1
|
Salem HHA, Mohammed SH, Eltaly RI, Elqady EM, El-Said E, Metwaly KH. Effectiveness and biochemical impact of ozone gas and silica nanoparticles on Culex pipiens (Diptera: Culicidae). Sci Rep 2024; 14:19182. [PMID: 39160160 PMCID: PMC11333762 DOI: 10.1038/s41598-024-67068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Culex pipiens (Diptera: Culicidae) is a vector of many serious human diseases, and its control by the heavy use of chemical insecticides has led to the evolution of insecticide resistance and high environmental risks. Many safe alternatives, such as ozone gas (O3) and silica nanoparticles (silica NPs) can reduce these risks. Therefore, O3 and silica NPs were applied to 3rd larval instars of Cx. pipiens at different concentrations (100, 200, and 400 ppm) for different exposure times (1, 2, 3, and 5 min for O3 and 24, 48, and 72 h for silica NPs). The activity of some vital antioxidant enzymes as well as scanning electron microscopy of the body surface were also investigated. A positive correlation was observed between larval mortality % and the tested concentrations of O3 and silica NPs. O3 was more effective than silica NPs, it resulted in 92% mortality at 400 ppm for a short exposure time (5 min). O3-exposed larvae exhibited a significant increase in glutathione peroxidase, glutathione S-transferase, and catalase activities as well as the total antioxidant capacity. Scanning electron microscopy showing disruptive effects on the body surface morphology of ozone and silica NPs treated larvae. These results provide evidence that O3 and silica NPs have the potential for use as alternative vector control tools against Cx. pipiens.
Collapse
Affiliation(s)
- Hend H A Salem
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| | - Shaimaa H Mohammed
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Randa I Eltaly
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Enayat M Elqady
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Eman El-Said
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Khaled H Metwaly
- Center of Plasma Technology, Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Abdi R, Cao W, Zogheib A, Pukazhendhi KMK, Espinal-Ruiz M, Gammage S, Warriner K, Joye IJ. Surface disinfection of wheat kernels using gas phase hydroxyl-radical processes: Effect on germination characteristics, microbial load, and functional properties. J Food Sci 2024; 89:1154-1166. [PMID: 38161277 DOI: 10.1111/1750-3841.16883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Wheat kernels harbor a diverse microflora that can negatively affect the suitability of the grains for further processing. To reduce surface microflora, a kernel disinfection method is required that does not affect grain functionality. Three different versions of gas phase hydroxyl-radical processes were compared with the common method for grain disinfection, that is, a bleach treatment. The gas phase hydroxyl-radicals are generated by the UV-C mediated degradation of hydrogen peroxide and/or ozone in a near water-free process. It was found that treating kernels with a bleach solution could reduce total aerobic count (TAC) and fungal count to below the level of enumeration. In comparison, the gas phase hydroxyl-radical treatment, that is, H2 O2 -UV-ozone treatment, could support a 1.3 log count reduction (LCR) in TAC and a 1.1 LCR in fungal count. The microbial load reduction for the wholemeal samples was less pronounced as endophytic microorganisms were less affected by all treatments, hinting at a limited penetration depth of the treatments. Despite reducing the microbial load on the kernel surface through the bleach and H2 O2 -UV-ozone treatments, none of these treatments resulted in a reduced microbial count on grains that underwent sprouting after the treatments. No negative effect on germination power or development of the seedling was observed for any of the treatments. The gluten aggregation behavior and xylanase activity of the wholemeal also remained unchanged after the gas phase hydroxyl-radical treatments. Our findings suggest that UV-H2 O2 -ozone treatment shows promise for dry-kernel disinfection, but further optimization of the processing parameters is required.
Collapse
Affiliation(s)
- Reihaneh Abdi
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Wei Cao
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | - Ali Zogheib
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | | | - Mauricio Espinal-Ruiz
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Sarah Gammage
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Iris J Joye
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Paulikienė S, Žvirdauskienė R. Evaluation of Hydrothermal Treatment of Winter Wheat Grain with Ozonated Water. PLANTS (BASEL, SWITZERLAND) 2023; 12:3267. [PMID: 37765431 PMCID: PMC10534647 DOI: 10.3390/plants12183267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Products must be cleaned or otherwise treated to keep them clean when they are prepared for further production or when they are supplied fresh to the consumer. Cereals have significantly lower settling losses than succulent agricultural products, but the risks that can arise from their hydrothermal treatment before milling-where the cereals are moistened and left to rest for 14 h (temperature 30 °C)-are often underestimated. This operation creates a favourable environment for the development of micro-organisms, which, if not destroyed, can continue throughout the processing stages and be passed on to the consumer. This study investigated the qualitative characteristics of winter wheat hydrothermally treated with ozonated water at a concentration of 1.51 ± 0.1 mg L-1, such as the amount of mould in the grains and flour, as well as the grain protein, moisture, gluten, sedimentation, starch and weight per hectolitre. For the assessment of these parameters, the account was taken of the State standard, which provides the grain class and the type of grain. The reduction in mould fungi after the treatment of the winter wheat grain with ozonated water ranged between 440 and 950 CFU g-1. The results of the microbiological analysis showed that the ozone treatment improved the mycological safety of the flour samples made from the grain from an average of 390 ± 110 CFU g-1 to 29 ± 12 CFU g-1. On the other hand, the treatment of kernels with ozonated water did not significantly affect the basic composition of the winter wheat grains.
Collapse
Affiliation(s)
- Simona Paulikienė
- Faculty of Engineering, Agriculture Academy, Vytautas Magnus University, Studentų Str. 15, 53362 Akademija, Lithuania
| | - Renata Žvirdauskienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų Str. 19, 50254 Kaunas, Lithuania
- Microbiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, 58344 Akademija, Lithuania
| |
Collapse
|
4
|
Rathnakumar K, Balakrishnan G, Ramesh B, Sujayasree OJ, Pasupuleti SK, Pandiselvam R. Impact of emerging food processing technologies on structural and functional modification of proteins in plant-based meat alternatives: An updated review. J Texture Stud 2023; 54:599-612. [PMID: 36849713 DOI: 10.1111/jtxs.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
In the past decade, the plant-based meat alternative industry has grown rapidly due to consumers' demand for environmental-friendly, nutritious, sustainable and humane choices. Consumers are not only concerned about the positive relationship between food consumption and health, they are also keen on the environmental sustainability. With such increased consumers' demand for meat alternatives, there is an urgent need for identification and modification of protein sources to imitate the functionality, textural, organoleptic and nutritional characteristics of traditional meat products. However, the plant proteins are not readily digestible and require more functionalization and modification are required. Proteins has to be modified to achieve high quality attributes such as solubility, gelling, emulsifying and foaming properties to make them more palatable and digestible. The protein source from the plant source in order to achieve the claims which needs more high protein digestibility and amino acid bioavailability. In order to achieve these newer emerging non-thermal technologies which can operate under mild temperature conditions can reach a balance between feasibility and reduced environmental impact maintaining the nutritional attributes and functional attributes of the proteins. This review article has discussed the mechanism of protein modification and advancements in the application of non-thermal technologies such as high pressure processing and pulsed electric field and emerging oxidation technologies (ultrasound, cold plasma, and ozone) on the structural modification of plant-based meat alternatives to improve, the techno-functional properties and palatability for successful food product development applications.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
5
|
Detoxification of unshelled hazelnut artificially contaminated with aflatoxins by gaseous ozone. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Li Y, Gao H, Wang R, Xu Q. Deoxynivalenol in food and feed: Recent advances in decontamination strategies. Front Microbiol 2023; 14:1141378. [PMID: 36998392 PMCID: PMC10043330 DOI: 10.3389/fmicb.2023.1141378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin that contaminates animal feed and crops around the world. DON not only causes significant economic losses, but can also lead diarrhea, vomiting, and gastroenteritis in humans and farm animals. Thus, there is an urgent need to find efficient approaches for DON decontamination in feed and food. However, physical and chemical treatment of DON may affect the nutrients, safety, and palatability of food. By contrast, biological detoxification methods based on microbial strains or enzymes have the advantages of high specificity, efficiency, and no secondary pollution. In this review, we comprehensively summarize the recently developed strategies for DON detoxification and classify their mechanisms. In addition, we identify remaining challenges in DON biodegradation and suggest research directions to address them. In the future, an in-depth understanding of the specific mechanisms through which DON is detoxified will provide an efficient, safe, and economical means for the removal of toxins from food and feed.
Collapse
|
7
|
Novel thermal and non-thermal millet processing technologies: advances and research trends. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Xue W, Macleod J, Blaxland J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023; 12:foods12040814. [PMID: 36832889 PMCID: PMC9957223 DOI: 10.3390/foods12040814] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The need for microorganism control in the food industry has promoted research in food processing technologies. Ozone is considered to be a promising food preserving technique and has gained great interest due to its strong oxidative properties and significant antimicrobial efficiency, and because its decomposition leaves no residues in foods. In this ozone technology review, the properties and the oxidation potential of ozone, and the intrinsic and extrinsic factors that affect the microorganism inactivation efficiency of both gaseous and aqueous ozone, are explained, as well as the mechanisms of ozone inactivation of foodborne pathogenic bacteria, fungi, mould, and biofilms. This review focuses on the latest scientific studies on the effects of ozone in controlling microorganism growth, maintaining food appearance and sensorial organoleptic qualities, assuring nutrient contents, enhancing the quality of food, and extending food shelf life, e.g., vegetables, fruits, meat, and grain products. The multifunctionality effects of ozone in food processing, in both gaseous and aqueous form, have promoted its use in the food industries to meet the increased consumer preference for a healthy diet and ready-to-eat products, although ozone may present undesirable effects on physicochemical characteristics on certain food products at high concentrations. The combined uses of ozone and other techniques (hurdle technology) have shown a promotive future in food processing. It can be concluded from this review that the application of ozone technology upon food requires increased research; specifically, the use of treatment conditions such as concentration and humidity for food and surface decontamination.
Collapse
Affiliation(s)
- Wenya Xue
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Joshua Macleod
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - James Blaxland
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Correspondence:
| |
Collapse
|
9
|
Evaluation of cold plasma for decontamination of molds and mycotoxins in rice grain. Food Chem 2023; 402:134159. [DOI: 10.1016/j.foodchem.2022.134159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
|
10
|
Zingale S, Spina A, Ingrao C, Fallico B, Timpanaro G, Anastasi U, Guarnaccia P. Factors Affecting the Nutritional, Health, and Technological Quality of Durum Wheat for Pasta-Making: A Systematic Literature Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:530. [PMID: 36771615 PMCID: PMC9920027 DOI: 10.3390/plants12030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is one of the most important food sources in the world, playing a key role in human nutrition, as well as in the economy of the different countries in which its production areas are concentrated. Its grain also represents a staple and highly versatile ingredient in the development of health foods. Nonetheless, the aspects determining durum wheat's health quality and their interactions are many, complex, and not entirely known. Therefore, the present systematic literature review aims at advancing the understanding of the relationships among nutritional, health, and technological properties of durum wheat grain, semolina, and pasta, by evaluating the factors that, either positively or negatively, can affect the quality of the products. Scopus, Science Direct, and Web of Science databases were systematically searched utilising sets of keywords following the PRISMA guidelines, and the relevant results of the definitive 154 eligible studies were presented and discussed. Thus, the review identified the most promising strategies to improve durum wheat quality and highlighted the importance of adopting multidisciplinary approaches for such purposes.
Collapse
Affiliation(s)
- Silvia Zingale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Alfio Spina
- Agricultural Research Council and Economics (CREA)—Research Centre for Cereal and Industrial Crops, Corso Savoia, 190, 95024 Acireale, Italy
| | - Carlo Ingrao
- Department of Economics, Management and Business Law, University of Bari Aldo Moro, Largo Abbazia Santa Scolastica, 53, 70124 Bari, Italy
| | - Biagio Fallico
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Giuseppe Timpanaro
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Umberto Anastasi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Paolo Guarnaccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| |
Collapse
|
11
|
Electrolyzed water and gaseous ozone application for the control of microbiological and insect contamination in dried lemon balm: Hygienic and quality aspects. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Nickhil C, Mohapatra D, Kar A, Giri SK, Verma US, Muchahary S. Gaseous ozone treatment of chickpea grains: Effect on functional groups, thermal behavior, pasting properties, morphological features, and phytochemicals. J Food Sci 2022; 87:5191-5207. [DOI: 10.1111/1750-3841.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chowdaiah Nickhil
- ICAR‐Central Institute of Agricultural Engineering Nabibagh Bhopal India
- Department of Food Engineering and Technology Tezpur University, Tezpur Assam India
| | | | - Abhijit Kar
- Division of Food Science and Post‐Harvest Technology Indian Agricultural Research Institute Pusa Campus New Delhi India
| | - Saroj Kumar Giri
- ICAR‐Central Institute of Agricultural Engineering Nabibagh Bhopal India
| | - Uttam Singh Verma
- Division of Food Science and Post‐Harvest Technology Indian Agricultural Research Institute Pusa Campus New Delhi India
| | - Sangita Muchahary
- Department of Food Engineering and Technology Tezpur University, Tezpur Assam India
| |
Collapse
|
13
|
Levinskaitė L, Vaičekauskytė V. Control of fungi isolated from cereals: variations in the susceptibility of fungal species to essential oils, ozone and
UV‐C. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Viktorija Vaičekauskytė
- Lithuanian University of Educational Sciences University Studentų St 39 Vilnius Lithuania
- Vytautas Magnus University Educational Academy T. Ševčenkos St 31 Vilnius Lithuania
| |
Collapse
|
14
|
Kaur K, Kaur P, Kumar S, Zalpouri R, Singh M. Ozonation as a Potential Approach for Pesticide and Microbial Detoxification of Food Grains with a Focus on Nutritional and Functional Quality. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Preetinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Satish Kumar
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Ruchika Zalpouri
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| | - Manpreet Singh
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
15
|
Liu CY, Tseng CH, Wang KF. The Assessment of Indoor Formaldehyde and Bioaerosol Removal by Using Negative Discharge Electrostatic Air Cleaners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127209. [PMID: 35742458 PMCID: PMC9223538 DOI: 10.3390/ijerph19127209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023]
Abstract
This study investigated the single-pass performance of a negative corona electrostatic precipitators (ESP) in removing suspended particulates (PM2.5 and PM10), formaldehyde (HCHO), and bioaerosols (bacteria and fungi) and measured the ozone (O3) concentration generated by ESP. The experimental results revealed that if the operational conditions for the ESP were set to high voltage (−10.5 kV) and low air flow rate (2.4 m3/min), ESP had optimal air pollutant removal efficiency. In the laboratory system, its PM2.5 and PM10 removal rates both reached 99% at optimal conditions, and its HCHO removal rate was 55%. In field tests, its PM2.5, PM10, HCHO, bacteria, and fungi removal rates reached 89%, 90%, 46%, 69%, and 85% respectively. The ESP in the laboratory system (−10.5 kV and 2.4 m3/min) generated 7.374 ppm of O3 under optimal conditions. Under the same operational conditions, O3 generated by ESP in the food waste storage room and the meeting room were 1.347 ppm and 1.749 ppm, respectively. The removal of HCHO and bioaerosols was primarily attributed to their destruction in the corona, as well as ozone oxidation, and collection on the dust collection plate.
Collapse
Affiliation(s)
- Chao-Yun Liu
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Chao-Heng Tseng
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei 106344, Taiwan;
- Correspondence: ; Tel.: +886-2-2771-2171 (ext. 4184)
| | - Kai-Feng Wang
- Union Professional Group of Architecture, Taipei 110057, Taiwan;
| |
Collapse
|
16
|
Drishya C, Yoha K, Perumal AB, Moses JA, Anandharamakrishnan C, Balasubramaniam VM. Impact of nonthermal food processing techniques on mycotoxins and their producing fungi. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Drishya
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - K.S. Yoha
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - Anand Babu Perumal
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - Jeyan A Moses
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management ‐ Thanjavur, Ministry of Food Processing Industries, Government of India Thanjavur 613005 India
| | - V. M. Balasubramaniam
- Department of Food Science and Technology & Department of Food Agricultural and Biological Engineering The Ohio State University Columbus Ohio USA
| |
Collapse
|
17
|
Ozone Efficiency on Two Coleopteran Insect Pests and Its Effect on Quality and Germination of Barley. INSECTS 2022; 13:insects13040318. [PMID: 35447760 PMCID: PMC9027898 DOI: 10.3390/insects13040318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Rhyzopertha dominica (Fabricius) and Tribolium castaneum (Herbst) are notorious global pests, destroying various stored grains, including barley, wheat, oats, maize, and rice. Ozone (O3) is a promising fumigant to control pests in stored grain since it can safely and rapidly auto-decompose without leaving residues, however, relatively few studies have focused on the toxicity of O3 on stored grain pests in stored barley. In this study we not only explored the susceptibility of all life stages of R. dominica and T. castaneum in barley seeds to different durations of gaseous O3, but also investigated the effect of O3 on germination ability, seedling growth, and quality of barley. O3 was effective against all life stages of two species in barley under sufficient exposure times without negative impacts affecting the commercial quality of barley. However, the germination ability and seedling growth were adversely impacted at longer O3 exposure times. Thus, it is imperative to select an optimal O3 exposure time to achieve the desired functional outcome, such as malting, animal feeding, and human consumption. Abstract Ozone (O3) is a potential fumigant to control pests in stored grain since it can safely and rapidly auto-decompose without leaving residues. In this study, the efficacy of O3 on all life stages of Rhyzopertha dominica (Fabricius) and Tribolium castaneum (Herbst) in barley and the physiological effects on barley and its quality were investigated. Complete control of all life stages of pests was obtained at 700 ppm for 1440 min of ozone exposure without negatively impacting the contents of soluble protein, moisture content, seed colour, hardness, and the weight of thousand barley seeds. The eggs and pupae of these two insects were the more tolerant stages than their larvae and adults. Prolonged exposure times (40 to 1440 min) and mortality assessment intervals (1, 2, and 7 days) increased O3 efficacy due to the reaction characteristics and delayed toxicity. Aging barley seeds appeared to be more sensitive to prolonged ozone duration than new seeds. A total of 20 and 40 min could promote germination rate, and longer O3 exposure (1440 min) was unfavourable for germination and seedling growth. Thus, it is imperative to select an optimal O3 exposure time to transfer ozone into quality contributors of final products and achieve the desired functional outcomes.
Collapse
|
18
|
da Luz SR, Almeida Villanova F, Tuchtenhagen Rockembach C, Dietrich Ferreira C, José Dallagnol L, Luis Fernandes Monks J, de Oliveira M. Reduced of mycotoxin levels in parboiled rice by using ozone and its effects on technological and chemical properties. Food Chem 2022; 372:131174. [PMID: 34624788 DOI: 10.1016/j.foodchem.2021.131174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Contamination of foods by mycotoxins is a reality. However, emerging technologies such as ozonization can be used to reduce the levels of these contaminants. Thus, the aim of this study was to evaluate the effects of using ozone at different period and application times during the soaking step of parboiling process. Samples were analyzed for qualitative and quantitative analysis of mycotoxins, swelling power and solubility, head rice yield, protein solubility, cooking time, texturometric profile, colorimetric profile and defective grains. The results showed tha parboiled rice grains treated with ozone present significant reduction of mycotoxins contamination, regardless of the time and period of application and the mycotoxin evaluated. Regardig to technological properties, the samples treated with ozone in the final 3 h and for 5 h of soaking presented higher head rice yield, luminosity and hardness, with decreases in cooking time, percentage of defective grains and soluble protein.
Collapse
Affiliation(s)
- Suzane Rickes da Luz
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96160-000 Capão do Leão, RS, Brazil
| | - Franciene Almeida Villanova
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96160-000 Capão do Leão, RS, Brazil; Clinical Nutrition Research Center, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research, Singapore 117599, Singapore
| | | | - Cristiano Dietrich Ferreira
- Technological Institute in Food for Health, University of Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
| | - Leandro José Dallagnol
- Department of Plant Protection, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, Brazil
| | | | - Maurício de Oliveira
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96160-000 Capão do Leão, RS, Brazil; Plant Science Department, Rothamsted Research, Harpenden, United Kingdom.
| |
Collapse
|
19
|
Rahmati E, Khoshtaghaza MH, Banakar A, Ebadi M. Decontamination technologies for medicinal and aromatic plants: A review. Food Sci Nutr 2022; 10:784-799. [PMID: 35311169 PMCID: PMC8907729 DOI: 10.1002/fsn3.2707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/29/2021] [Accepted: 11/21/2021] [Indexed: 11/08/2022] Open
Abstract
Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by-products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated.
Collapse
Affiliation(s)
- Edris Rahmati
- Department of Biosystems EngineeringTarbiat Modares UniversityTehranIran
| | | | - Ahmad Banakar
- Department of Biosystems EngineeringTarbiat Modares UniversityTehranIran
| | | |
Collapse
|
20
|
Diógenes FEP, Nascimento SRC, Alves Junior C, Paiva EP, Torres SB, Oliveira AK, Ambrósio MMQ. Inactivation of isolated fungi on Erythrina velutina Willd. seeds through atmospheric plasma. BRAZ J BIOL 2021; 84:e251367. [PMID: 34932630 DOI: 10.1590/1519-6984.251367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to evaluate the effect of atmospheric plasma application on the inactivation of fungi on the surface of Erythrina velutina seeds and on isolated fungal colonies. Two experiments were conducted using a completely randomized design. First, plasma was applied to the surface of the seeds using helium gas and atmospheric plasma for 3, 6, and 9 min in addition to the control (untreated seeds), constituting seven treatments with five repetitions each. In the second experiment, Petri dishes containing the inoculum of different fungi were treated with atmospheric air plasma for 3, 6, and 9 min (Air-3, Air-6, and Air-9) and were compared with untreated fungi in Petri dishes without treatment (control), totaling four treatments and five repetitions each. We found that the application of atmospheric air plasma to E. velutina seeds for 9 min had an antimicrobial effect on the fungi Aspergillus niger, Aspergillus flavus, Fusarium sp., Brachysporium sp., and Rhizopus sp. The formation of fungal colonies isolated from E. velutina seeds was also inhibited by 3 min of exposure to atmospheric air plasma, except for A. niger, whose inhibition occurred after 6 min of exposure to atmospheric plasma.
Collapse
Affiliation(s)
- F E P Diógenes
- Universidade Federal Rural do Semi-Árido - UFERSA, Centro de Ciências Agrárias, Mossoró, RN, Brasil
| | - S R C Nascimento
- Universidade Federal Rural do Semi-Árido - UFERSA, Centro de Ciências Agrárias, Mossoró, RN, Brasil
| | - C Alves Junior
- Universidade Federal Rural do Semi-Árido - UFERSA, Centro de Ciências Agrárias, Mossoró, RN, Brasil
| | - E P Paiva
- Universidade Federal Rural do Semi-Árido - UFERSA, Centro de Ciências Agrárias, Mossoró, RN, Brasil
| | - S B Torres
- Universidade Federal Rural do Semi-Árido - UFERSA, Centro de Ciências Agrárias, Mossoró, RN, Brasil
| | - A K Oliveira
- Universidade Federal Rural do Semi-Árido - UFERSA, Centro de Ciências Agrárias, Mossoró, RN, Brasil
| | - M M Q Ambrósio
- Universidade Federal Rural do Semi-Árido - UFERSA, Centro de Ciências Agrárias, Mossoró, RN, Brasil
| |
Collapse
|
21
|
Gómez-Salazar JA, Ruiz-Hernández K, Martínez-Miranda MM, Castro-Ríos K. Postharvest strategies for decontamination of aflatoxins in cereals. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | - Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - Katherin Castro-Ríos
- Grupo de Cromatografía Y Técnicas Afines, Universidad de Caldas, Manizales, Colombia
- Instituto de Investigación En Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| |
Collapse
|
22
|
Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108338] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
|
24
|
Barros JHT, de Carvalho Oliveira L, Cristianini M, Steel CJ. Non-thermal emerging technologies as alternatives to chemical additives to improve the quality of wheat flour for breadmaking: a review. Crit Rev Food Sci Nutr 2021; 63:1612-1628. [PMID: 34420435 DOI: 10.1080/10408398.2021.1966380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Wheat flour is the main ingredient used in the preparation of bread. Factors such as low gluten content and the addition of nontraditional ingredients in baking affect the quality of wheat flour and may limit its use in baking. With the increasing trend of "clean label" products, it may be interesting to develop and use physical processes to improve the quality of wheat flour and avoid the use of chemical additives. High hydrostatic pressure, non-thermal plasma, ultrasound, ozonation, ultraviolet light, and pulsed light treatments are non-thermal emerging technologies (NTETs) that have been studied for this purpose. They were originally developed to inactivate microorganisms and enzymes in foods. Additionally, these technologies can be used at low temperatures to modify the most important component of wheat flour, i.e., gluten and its fractions, which are responsible for the rheological properties of wheat flour dough. Thus, this review focuses on the effects of these NTETs by considering the following factors: (1) the technological properties of gluten, (2) gluten-starch interactions, (3) possible effects of NTETs on minor components of flours, and (4) the quality of wheat flour and the resulting final products.
Collapse
Affiliation(s)
- Jefferson Henrique Tiago Barros
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil.,Federal Institute of Acre (IFAC), Xapuri, Brazil
| | - Ludmilla de Carvalho Oliveira
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Cristianini
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Caroline Joy Steel
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
25
|
Shuai C, Li L, Yanhui H, Jin W, Zilong L, Xiaoxue S, Yuchong Z, Jinying C. Study on the degradation of deoxynivalenol in corn and wheat both in the lab and barn by low concentration ozone. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Shuai
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Li Li
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Hao Yanhui
- Sinograin Weinan Depot Co. Ltd. Weinan China
| | - Wang Jin
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Liao Zilong
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Shan Xiaoxue
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Zhang Yuchong
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| | - Chen Jinying
- Sinograin Chengdu Storage Research Institute Co. Ltd. Chengdu China
| |
Collapse
|
26
|
Fan X. Gaseous ozone to preserve quality and enhance microbial safety of fresh produce: Recent developments and research needs. Compr Rev Food Sci Food Saf 2021; 20:4993-5014. [PMID: 34323365 DOI: 10.1111/1541-4337.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Fresh fruits and vegetables are highly perishable and are subject to large postharvest losses due to physiological (senescence), pathologic (decay), and physical (mechanical damage) factors. In addition, contamination of fresh produce with foodborne human pathogens has become a concern. Gaseous ozone has multiple benefits including destruction of ethylene, inactivation of foodborne and spoilage microorganisms, and degradation of chemical residues. This article reviews the beneficial effects of gaseous ozone, its influence on quality and biochemical changes, foodborne human pathogens, and spoilage microorganisms, and discusses research needs with an emphasis on fruits. Ozone may induce synthesis of a number of antioxidants and bioactive compounds by activating secondary metabolisms involving a wide range of enzymes. Disparities exist in the literature regarding the impact of gaseous ozone on quality and physiological processes of fresh produce, such as weight loss, ascorbic acid, and fruit ripening. The disparities are complicated by incomplete reporting of the necessary information, such as relative humidity and temperatures at which ozone measurement and treatment were performed, which is needed for accurate comparison of results among studies. In order to fully realize the benefits of gaseous ozone, research is needed to evaluate the molecular mechanisms of gaseous ozone in inhibiting ripening, influence of relative humidity on the antimicrobial efficacy, interaction between ozone and the cuticle of fresh produce, ozone signaling pathways in the cells and tissues, and so forth. Possible adverse effects of gaseous ozone on quality of fresh produce also need to be carefully evaluated for the purpose of enhancing microbial and chemical safety of fresh produce.
Collapse
Affiliation(s)
- Xuetong Fan
- Eastern Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| |
Collapse
|
27
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
28
|
Jadhav HB, Annapure US, Deshmukh RR. Non-thermal Technologies for Food Processing. Front Nutr 2021; 8:657090. [PMID: 34169087 PMCID: PMC8217760 DOI: 10.3389/fnut.2021.657090] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Food is subjected to various thermal treatments during processes to enhance its shelf-life. But these thermal treatments may result in deterioration of the nutritional and sensory qualities of food. With the change in the lifestyle of people around the globe, their food needs have changed as well. Today's consumer demand is for clean and safe food without compromising the nutritional and sensory qualities of food. This directed the attention of food professionals toward the development of non-thermal technologies that are green, safe, and environment-friendly. In non-thermal processing, food is processed at near room temperature, so there is no damage to food because heat-sensitive nutritious materials are intact in the food, contrary to thermal processing of food. These non-thermal technologies can be utilized for treating all kinds of food like fruits, vegetables, pulses, spices, meat, fish, etc. Non-thermal technologies have emerged largely in the last few decades in food sector.
Collapse
Affiliation(s)
- Harsh Bhaskar Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S. Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
29
|
Yang Y, Xu Y, Wu S, Qiu T, Blaženović I, Sun J, Zhang Y, Sun X, Ji J. Evaluation of the toxicity and chemical alterations of deoxynivalenol degradation products under ozone treatment. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Kaavya R, Pandiselvam R, Abdullah S, Sruthi N, Jayanath Y, Ashokkumar C, Chandra Khanashyam A, Kothakota A, Ramesh S. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Srivastava S, Mishra G, Mishra HN. Vulnerability of different life stages of
Sitophilus oryzae
insects in stored rice grain to ozone treatment and its effect on physico‐chemical properties in rice grain. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shubhangi Srivastava
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - Gayatri Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| |
Collapse
|
32
|
Ouf SA, Ali EM. Does the treatment of dried herbs with ozone as a fungal decontaminating agent affect the active constituents? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116715. [PMID: 33652183 DOI: 10.1016/j.envpol.2021.116715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Herbs and spices are food crops susceptible to contamination by toxigenic fungi. Ozone, as a decontamination approach in the industry, has attractive benefits over traditional food preservation practices. A contribution to the studying of ozone as an antifungal and anti-mycotoxigenic agent in herbs and spices storage processes is achieved in this research. Nine powdered sun-dried herbs and spices were analyzed for their fungal contamination. The results indicate that licorice root and peppermint leaves were found to have the highest population of fungi while black cumin and fennel record the lowest population. The most dominant fungal genera are Aspergillus, Penicillium, Fusarium, and Rhizopus. Ozone treatment was performed at a concentration of 3 ppm applied for exposure times of 0, 30, 90, 150, 210, and 280 min. After 280 min of exposure to ozone, the reduction of fungal count ranged from 96.39 to 98.26%. The maximum reduction in spore production was achieved in the case of A. humicola and Trichderma viride exposed for 210 min ozone gas. There was a remarkable reduction in the production of the total mycotoxin, reaching 24.15% in aflatoxins for the 150 min-treated inoculum in the case of A. flavus. The total volume of essential oil of chamomile and peppermint was reduced by 57.14 and 26.67%, respectively, when exposed to 3 ppm. For 280 min. In conclusion, fumigation with ozone gas can be used as a suitable method for achieving sanitation and decreasing microbial load in herbs and spices. Still, it is crucial to provide precautions on ozone's effect on major active constituents before recommending this method for industrial application.
Collapse
Affiliation(s)
- Salama A Ouf
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Enas M Ali
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
33
|
Feizollahi E, Roopesh MS. Mechanisms of deoxynivalenol (DON) degradation during different treatments: a review. Crit Rev Food Sci Nutr 2021; 62:5903-5924. [PMID: 33729830 DOI: 10.1080/10408398.2021.1895056] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deoxynivalenol (DON) is one of the main trichothecenes, that causes health-related issues in humans and animals and imposes considerable financial loss to the food industry each year. Numerous treatments have been reported in the literature on the degradation of DON in food products. These treatments include thermal, chemical, biological/enzymatic, irradiation, light, ultrasound, ozone, and atmospheric cold plasma treatments. Each of these methods has different degradation efficacy and degrades DON by a distinct mechanism, which leads to various degradation byproducts with different toxicity. This manuscript focuses to review the degradation of DON by the aforementioned treatments, the chemical structure and toxicity of the byproducts, and the degradation pathway of DON. Based on the type of treatment, DON can be degraded to norDONs A-F, DON lactones, and ozonolysis products or transformed into de-epoxy deoxynivalenol, DON-3-glucoside, 3-acetyl-DON, 7-acetyl-DON, 15-acetyl-DON, 3-keto-DON, or 3-epi-DON. DON is a major problem for the grain industry and the studies focusing on DON degradation mechanisms could be helpful to select the best method and overcome the DON contamination in grains.
Collapse
Affiliation(s)
- Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
34
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|
35
|
Srivastava S, Mishra HN. Ecofriendly nonchemical/nonthermal methods for disinfestation and control of pest/fungal infestation during storage of major important cereal grains: A review. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shubhangi Srivastava
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
36
|
Mir SA, Dar BN, Shah MA, Sofi SA, Hamdani AM, Oliveira CAF, Hashemi Moosavi M, Mousavi Khaneghah A, Sant'Ana AS. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem Toxicol 2021; 148:111976. [PMID: 33422602 DOI: 10.1016/j.fct.2021.111976] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
Emerging decontamination technologies have been attracted considerable attention to address the consumers' demand for high quality and safe food products. As one of the important foods in the human diet, cereals are usually stored for long periods, resulting in an increased risk of contamination by different hazards. Mycotoxins comprise one of the significant contaminants of cereals that lead to enormous economic losses to the industry and threats to human health. While prevention is the primary approach towards reducing human exposure to mycotoxins, decontamination methods have also been developed as complementary measures. However, some conventional methods (chemical treatments) do not fulfill industries' expectations due to limitations like safety, efficiency, and the destruction of food quality attributes. In this regard, novel techniques have been proposed to food to comply with the industry's demand and overcome conventional methods' limitations. Novel techniques have different efficiencies for removing or reducing mycotoxins depending on processing conditions, type of mycotoxin, and the food matrix. Therefore, this review provides an overview of novel mycotoxin decontamination technologies such as cold plasma, irradiation, and pulse light, which can be efficient for reducing mycotoxins with minimum adverse effects on the quality and nutritional properties of produce.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Food Science & Technology, Government College for Women, M. A. Road, Srinagar, Jammu & Kashmir, India
| | - B N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Jammu & Kashmir, India
| | - Manzoor Ahmad Shah
- Department of Food Science & Technology, Government PG College for Women, Gandhi Nagar, Jammu, Jammu & Kashmir, India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Jammu & Kashmir, India
| | - Afshan Mumtaz Hamdani
- Department of Food Science & Technology, Government College for Women, M. A. Road, Srinagar, Jammu & Kashmir, India
| | - Carlos A F Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Motahareh Hashemi Moosavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
37
|
Castricini A, Oliveira ALSD, Cacique AP, Rodrigues MGV, Silvério FO. Determinação de resíduo de bifentrina em banana após a colheita e na água de lavagem. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo Na bananicultura, o uso de sacos impregnados por inseticida e a lavagem das pencas são técnicas que visam à qualidade dos frutos. Objetivou-se monitorar, por cromatografia em fase gasosa acoplada à espectrometria de massas, resíduo de bifentrina em bananas lavadas e não lavadas em tanques, assim como na água de lavagem dos frutos. Desde a emissão até a colheita, os cachos foram protegidos com sacos impregnados por bifentrina a 1,0 g kg-1, os quais foram retirados após a colheita, para despencamento e lavagem ou não das pencas em tanques com água, detergente e sulfato de alumínio. Os métodos Quick, Easy, Cheap, Effective, Rugged, Safe Method - QuEChERS e Extração Líquido – Líquido com Partição a Baixa Temperatura - ELL – PBT foram utilizados para extrair resíduo de bifentrina dos frutos no ponto de colheita e maduros, e da água, respectivamente. As porcentagens de recuperação de bifentrina foram 88,16%, 103,4% e 89,32%, na casca, na polpa e em casca + polpa, respectivamente, atendendo à legislação brasileira. No ponto de colheita, na casca e na casca + polpa dos frutos lavados, detectou-se 0,060 mg kg-1 e 0,010 mg kg-1, respectivamente. Quando não lavados, a concentração de bifentrina, na casca, foi de 0,31 mg kg-1 e de 0,16 mg kg-1, na casca + polpa. Não foi detectado resíduo de bifentrina na polpa, independente do estádio de maturação e lavagem, tampouco na água de lavagem. Em frutos maduros não lavados, foram quantificado 0,10 mg kg-1 e 0,040 mg kg1 de bifentrina na casca e em casca + polpa, respectivamente. A lavagem não elimina, mas reduz o resíduo de bifentrina na casca dos frutos no ponto de colheita e, quando maduros, somente os não lavados apresentam resíduo.
Collapse
|
38
|
Nickhil C, Mohapatra D, Kar A, Giri SK, Tripathi MK, Sharma Y. Gaseous ozone treatment of chickpea grains, part I: Effect on protein, amino acid, fatty acid, mineral content, and microstructure. Food Chem 2020; 345:128850. [PMID: 33340891 DOI: 10.1016/j.foodchem.2020.128850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/03/2020] [Accepted: 12/06/2020] [Indexed: 11/19/2022]
Abstract
The effect of gaseous ozone (500-1000 ppm) treatment on the protein, amino acid, and fatty acid profiles, mineral content, and the microstructure of the chickpea grains were evaluated. Though protein content was not altered significantly, SDS PAGE profiling exhibited minor modifications in the protein bands of the treated chickpea. The essential amino acids (EAA) and total amino acids (TAA) slightly decreased, ratio of EAA to TAA increased, while the calculated protein efficiency ratio decreased. Significant decrease in the SH content and non-significant increase in SS content was observed at higher doses of ozone. The overall saturated and unsaturated fatty acids (%) were in the range of 13.05-13.49 and 86.51-87.61, respectively. The minerals were stable and the HCl extractability decreased in the ozonated samples. There was some minor degradation of intracellular cell wall and distribution of starch and protein bodies in the ozonated sample.
Collapse
Affiliation(s)
- C Nickhil
- Out reach campus ICAR-IARI, Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal, India; Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal, India
| | - Debabandya Mohapatra
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal, India.
| | - Abhijit Kar
- Division of Food Science and Post-Harvest Technology, Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
| | - Saroj Kumar Giri
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal, India.
| | - Manoj Kumar Tripathi
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Nabibagh, Berasia Road, Bhopal, India
| | - Yogesh Sharma
- Technical Executive Supporter, Waters India Private Limited, Jasola Road, New Delhi 110025 India.
| |
Collapse
|
39
|
Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 2020; 140:109878. [PMID: 33648196 DOI: 10.1016/j.foodres.2020.109878] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, posing high carcinogenic potency in humans and animals. Dietary exposure to aflatoxins is a global problem in both developed and developing countries especially where there is poor regulation of their levels in food and feed. Thus, academics have been striving over the decades to develop effective strategies for degrading aflatoxins in food and feed. These strategies are technologically diverse and based on physical, chemical, or biological principles. This review summarizes the recent progress on novel aflatoxin degradation strategies including irradiation, cold plasma, ozone, electrolyzed oxidizing water, organic acids, natural plant extracts, microorganisms and enzymes. A clear understanding of the detoxification efficiency, mechanism of action, degradation products, application potential and current limitations of these methods is presented. In addition, the development and future perspective of nanozymes in aflatoxins degradation are introduced.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
40
|
Feston J, Gaire S, Fardisi M, Mason LJ, Gondhalekar AD. Determining baseline toxicity of ozone against an insecticide-susceptible strain of the common bed bug, Cimex lectularius L. under laboratory conditions. PEST MANAGEMENT SCIENCE 2020; 76:3108-3116. [PMID: 32302460 DOI: 10.1002/ps.5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/06/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ozone gas is commercially used for deodorization and microbial control. Its efficacy against stored product insect pests is well documented. In the midst of the common bed bug (Cimex lectularius L.) outbreak, claims were made that ozone gas was effective for their control. This study was conducted to determine baseline ozone concentrations and exposure times required for the control of an insecticide-susceptible C. lectularius strain under laboratory conditions. Dichlorvos (DDVP), an organophosphate class fumigant insecticide was used as a positive control. RESULTS Nymphs and adults were more susceptible to ozone than eggs. Complete (100%) nymph and adult mortality was achieved at an ozone concentration (C) of 1500 ppm and exposure time (T) of 180 min, or concentration × time product (CT) of 270 000 ppm-min, whereas eggs required an eightfold higher CT (2 040 000 ppm-min). DDVP vapor was 2070-, 2542- and 450-fold more potent than ozone, against nymphs, adults and eggs, respectively. CONCLUSIONS Baseline ozone toxicity data provide insights on the practicality of using this gas for the management of common bed bugs. High ozone CT products required for C. lectularius control, particularly eggs, suggest that its use for treating infested human dwellings is not feasible due to logistic, safety and monetary concerns. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- James Feston
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Insects Limited, Inc., Westfield, IN, USA
| | - Sudip Gaire
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Mahsa Fardisi
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Linda J Mason
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
41
|
Conte G, Fontanelli M, Galli F, Cotrozzi L, Pagni L, Pellegrini E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins (Basel) 2020; 12:E486. [PMID: 32751684 PMCID: PMC7472270 DOI: 10.3390/toxins12080486] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by some filamentous fungi, which can cause toxicity in animal species, including humans. Because of their high toxicological impacts, mycotoxins have received significant consideration, leading to the definition of strict legislative thresholds and limits in many areas of the world. Mycotoxins can reduce farm profits not only through reduced crop quality and product refusal, but also through a reduction in animal productivity and health. This paper briefly addresses the impacts of mycotoxin contamination of feed and food on animal and human health, and describes the main pre- and post-harvest systems to control their levels, including genetic, agronomic, biological, chemical, and physical methods. It so highlights (i) the lack of effective and straightforward solutions to control mycotoxin contamination in the field, at pre-harvest, as well as later post-harvest; and (ii) the increasing demand for novel methods to control mycotoxin infections, intoxications, and diseases, without leaving toxic chemical residues in the food and feed chain. Thus, the broad objective of the present study was to review the literature on the use of ozone for mycotoxin decontamination, proposing this gaseous air pollutant as a powerful tool to detoxify mycotoxins from feed and food.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.C.); (M.F.); (F.G.); (L.P.); (E.P.)
| | | | | |
Collapse
|
42
|
Afsah-Hejri L, Hajeb P, Ehsani RJ. Application of ozone for degradation of mycotoxins in food: A review. Compr Rev Food Sci Food Saf 2020; 19:1777-1808. [PMID: 33337096 DOI: 10.1111/1541-4337.12594] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022]
Abstract
Mycotoxins such as aflatoxins (AFs), ochratoxin A (OTA) fumonisins (FMN), deoxynivalenol (DON), zearalenone (ZEN), and patulin are stable at regular food process practices. Ozone (O3 ) is a strong oxidizer and generally considered as a safe antimicrobial agent in food industries. Ozone disrupts fungal cells through oxidizing sulfhydryl and amino acid groups of enzymes or attacks the polyunsaturated fatty acids of the cell wall. Fusarium is the most sensitive mycotoxigenic fungi to ozonation followed by Aspergillus and Penicillium. Studies have shown complete inactivation of Fusarium and Aspergillus by O3 gas. Spore germination and toxin production have also been reduced after ozone fumigation. Both naturally and artificially, mycotoxin-contaminated samples have shown significant mycotoxin reduction after ozonation. Although the mechanism of detoxification is not very clear for some mycotoxins, it is believed that ozone reacts with the functional groups in the mycotoxin molecules, changes their molecular structures, and forms products with lower molecular weight, less double bonds, and less toxicity. Although some minor physicochemical changes were observed in some ozone-treated foods, these changes may or may not affect the use of the ozonated product depending on the further application of it. The effectiveness of the ozonation process depends on the exposure time, ozone concentration, temperature, moisture content of the product, and relative humidity. Due to its strong oxidizing property and corrosiveness, there are strict limits for O3 gas exposure. O3 gas has limited penetration and decomposes quickly. However, ozone treatment can be used as a safe and green technology for food preservation and control of contaminants.
Collapse
Affiliation(s)
- Leili Afsah-Hejri
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| | - Parvaneh Hajeb
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Reza J Ehsani
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| |
Collapse
|
43
|
Paul A, Radhakrishnan M, Anandakumar S, Shanmugasundaram S, Anandharamakrishnan C. Disinfestation techniques for major cereals: A status report. Compr Rev Food Sci Food Saf 2020; 19:1125-1155. [DOI: 10.1111/1541-4337.12555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Anjaly Paul
- Centre of Excellence in Nonthermal ProcessingIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal ProcessingIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Sugumar Anandakumar
- Department of Food Packaging and System DevelopmentIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Saravanan Shanmugasundaram
- Planning and Monitoring CellIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| | - Chinnaswamy Anandharamakrishnan
- Computational Modeling and Nano Scale Processing UnitIndian Institute of Food Processing Technology, Ministry of Food Processing Industries Thanjavur India
| |
Collapse
|
44
|
de Oliveira JM, de Alencar ER, Blum LEB, de Souza Ferreira WF, Botelho SDCC, Racanicci AMC, Santos Leandro ED, Mendonça MA, Moscon ES, Bizerra LVADS, da Silva CR. Ozonation of Brazil nuts: Decomposition kinetics, control of Aspergillus flavus and the effect on color and on raw oil quality. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Handarini K, Hamdani JS, Cahyana Y, Setiasih IS. Functional, thermal, and molecular properties of ozonated starches. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1755-1315/443/1/012102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Dielectric properties, heating rate, and heating uniformity of wheat flour with added bran associated with radio frequency treatments. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Amoah BA, Mahroof RM. Disinfestation of Wheat Infested with Sitophilus oryzae Using Ozone Gas. ACTA ACUST UNITED AC 2020. [DOI: 10.3954/1523-5475-36.1.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Barbara A. Amoah
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC 29117
| | - Rizana M. Mahroof
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC 29117
| |
Collapse
|
48
|
Peles F, Sipos P, Győri Z, Pfliegler WP, Giacometti F, Serraino A, Pagliuca G, Gazzotti T, Pócsi I. Adverse Effects, Transformation and Channeling of Aflatoxins Into Food Raw Materials in Livestock. Front Microbiol 2019; 10:2861. [PMID: 31921041 PMCID: PMC6917664 DOI: 10.3389/fmicb.2019.02861] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 01/18/2023] Open
Abstract
Aflatoxins are wide-spread harmful carcinogenic secondary metabolites produced by Aspergillus species, which cause serious feed and food contaminations and affect farm animals deleteriously with acute or chronic manifestations of mycotoxicoses. On farm, both pre-harvest and post-harvest strategies are applied to minimize the risk of aflatoxin contaminations in feeds. The great economic losses attributable to mycotoxin contaminations have initiated a plethora of research projects to develop new, effective technologies to prevent the highly toxic effects of these secondary metabolites on domestic animals and also to block the carry-over of these mycotoxins to humans through the food chain. Among other areas, this review summarizes the latest findings on the effects of silage production technologies and silage microbiota on aflatoxins, and it also discusses the current applications of probiotic organisms and microbial products in feeding technologies. After ingesting contaminated foodstuffs, aflatoxins are metabolized and biotransformed differently in various animals depending on their inherent and acquired physiological properties. These mycotoxins may cause primary aflatoxicoses with versatile, species-specific adverse effects, which are also dependent on the susceptibility of individual animals within a species, and will be a function of the dose and duration of aflatoxin exposures. The transfer of these undesired compounds from contaminated feed into food of animal origin and the aflatoxin residues present in foods become an additional risk to human health, leading to secondary aflatoxicoses. Considering the biological transformation of aflatoxins in livestock, this review summarizes (i) the metabolism of aflatoxins in different animal species, (ii) the deleterious effects of the mycotoxins and their derivatives on the animals, and (iii) the major risks to animal health in terms of the symptoms and consequences of acute or chronic aflatoxicoses, animal welfare and productivity. Furthermore, we traced the transformation and channeling of Aspergillus-derived mycotoxins into food raw materials, particularly in the case of aflatoxin contaminated milk, which represents the major route of human exposure among animal-derived foods. The early and reliable detection of aflatoxins in feed, forage and primary commodities is an increasingly important issue and, therefore, the newly developed, easy-to-use qualitative and quantitative aflatoxin analytical methods are also summarized in the review.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Péter Sipos
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giampiero Pagliuca
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Teresa Gazzotti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
49
|
Alexandre APS, Castanha N, Costa NS, Santos AS, Badiale-Furlong E, Augusto PED, Calori-Domingues MA. Ozone technology to reduce zearalenone contamination in whole maize flour: degradation kinetics and impact on quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6814-6821. [PMID: 31368532 DOI: 10.1002/jsfa.9966] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Maize is one of the most important cereals. It is used for different purposes and in different industries worldwide. This cereal is prone to contamination with mycotoxins, such as zearalenone (ZEN), which is produced mainly by Fusarium graminearum, F. culmorum and F. equiseti. Toxin production under highly moist conditions (aw > 0.95) is exacerbated if there are alternations between low temperatures (12-14 °C) and high temperatures (25-28 °C). Even if good production practices are adopted, mycotoxins can be found in several stages of the production chain. For this reason, an alternative to reducing this contamination is ozonation. This study evaluated the reduction of ZEN in naturally contaminated whole maize flour (WMF) treated with 51.5 mg L-1 of ozone for up to 60 min. Pasting properties, peroxide value, and fatty acid composition were also evaluated. RESULTS Zearalenone degradation in ozonated WMF was described by a fractional first-order kinetic, with a maximum reduction of 62.3% and kinetic parameter of 0.201 min-1 in the conditions that were evaluated. The ozonation process in WMF showed a decrease in the apparent viscosity, a decrease in the proportion of linoleic, oleic, and α-linolenic fatty acids, an increase in the proportion of palmitic acid, and an increase in the peroxide value. CONCLUSION Ozonation was effective in reducing ZEN contamination in WMF. However, it also modified the pasting properties, fatty acid profile, and peroxide value, affecting functional and technological aspects of WMF. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Allana Patrícia Santos Alexandre
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Nanci Castanha
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Naiara Silva Costa
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Amanda Silva Santos
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | | | - Pedro Esteves Duarte Augusto
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, Brazil
| | - Maria Antonia Calori-Domingues
- Department of Agri-food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
50
|
Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res Int 2019; 126:108654. [DOI: 10.1016/j.foodres.2019.108654] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
|