study, patients with sepsis and vasopressors were enrolled if they were treated by either piperacillin-tazobactam, meropenem or cefepime. Βeta-lactams were administered at fixed dose by prolonged infusion. Targeted plasma concentrations for piperacillin, meropenem and cefepime were above 80 mg/L, 8 mg/L and 38 mg/L respectively. Three blood samples were collected per patient over the first 48 h of treatment. Primary endpoint was target concentration achievement during the 48 first hours, defined as all plasma concentrations above the targeted threshold. RESULTS Among the 89 patients completing the three samples, target concentrations were achieved for 61 (69%). Target concentrations were achieved in 20 (53%), 32 (89%), and 9 (60%) of the patients treated with piperacillin, meropenem and cefepime, respectively. By multivariate analysis, lower APACHE 2 score, higher baseline MDRD creatinine clearance, and piperacillin use were independently associated with insufficient β-lactam concentrations. CONCLUSION Despite a fixed dose antibiotic administration protocol with prolonged infusion insufficient β-lactam concentration was frequent at the early phase of sepsis, especially in less severe patients, without renal failure, and treated with piperacillin. In septic patients with vasopressors, piperacillin dosing higher than 16 g may be needed to achieve the recommended target concentration. TRIAL REGISTRATION NCT02820987.
Collapse
Affiliation(s)
- Hadrien Winiszewski
- Medical Intensive Care Unit, Besançon University Hospital, Besançon, France.
| | - Cyrielle Despres
- Surgical Intensive Care Unit, Besançon University Hospital, Besançon, France
| | - Marc Puyraveau
- Methodology Unit, Clinical Investigation Center INSERM 1431, Besançon University Hospital, Besançon, France
| | | | - Damien Montange
- Pharmacology Unit, Besançon University Hospital, Besançon, France
| | - Guillaume Besch
- Surgical Intensive Care Unit, Besançon University Hospital, Besançon, France
| | | | | | - Guylaine Labro
- Medical Intensive Care Unit, Besançon University Hospital, Besançon, France
| | - Lucie Vettoretti
- Medical Intensive Care Unit, Besançon University Hospital, Besançon, France
| | | | - Gilles Capellier
- Medical Intensive Care Unit, Besançon University Hospital, Besançon, France; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Clayton, Australia
| | | | - Gael Piton
- Medical Intensive Care Unit, Besançon University Hospital, Besançon, France
| |
Collapse
|
14
|
Moser S, Rehm S, Guertler N, Hinic V, Dräger S, Bassetti S, Rentsch KM, Sendi P, Osthoff M. Probability of pharmacological target attainment with flucloxacillin in Staphylococcus aureus bloodstream infection: a prospective cohort study of unbound plasma and individual MICs. J Antimicrob Chemother 2021; 76:1845-1854. [PMID: 33860325 PMCID: PMC8212765 DOI: 10.1093/jac/dkab089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Objectives MSSA bloodstream infections (BSIs) are associated with considerable mortality. Data regarding therapeutic drug monitoring (TDM) and pharmacological target attainment of the β-lactam flucloxacillin are scarce. Patients and methods We determined the achievement of pharmacokinetic/pharmacodynamic targets and its association with clinical outcome and potential toxicity in a prospective cohort of 50 patients with MSSA-BSI. Strain-specific MICs and unbound plasma flucloxacillin concentrations (at five different timepoints) were determined by broth microdilution and HPLC–MS, respectively. Results In our study population, 48% were critically ill and the 30 day mortality rate was 16%. The median flucloxacillin MIC was 0.125 mg/L. The median unbound trough concentration was 1.7 (IQR 0.4–9.3), 1.9 (IQR 0.4–6.2) and 1.0 (IQR 0.6–3.4) mg/L on study day 1, 3 and 7, respectively. Optimal (100% fT>MIC) and maximum (100% fT>4×MIC) target attainment was achieved in 45 (90%) and 34 (68%) patients, respectively, throughout the study period. Conversely, when using the EUCAST epidemiological cut-off value instead of strain-specific MICs, target attainment was achieved in only 13 (26%) patients. The mean unbound flucloxacillin trough concentration per patient was associated with neurotoxicity (OR 1.12 per 1 mg/L increase, P = 0.02) and significantly higher in deceased patients (median 14.8 versus 1.7 mg/L, P = 0.01). Conclusions Flucloxacillin pharmacological target attainment in MSSA-BSI patients is frequently achieved when unbound flucloxacillin concentrations and strain-specific MICs are considered. However, currently recommended dosing regimens may expose patients to excessive flucloxacillin concentrations, potentially resulting in drug-related organ damage.
Collapse
Affiliation(s)
- Stephan Moser
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Sophia Rehm
- Department of Laboratory Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Nicolas Guertler
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Vladimira Hinic
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Sarah Dräger
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Katharina M Rentsch
- Department of Laboratory Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Parham Sendi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.,Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| |
Collapse
|
15
|
Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021; 9:microorganisms9071401. [PMID: 34203510 PMCID: PMC8305961 DOI: 10.3390/microorganisms9071401] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
A fundamental step in the successful management of sepsis and septic shock is early empiric antimicrobial therapy. However, for this to be effective, several decisions must be addressed simultaneously: (1) antimicrobial choices should be adequate, covering the most probable pathogens; (2) they should be administered in the appropriate dose, (3) by the correct route, and (4) using the correct mode of administration to achieve successful concentration at the infection site. In critically ill patients, antimicrobial dosing is a common challenge and a frequent source of errors, since these patients present deranged pharmacokinetics, namely increased volume of distribution and altered drug clearance, which either increased or decreased. Moreover, the clinical condition of these patients changes markedly over time, either improving or deteriorating. The consequent impact on drug pharmacokinetics further complicates the selection of correct drug schedules and dosing during the course of therapy. In recent years, the knowledge of pharmacokinetics and pharmacodynamics, drug dosing, therapeutic drug monitoring, and antimicrobial resistance in the critically ill patients has greatly improved, fostering strategies to optimize therapeutic efficacy and to reduce toxicity and adverse events. Nonetheless, delivering adequate and appropriate antimicrobial therapy is still a challenge, since pathogen resistance continues to rise, and new therapeutic agents remain scarce. We aim to review the available literature to assess the challenges, impact, and tools to optimize individualization of antimicrobial dosing to maximize exposure and effectiveness in critically ill patients.
Collapse
|
16
|
Esteve-Pitarch E, Gumucio-Sanguino VD, Cobo-Sacristán S, Shaw E, Maisterra-Santos K, Sabater-Riera J, Pérez-Fernandez XL, Rigo-Bonnin R, Tubau-Quintano F, Carratalà J, Colom-Codina H, Padullés-Zamora A. Continuous Infusion of Piperacillin/Tazobactam and Meropenem in ICU Patients Without Renal Dysfunction: Are Patients at Risk of Underexposure? Eur J Drug Metab Pharmacokinet 2021; 46:527-538. [PMID: 34131869 DOI: 10.1007/s13318-021-00694-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Morbidity and mortality from serious infections are common in intensive care units (ICUs). The appropriateness of the antibiotic treatment is essential to combat sepsis. We aimed to evaluate pharmacokinetic/pharmacodynamic target attainment of meropenem and piperacillin/tazobactam administered at standard total daily dose as continuous infusion in critically ill patients without renal dysfunction and to identify risk factors of non-pharmacokinetic/pharmacodynamic target attainment. RESULTS We included 118 patients (149 concentrations), 47% had microorganism isolation. Minimum inhibitory concentration (MIC) [median (interquartile range, IQR) values in isolated pathogens were: meropenem: 0.05 (0.02-0.12) mg/l; piperacillin: 3 (1-4) mg/l]. Pharmacokinetic/pharmacodynamic target attainments (100%fCss≥1xMIC, 100%fCss≥4xMIC and 100%fCss ≥ 8xMIC, respectively) were: 100%, 96.15%, 96.15% (meropenem) and 95.56%, 91.11%, 62.22% (piperacillin) for actual MIC; 98.11%, 71.70%, 47.17% (meropenem, MIC 2 mg/l), 95.83%, 44.79%, 6.25% (piperacillin, MIC 8 mg/l), 83.33%, 6.25%, 1.04% (piperacillin, MIC 16 mg/l) for EUCAST breakpoint of Enterobacteriaceae spp. and Pseudomonas spp. Multivariable linear analysis identified creatinine clearance (CrCL) as a predictive factor of free antibiotic concentrations (fCss) of both therapies (meropenem [β = - 0.01 (95% CI - 0.02 to - 0.0; p = 0.043)] and piperacillin [β = - 0.01 (95% CI - 0.02 to 0.01, p < 0.001)]). Neurocritical status was associated with lower piperacillin fCss [β = - 0.36 (95% CI - 0.61 to - 0.11; p = 0.005)]. CONCLUSION Standard total daily dose of meropenem allowed achieving pharmacokinetic/pharmacodynamic target attainments in ICU patients without renal dysfunction. Higher doses of piperacillin/tazobactam would be needed to cover microorganisms with MIC > 8 mg/l. CrCL was the most powerful factor predictive of fCss in both therapies.
Collapse
Affiliation(s)
- Erika Esteve-Pitarch
- Department of Pharmacy, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Víctor Daniel Gumucio-Sanguino
- Department of Intensive Care Medicine, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Cobo-Sacristán
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Department of Pharmacy, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, C/Feixa Llarga s/n., 08907, Barcelona, Spain
| | - Evelyn Shaw
- Department of Infectious Diseases, Hospital Universitari de Bellvitge. Hospitalet de Llobregat, Barcelona, Spain.,Epidemiologia de les infeccions bacterianes, Patologia Infecciosa i Transplantament, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Kristel Maisterra-Santos
- Department of Intensive Care Medicine, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Sabater-Riera
- Department of Intensive Care Medicine, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Xosé L Pérez-Fernandez
- Department of Intensive Care Medicine, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Raül Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| | - Fe Tubau-Quintano
- Department of Microbiology, Hospital Universitari de Bellvitge-IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Microbiology, CIBERES-Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge. Hospitalet de Llobregat, Barcelona, Spain.,Infeccions respiratòries i en l'hoste immunocompromès, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Helena Colom-Codina
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Barcelona, University of Barcelona, Barcelona, Spain
| | - Ariadna Padullés-Zamora
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain. .,Department of Pharmacy, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, C/Feixa Llarga s/n., 08907, Barcelona, Spain.
| |
Collapse
|
17
|
Chiriac U, Frey OR, Roehr AC, Koeberer A, Gronau P, Fuchs T, Roberts JA, Brinkmann A. Personalized ß-lactam dosing in patients with coronavirus disease 2019 (COVID-19) and pneumonia: A retrospective analysis on pharmacokinetics and pharmacokinetic target attainment. Medicine (Baltimore) 2021; 100:e26253. [PMID: 34087915 PMCID: PMC8183774 DOI: 10.1097/md.0000000000026253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Pathophysiological changes are important risk factors for critically ill patients with pneumonia manifesting sub-therapeutic antibiotic exposures during empirical treatment. The effect of coronavirus disease 2019 (COVID-19) on antibiotic dosing requirements is uncertain. We aimed to determine the effect of COVID-19 on ß-lactam pharmacokinetics (PK) and PK target attainment in critically ill patients with a personalized dosing strategy.Retrospective, single-center analysis of COVID-19 ± critically ill patients with pneumonia (community-acquired pneumonia or hospital-acquired pneumonia) who received continuous infusion of a ß-lactam antibiotic with dosing personalized through dosing software and therapeutic drug monitoring. A therapeutic exposure was defined as serum concentration between (css) 4 to 8 times the EUCAST non-species related breakpoint).Data from 58 patients with pneumonia was analyzed. Nineteen patients were tested COVID-19-positive before the start of the antibiotic therapy for community-acquired pneumonia or hospital-acquired pneumonia. Therapeutic exposure was achieved in 71% of COVID-19 patients (68% considering all patients). All patients demonstrated css above the non-species-related breakpoint. Twenty percent exceeded css above the target range (24% of all patients). The median ß-lactam clearance was 49% compared to ß-lactam clearance in a standard patient without a significant difference regarding antibiotic, time of sampling or present COVID-19 infection. Median daily doses were 50% lower compared to standard bolus dosing.COVID-19 did not significantly affect ß-lactam pharmacokinetics in critically ill patients. Personalized ß-lactam dosing strategies were safe in critically ill patients and lead to high PK target attainment with less resources.
Collapse
Affiliation(s)
- Ute Chiriac
- Department of Pharmacy, University Hospital of Heidelberg
| | - Otto R. Frey
- Department of Pharmacy, Heidenheim General Hospital
| | | | - Andreas Koeberer
- Department of Anesthesiology and Intensive Care Medicine, Heidenheim General Hospital
| | - Patrick Gronau
- Department of Anesthesiology and Intensive Care Medicine, Heidenheim General Hospital
| | - Thomas Fuchs
- Department of Anesthesiology and Intensive Care Medicine, Heidenheim General, Heidenheim, Germany
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Alexander Brinkmann
- Department of Anesthesiology and Intensive Care Medicine, Heidenheim General Hospital
| |
Collapse
|
18
|
Personalized Piperacillin Dosing for the Critically Ill: A Retrospective Analysis of Clinical Experience with Dosing Software and Therapeutic Drug Monitoring to Optimize Antimicrobial Dosing. Antibiotics (Basel) 2021; 10:antibiotics10060667. [PMID: 34205135 PMCID: PMC8227218 DOI: 10.3390/antibiotics10060667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022] Open
Abstract
Optimization of antibiotic dosing is a treatment intervention that is likely to improve outcomes in severe infections. The aim of this retrospective study was to describe the therapeutic exposure of steady state piperacillin concentrations (cPIP) and clinical outcome in critically ill patients with sepsis or septic shock who received continuous infusion of piperacillin with dosing personalized through software-guided empiric dosing and therapeutic drug monitoring (TDM). Therapeutic drug exposure was defined as cPIP of 32–64 mg/L (2–4× the ‘MIC breakpoint’ of Pseudomonas aeruginosa). Of the 1544 patients screened, we included 179 patients (335 serum concentrations), of whom 89% achieved the minimum therapeutic exposure of >32 mg/L and 12% achieved potentially harmful cPIP > 96 mg/L within the first 48 h. Therapeutic exposure was achieved in 40% of the patients. Subsequent TDM-guided dose adjustments significantly enhanced therapeutic exposure to 65%, and significantly reduced cPIP > 96 mg/L to 5%. Mortality in patients with cPIP > 96 mg/L (13/21; 62%) (OR 5.257, 95% CI 1.867–14.802, p = 0.001) or 64–96 mg/L (30/76; 45%) (OR 2.696, 95% CI 1.301–5.586, p = 0.007) was significantly higher compared to patients with therapeutic exposure (17/72; 24%). Given the observed variability in critically ill patients, combining the application of dosing software and consecutive TDM increases therapeutic drug exposure of piperacillin in patients with sepsis and septic shock.
Collapse
|
19
|
Leon L, Guerci P, Pape E, Thilly N, Luc A, Germain A, Butin-Druoton AL, Losser MR, Birckener J, Scala-Bertola J, Novy E. Serum and peritoneal exudate concentrations after high doses of β-lactams in critically ill patients with severe intra-abdominal infections: an observational prospective study. J Antimicrob Chemother 2021; 75:156-161. [PMID: 31599951 DOI: 10.1093/jac/dkz407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Critically ill patients with severe intra-abdominal infections (IAIs) requiring surgery may undergo several pharmacokinetic (PK) alterations that can lead to β-lactam underdosage. OBJECTIVES To measure serum and peritoneal exudate concentrations of β-lactams after high doses and optimal administration schemes. METHODS This observational prospective study included critically ill patients with suspicion of IAI who required surgery and a β-lactam antibiotic as empirical therapy. Serum and peritoneal exudate concentrations were measured during surgery and after a 24 h steady-state period. The PK/pharmacodynamic (PD) target was to obtain serum β-lactam concentrations of 100% fT>4×MIC based on a worst-case scenario (based on the EUCAST highest epidemiological cut-off values) before bacterial documentation (a priori) and redefined following determination of the MIC for the isolated bacteria (a posteriori). Registered with ClinicalTrials.gov (NCT03310606). RESULTS Forty-eight patients were included with a median (IQR) age of 64 (53-74) years and a SAPS II of 40 (32-65). The main diagnosis was secondary nosocomial peritonitis. Piperacillin/tazobactam was the most administered β-lactam antibiotic (75%). The serum/peritoneal piperacillin/tazobactam ratio was 0.88 (0.64-0.97) after a 24 h steady-state period. Prior to bacterial documentation, 16 patients (33.3%) achieved the a priori PK/PD target. The identification of microorganisms was available for 34 patients (71%). Based on the MIC for isolated bacteria, 78% of the patients achieved the serum PK/PD target. CONCLUSIONS In severe IAIs, high doses of β-lactams ensured 100% fT>4×MIC in the serum for 78% of critically ill patients with severe IAIs within the first 24 h. In order to define optimal β-lactam dosing, the PK/PD target should take into account the tissue penetration and local ecology.
Collapse
Affiliation(s)
- Lisa Leon
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France.,University of Lorraine, F-54000, Nancy, France
| | - Philippe Guerci
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France.,University of Lorraine, F-54000, Nancy, France
| | - Elise Pape
- University of Lorraine, F-54000, Nancy, France.,Department of Clinical Pharmacology and Toxicology, University Hospital of Nancy, Nancy, F-5400, France
| | - Nathalie Thilly
- University of Lorraine, F-54000, Nancy, France.,Plateforme d'aide à la recherche Clinique, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France
| | - Amandine Luc
- University of Lorraine, F-54000, Nancy, France.,Plateforme d'aide à la recherche Clinique, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France
| | - Adeline Germain
- University of Lorraine, F-54000, Nancy, France.,Department of Surgery, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France
| | - Anne-Lise Butin-Druoton
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France.,University of Lorraine, F-54000, Nancy, France
| | - Marie-Reine Losser
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France.,University of Lorraine, F-54000, Nancy, France
| | - Julien Birckener
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France.,University of Lorraine, F-54000, Nancy, France
| | - Julien Scala-Bertola
- University of Lorraine, F-54000, Nancy, France.,Department of Clinical Pharmacology and Toxicology, University Hospital of Nancy, Nancy, F-5400, France
| | - Emmanuel Novy
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Nancy, Vandœuvre-Lès-Nancy, F-54511, France.,University of Lorraine, F-54000, Nancy, France
| |
Collapse
|
20
|
Schießer S, Hitzenbichler F, Kees MG, Kratzer A, Lubnow M, Salzberger B, Kees F, Dorn C. Measurement of Free Plasma Concentrations of Beta-Lactam Antibiotics: An Applicability Study in Intensive Care Unit Patients. Ther Drug Monit 2021; 43:264-270. [PMID: 33086362 DOI: 10.1097/ftd.0000000000000827] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The antibacterial effect of antibiotics is linked to the free drug concentration. This study investigated the applicability of an ultrafiltration method to determine free plasma concentrations of beta-lactam antibiotics in ICU patients. METHODS Eligible patients included adult ICU patients treated with ceftazidime (CAZ), meropenem (MEM), piperacillin (PIP)/tazobactam (TAZ), or flucloxacillin (FXN) by continuous infusion. Up to 2 arterial blood samples were drawn at steady state. Patients could be included more than once if they received another antibiotic. Free drug concentrations were determined by high-performance liquid chromatography with ultraviolet detection after ultrafiltration, using a method that maintained physiological conditions (pH 7.4/37°C). Total drug concentrations were determined to calculate the unbound fraction. In a post-hoc analysis, free concentrations were compared with the target value of 4× the epidemiological cut-off value (ECOFF) for Pseudomonas aeruginosa as a worst-case scenario for empirical therapy with CAZ, MEM or PIP/tazobactam and against methicillin-sensitive Staphylococcus aureus for targeted therapy with FXN. RESULTS Fifty different antibiotic treatment periods in 38 patients were evaluated. The concentrations of the antibiotics showed a wide range because of the fixed dosing regimen in a mixed population with variable kidney function. The mean unbound fractions (fu) of CAZ, MEM, and PIP were 102.5%, 98.4%, and 95.7%, with interpatient variability of <6%. The mean fu of FXN was 11.6%, with interpatient variability of 39%. It was observed that 2 of 12 free concentrations of CAZ, 1 of 40 concentrations of MEM, and 11 of 23 concentrations of PIP were below the applied target concentration of 4 × ECOFF for P. aeruginosa. All concentrations of FXN (9 samples from 6 patients) were >8 × ECOFF for methicillin-sensitive Staphylococcus aureus. CONCLUSIONS For therapeutic drug monitoring purposes, measuring total or free concentrations of CAZ, MEM, or PIP is seemingly adequate. For highly protein-bound beta-lactams such as FXN, free concentrations should be favored in ICU patients with prevalent hypoalbuminemia.
Collapse
Affiliation(s)
- Selina Schießer
- Departments of Infection Prevention and Infectious Diseases and
| | | | | | | | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg
| | | | - Frieder Kees
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Abdulla A, Ewoldt TMJ, Purmer IM, Muller AE, Gommers D, Endeman H, Koch BCP. A narrative review of predictors for β-lactam antibiotic exposure during empirical treatment in critically ill patients. Expert Opin Drug Metab Toxicol 2021; 17:359-368. [PMID: 33463382 DOI: 10.1080/17425255.2021.1879049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION : Emerging studies suggest that antibiotic pharmacokinetics (PK) are difficult to predict in critically ill patients. The high intra- and inter-patient PK variability makes it challenging to accurately predict the appropriate dosage required for a given patient. Identifying patients at risk could help clinicians to consider more individualized dosing regimens and perform therapeutic drug monitoring. We provide an overview of relevant predictors associated with target (non-)attainment of β-lactam antibiotics in critically ill patients. AREAS COVERED : This narrative review summarizes patient and clinical characteristics that can help to predict the attainment of target serum concentrations and to provide guidance on antimicrobial dose optimization. Literature was searched using Embase and Medline database, focusing on β-lactam antibiotics in critically ill patients. EXPERT OPINION : Adequate concentration attainment can be anticipated in critically ill patients prior to initiating empiric β-lactam antibiotic therapy based on readily available demographic and clinical factors. Male gender, younger age, and augmented renal clearance were the most significant predictors for target non-attainment and should be considered in further investigations to develop dosing algorithms for optimal β-lactam therapy.
Collapse
Affiliation(s)
- Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tim M J Ewoldt
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ilse M Purmer
- Department of Intensive Care, Haga Hospital, The Hague, The Netherlands
| | - Anouk E Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Microbiology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Diederik Gommers
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Eisert A, Lanckohr C, Frey J, Frey O, Wicha SG, Horn D, Ellger B, Schuerholz T, Marx G, Simon TP. Comparison of two empirical prolonged infusion dosing regimens for meropenem in patients with septic shock: A two-center pilot study. Int J Antimicrob Agents 2021; 57:106289. [PMID: 33515688 DOI: 10.1016/j.ijantimicag.2021.106289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Due to high pharmacokinetic variability, standard doses of meropenem are frequently inadequate in septic patients. Therapeutic drug monitoring of meropenem is not widely available; therefore, improved empiric dosing recommendations are needed. OBJECTIVES This study aimed to compare the attainment of pharmacologic targets for two common empirical dosing regimens for meropenem in patients with septic shock. METHODS Two empiric dosing schemes for meropenem were compared using extended infusions (120 minutes) in 32 patients with septic shock in the intensive care units at two different hospitals. One regimen was 3 × 2 g meropenem/24 h for two days, followed by 3 × 1 g meropenem/24 h; the other regimen was 4 × 1 g meropenem/24 h. Serum meropenem concentrations were measured for the first 72 h of therapy, and pharmacokinetic modelling was performed to define the percentage of time the free drug concentration was above various target MICs for each regimen (%fT>MIC). RESULTS Both regimens led to a sufficiently high %fT>MIC for pathogens with target MICs < 4 mg/L. When higher MICs were targeted, the %fT>MIC of 4 × 1 g meropenem decreased faster than that of 3 × 2 g meropenem. At high MICs of 32 mg/L, both dosing regimens failed to provide appropriate drug concentrations. Renal function was a significant covariate of target attainment. CONCLUSIONS The results of this study can guide clinicians in their choice of an empirical dosing regimen for meropenem. If pathogens with low MICs (< 4 mg/L) are targeted, both dosing regimens are adequate, whereas more resistant strains require higher doses.
Collapse
Affiliation(s)
- Albrecht Eisert
- Department of Pharmacy, University Hospital Aachen RWTH Aachen, Aachen, Germany; Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Lanckohr
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Münster, Münster, Germany
| | - Janina Frey
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Otto Frey
- Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Dagmar Horn
- Department of Pharmacy, University Hospital Muenster, Muenster, Germany
| | - Bjoern Ellger
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Klinikum Westfalen, Dortmund, Germany
| | - Tobias Schuerholz
- Department of Anaesthesia and Intensive Care, University of Rostock, Rostock, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
23
|
Scharf C, Liebchen U, Paal M, Taubert M, Vogeser M, Irlbeck M, Zoller M, Schroeder I. The higher the better? Defining the optimal beta-lactam target for critically ill patients to reach infection resolution and improve outcome. J Intensive Care 2020; 8:86. [PMID: 33292582 PMCID: PMC7686672 DOI: 10.1186/s40560-020-00504-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Beta-lactam antibiotics are often subject to therapeutic drug monitoring, but breakpoints of target attainment are mostly based on expert opinions. Studies that show a correlation between target attainment and infection resolution are missing. This analysis investigated whether there is a difference in infection resolution based on two breakpoints of target attainment. METHODS An outcome group out of 1392 critically ill patients treated with meropenem or piperacillin-tazobactam was formed due to different selection criteria. Afterwards, three groups were created: group 1=free drug concentration (f) was < 100% of the time (T) above the minimal inhibitory concentration (MIC) (< 100% fT > MIC), group 2=100% fT > MIC < 4xMIC, and group 3=100% fT > 4xMIC. Parameters for infection control, renal and liver function, and estimated and observed in-hospital mortality were compared between those groups. Statistical analysis was performed with one-way analysis of variance, Tukey post hoc test, U test, and bivariate logistic regression. RESULTS The outcome group consisted of 55 patients (groups 1-3, 17, 24, and 14 patients, respectively). Patients allocated to group 2 or 3 had a significantly faster reduction of the C-reactive protein in contrast to patients allocated to group 1 (p = 0.033 and p = 0.026). Patients allocated to group 3 had a worse renal function, a higher Acute Physiology and Chronic Health Evaluation (APACHE II) score, were older, and had a significantly higher in-hospital mortality compared to group 1 (p = 0.017) and group 2 (p = 0.001). The higher mortality was significantly influenced by worse liver function, higher APACHE II, and higher Sequential Organ Failure Assessment (SOFA) score and norepinephrine therapy. CONCLUSION Achieving the target 100% fT > MIC leads to faster infection resolution in the critically ill. However, there was no benefit for patients who reached the highest target of 100% fT > 4xMIC, although the mortality rate was higher possibly due to confounding effects. In conclusion, we recommend the target 100% fT > MIC < 4xMIC for critically ill patients. TRIAL REGISTRATION NCT03985605.
Collapse
Affiliation(s)
- Christina Scharf
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Uwe Liebchen
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Max Taubert
- Department I of Pharmacology, Centre for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Irlbeck
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Zoller
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Ines Schroeder
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
24
|
Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: a retrospective analysis of four years of clinical experience. Infection 2019; 47:1001-1011. [PMID: 31473974 DOI: 10.1007/s15010-019-01352-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Standard dosing and intermittent bolus application (IB) are important risk factors for pharmacokinetic (PK) target non-attainment during empirical treatment with β-lactams in critically ill patients, particularly in those with sepsis and septic shock. We assessed the effect of therapeutic drug monitoring-guided (TDM), continuous infusion (CI) and individual dosing of piperacillin/tazobactam (PIP) on PK-target attainment in critically ill patients. METHODS This is a retrospective, single-center analysis of a database including 484 patients [933 serum concentrations (SC)] with severe infections, sepsis and septic shock who received TDM-guided CI of PIP in the intensive care unit (ICU) of an academic teaching hospital. The PK-target was defined as a PIP SC between 33 and 64 mg/L [fT > 2-4 times the epidemiological cutoff value (ECOFF) of Pseudomonas aeruginosa (PSA)]. RESULTS PK-target attainment with standard dosing (initial dose) was observed in 166 patients (34.3%), whereas only 49 patients (10.1%) demonstrated target non-attainment. The minimum PK-target of ≥ 33 mg/L was overall realized in 89.9% (n = 435/484) of patients after the first PIP dose including 146 patients (30.2%) with potentially harmful SCs ≥ 100 mg/L. Subsequent TDM-guided dose adjustments significantly enhanced PK-target attainment to 280 patients (62.4%) and significantly reduced the fraction of potentially overdosed (≥ 100 mg/L) patients to 4.5% (n = 20/449). Renal replacement therapy (RRT) resulted in a relevant reduction of PIP clearance (CLPIP): no RRT CLPIP 6.8/6.3 L/h (median/IQR) [SCs n = 752, patients n = 405], continuous veno-venous hemodialysis (CVVHD) CLPIP 4.3/2.6 L/h [SCs n = 160, n = 71 patients], intermittent hemodialysis (iHD) CLPIP 2.6/2.3 L/h [SCs n = 21, n = 8 patients]). A body mass index (BMI) of > 40 kg/m2 significantly increased CLPIP 9.6/7.7 L/h [SC n = 43, n = 18 patients] in these patients. Age was significantly associated with supratherapeutic PIP concentrations (p < 0.0005), whereas high CrCL led to non-target attainment (p < 0.0005). Patients with target attainment (33-64 mg/L) within the first 24 h exhibited the lowest hospital mortality rates (13.9% [n = 23/166], p < 0.005). Those with target non-attainment demonstrated higher mortality rates (≤ 32 mg/L; 20.8% [n = 10/49] ≥ 64 mg/L; 29.4% [n = 79/269]). CONCLUSION TDM-guided CI of PIP is safe in critically ill patients and improves PK-target attainment. Exposure to defined PK-targets impacts patient mortality while lower and higher than intended SCs may influence the outcome of critically ill patients. Renal function and renal replacement therapy are main determinants of PK-target attainment. These results are only valid for CI of PIP and not for prolonged or intermittent bolus administration of PIP.
Collapse
|