1
|
Jin Y, Wei L, Yang N, Xu X, Jin Z. Effect of magnetic fields on the structure, properties, baking performance of frozen wheat dough at different frozen stage. Food Chem 2024; 453:139709. [PMID: 38781908 DOI: 10.1016/j.foodchem.2024.139709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
As an emerging physical technology, magnetic fields have been used to improve the quality of frozen and refrigerated foods. This study compared the effect of applying a static magnetic field (2 mT) at different stages of freezing and storage on the quality of frozen dough. Results suggested that the magnetic field significantly impacted frozen dough quality. It not only prevented the formation of ice crystals during the pre-freezing stage but also inhibited ice crystal growth during the following frozen storage. This effect helped to maintain the integrity of gluten proteins and their adhesion to starch granules by preventing the breakage of disulfide bonds and the depolymerization of gluten macromolecules. It was also observed that yeast inactivation and glutathione release were reduced, resulting in improved air retention and air production capacity of the dough. This, in turn, led to a more appealing volume and texture quality of the finished bread.
Collapse
Affiliation(s)
- Yamei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Liwen Wei
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Synergetie Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Synergetie Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| |
Collapse
|
2
|
Mika M, Wikiera A. Enzymatic Hydrolysis as an Effective Method for Obtaining Wheat Gluten Hydrolysates Combining Beneficial Functional Properties with Health-Promoting Potential. Molecules 2024; 29:4407. [PMID: 39339401 PMCID: PMC11434277 DOI: 10.3390/molecules29184407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The byproduct from wheat starch production contains approximately 70% gluten (WG) and is an inexpensive but demanding protein raw material for the food industry. This study attempted to determine the optimal hydrolysis conditions for such raw material to obtain peptides combining beneficial functional characteristics with health-promoting activity. The proteases Bromelain, Alcalase, Flavourzyme, and a protease from A. saitoi were used for hydrolysis. It was shown that the tested proteases differ both in terms of the effective hydrolysis conditions of gluten and the profile of the released hydrolysates. Bromelain was particularly effective in converting gluten into peptides, combining beneficial health and functional properties. It achieved maximum activity (189 U/g) against WG at pH 6 and 60 °C, and the best-balanced peptides in terms of desired properties were released at a dose of 2.5 U/g. These peptides were free from most allergenic epitopes, effectively inhibited ACE, and, at 0.34 g, were equivalent to the approved dose of BHT. Their emulsifying activity was higher than that of gluten, and the foaming formation and stabilization potential exceeded that of ovalbumin by 10% and 19%, respectively. It seems that Bromelain-released WG hydrolysates are a promising candidate for a safe fat stabilizer and egg white substitute.
Collapse
Affiliation(s)
- Magdalena Mika
- Department of Biotechnology and General Food Technology, Faculty of Food Technology, Agricultural University of Krakow, 31-120 Krakow, Poland
| | - Agnieszka Wikiera
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland
| |
Collapse
|
3
|
Yu Z, Yunusbaev U, Fritz A, Tilley M, Akhunova A, Trick H, Akhunov E. CRISPR-based editing of the ω- and γ-gliadin gene clusters reduces wheat immunoreactivity without affecting grain protein quality. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:892-903. [PMID: 37975410 PMCID: PMC10955484 DOI: 10.1111/pbi.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Wheat immunotoxicity is associated with abnormal reaction to gluten-derived peptides. Attempts to reduce immunotoxicity using breeding and biotechnology often affect dough quality. Here, the multiplexed CRISPR-Cas9 editing of cultivar Fielder was used to modify gluten-encoding genes, specifically focusing on ω- and γ-gliadin gene copies, which were identified to be abundant in immunoreactive peptides based on the analysis of wheat genomes assembled using the long-read sequencing technologies. The whole-genome sequencing of an edited line showed mutation or deletion of nearly all ω-gliadin and half of the γ-gliadin gene copies and confirmed the lack of editing in the α/β-gliadin genes. The estimated 75% and 64% reduction in ω- and γ-gliadin content, respectively, had no negative impact on the end-use quality characteristics of grain protein and dough. A 47-fold immunoreactivity reduction compared to a non-edited line was demonstrated using antibodies against immunotoxic peptides. Our results indicate that the targeted CRISPR-based modification of the ω- and γ-gliadin gene copies determined to be abundant in immunoreactive peptides by analysing high-quality genome assemblies is an effective mean for reducing immunotoxicity of wheat cultivars while minimizing the impact of editing on protein quality.
Collapse
Affiliation(s)
- Zitong Yu
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Ural Yunusbaev
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Allan Fritz
- Department of AgronomyKansas State UniversityManhattanKSUSA
| | - Michael Tilley
- USDA‐ARSGrain Quality and Structure Research UnitManhattanKSUSA
| | - Alina Akhunova
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Integrated Genomic FacilityKansas State UniversityManhattanKSUSA
| | - Harold Trick
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Eduard Akhunov
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| |
Collapse
|
4
|
Zhang Y, Wu H, Fu L. A review of gluten detoxification in wheat for food applications: approaches, mechanisms, and implications. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38470104 DOI: 10.1080/10408398.2024.2326618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes. And individuals with mild non-celiac gluten disorder symptoms may not necessarily require the same gluten-free treatments. Scientists are actively seeking alternative solutions for these consumers. This review delves into the various strategies employed by researchers for detoxifying gluten or modifying its main protein, gliadin, including genetic treatment, transamidation and deamidation, hydrolysis, and microbial treatments. The mechanisms, constraints of these techniques, their current utilization in food items, as well as their implications for gluten-related disorders, are discussed in detail. Although there is still a gap in the application of these methods as alternative solutions in the real market, the summary provided by our review could be beneficial for peers in enriching their basic ideas and developing more applicable solutions for wheat gluten detoxification.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
5
|
Desclaux D, Canaguier E, Avit V, Boury-Esnault A, Menguy E, Moinet K, Younso A, Samson MF. Peasant vs. Industrial durum wheat pasta: Impact of each processing step on protein solubility and digestibility. Food Res Int 2024; 178:113937. [PMID: 38309907 DOI: 10.1016/j.foodres.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Some people with Non-Coeliac Gluten (or Wheat) Sensitivity (NCGS) declare that they can consume peasant pasta without the usual inconvenience they experience after eating industrial pasta. The main differences between peasant and industrial pasta lie in the varieties used (old vs. modern), and the production chain (grain milling, semolina hydration and mixing, extrusion or lamination, drying and packaging). Yet, the varieties, the material and the method used by the peasants and by the industrial sector to make pasta differ at each stage. The impact of each of these stages was analyzed on protein quantity and quality from semolina to cooked pasta. Grown in the same conditions, the old variety (cv. Bidi 17) used by farmers contained much more protein than the modern variety (cv. Anvergur) recommended by industry and its pasta was better-digested in-vitro. Focusing on cooked pasta, milling had a great impact on not easily soluble proteins (DTE-soluble proteins): pasta made from stone-milled grains (peasant method) had less DTE-soluble proteins than pasta made from roller-milled grains (industrial method) and a higher amount of in-vitro digested proteins. The mixing and extrusion step mainly affected the easily soluble proteins (SDS-soluble proteins). The amount of such proteins was greater for farmer cooked pasta (non-monitored extrusion) than for industrial ones (monitored extrusion). Concerning the drying step, the proportion of SDS-soluble proteins was higher for the pasta dried at low temperature (peasant method), compared to high temperature (industrial method). Thus, the observation that peasant cooked pasta would be more digestible than industrial pasta seems to be due mainly to variety (61%), to a lesser extent to grinding on a stone-mill (22%) and extrusion on non-monitored conditions (16%) and finally a little (1%) to drying at low temperature and therefore longer.
Collapse
Affiliation(s)
| | - Elodie Canaguier
- IATE, Univ Montpellier, INRAE, L'Institut Agro Montpellier, Montpellier, France
| | | | - Anaïs Boury-Esnault
- IATE, Univ Montpellier, INRAE, L'Institut Agro Montpellier, Montpellier, France
| | - Ewen Menguy
- INRAE, UE DiaScope, UE 0398, Mauguio, France
| | | | - Ahmad Younso
- MISTEA, Univ Montpellier, INRAE, L'Institut Agro Montpellier, Montpellier, France
| | | |
Collapse
|
6
|
Sun Y, Dong M, Bai J, Liu X, Yang X, Duan X. Preparation and properties of high-soluble wheat gluten protein-based meat analogues. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:42-50. [PMID: 37574760 DOI: 10.1002/jsfa.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Wheat gluten protein (WGP) is poorly soluble and does not easily form fibrous structures. The meat analogues prepared from it have an unsatisfactory texture and poor water-holding capacity (WHC). Our previous work indicated that pH-shifting combined with heat treatment can significantly improve the solubility and emulsifiability of WGP. In this work, WGP was therefore treated by pH-cycling (m-WGP) to improve the solubility and then applied in the preparation of meat analogues by high moisture extrusion. RESULTS The results indicated that the addition of m-WGP improved the texture characteristics and WHC of the extrudates significantly (282.4) and made the extrudates show a tighter organizational structure, according to scanning electron microscope (SEM) images. Magnetic resonance imaging (MRI) analysis showed that the addition of m-WGP resulted in a more uniform moisture distribution in the extrudate. The free sulfhydryl group result showed that the addition of m-WGP significantly increased the free sulfhydryl group content, which was beneficial to the formation of disulfide bonds to enhance the tissue structure. CONCLUSION When the addition content of m-WGP was 10%, the gluten extrudate exhibited a good WHC and uniform moisture distribution but the excessive hardness and chewiness were not suitable for simulating meat. When the additional m-WGP content reached 50%, the gluten extrudate had textural characteristics that were closest to commercial plant-based meat and real meat, with the potential to be used as a raw material to simulate meat. Accordingly, this work improves the processing properties of WGP and explores plant-based ingredients for meat analogues. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yusha Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Mengxue Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Jie Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| | - Xiujuan Yang
- Guangxi Subtropical Crops Research Institute, Nanning, People's Republic of China
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
7
|
Woo SH, Park J, Sung JM, Choi EJ, Choi YS, Park JD. Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough. Foods 2023; 12:4367. [PMID: 38231883 DOI: 10.3390/foods12234367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024] Open
Abstract
With the increasing number of people affected by gluten consumption-related diseases, adhering to a gluten-free (GF) diet is the most effective preventive measure. Herein, we aimed to isolate and characterize the functional properties of autochthonous lactic acid bacteria (LAB) and yeast from various GF sourdoughs to determine their suitability in starter cultures for sourdough preparation. Three LAB, Weissella confusa BAQ2, Lactobacillus brevis AQ2, Leuconostoc citreum YC2, and Saccharomyces cerevisiae BW1, were identified. The isolated LAB exhibited greater TTA, faster acidification rates, and higher acid tolerance than commercial LAB. W. confusa BAQ2 exhibited the highest EPS production, W. confusa BAQ2 and L. brevis AQ2 showed high maltose utilization, and S. cerevisiae BW1 exhibited the highest CO2 production rate. Accordingly, all four microbial strains were mixed for the starter culture. The sourdough prepared with starter cultures exhibited differences in gas production depending on fermentation time, which influenced the volume of GF bread dough. GF bread prepared with fermented sourdough exhibited a 16% higher specific volume and enhanced crumb firmness and elasticity than that prepared using non-fermented sourdough. Thus, autochthonous LAB strains isolated from various GF sourdoughs can be used together to improve the quality of sourdough bread, demonstrating their potential for use in starter cultures for GF sourdough production.
Collapse
Affiliation(s)
- Seung-Hye Woo
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jiwoon Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jung Min Sung
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Eun-Ji Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jong-Dae Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
8
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
9
|
Lakhneko O, Stasik O, Škultéty Ľ, Kiriziy D, Sokolovska-Sergiienko O, Kovalenko M, Danchenko M. Transient drought during flowering modifies the grain proteome of bread winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1181834. [PMID: 37441186 PMCID: PMC10333505 DOI: 10.3389/fpls.2023.1181834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Drought is among the most limiting factors for sustainable agricultural production. Water shortage at the onset of flowering severely affects the quality and quantity of grain yield of bread wheat (Triticum aestivum). Herein, we measured oxidative stress and photosynthesis-related parameters upon applying transient drought on contrasting wheat cultivars at the flowering stage of ontogenesis. The sensitive cultivar (Darunok Podillia) showed ineffective water management and a more severe decline in photosynthesis. Apparently, the tolerant genotype (Odeska 267) used photorespiration to dissipate excessive light energy. The tolerant cultivar sooner induced superoxide dismutase and showed less inhibited photosynthesis. Such a protective effect resulted in less affected yield and spectrum of seed proteome. The tolerant cultivar had a more stable gluten profile, which defines bread-making quality, upon drought. Water deficit caused the accumulation of medically relevant proteins: (i) components of gluten in the sensitive cultivar and (ii) metabolic proteins in the tolerant cultivar. We propose specific proteins for further exploration as potential markers of drought tolerance for guiding efficient breeding: thaumatin-like protein, 14-3-3 protein, peroxiredoxins, peroxidase, FBD domain protein, and Ap2/ERF plus B3 domain protein.
Collapse
Affiliation(s)
- Olha Lakhneko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Oleg Stasik
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ľudovit Škultéty
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dmytro Kiriziy
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Mariia Kovalenko
- Educational and Scientific Centre (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
10
|
Bu Z, Fang G, Yu H, Kong D, Huo Y, Ma X, Chong H, Guan X, Liu D, Fan K, Yan M, Ma W, Chen J. Quality and Agronomic Trait Analyses of Pyramids Composed of Wheat Genes NGli-D2, Sec-1s and 1Dx5+1Dy10. Int J Mol Sci 2023; 24:ijms24119253. [PMID: 37298204 DOI: 10.3390/ijms24119253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Due to rising living standards, it is important to improve wheat's quality traits by adjusting its storage protein genes. The introduction or locus deletion of high molecular weight subunits could provide new options for improving wheat quality and food safety. In this study, digenic and trigenic wheat lines were identified, in which the 1Dx5+1Dy10 subunit, and NGli-D2 and Sec-1s genes were successfully polymerized to determine the role of gene pyramiding in wheat quality. In addition, the effects of ω-rye alkaloids during 1BL/1RS translocation on quality were eliminated by introducing and utilizing 1Dx5+1Dy10 subunits through gene pyramiding. Additionally, the content of alcohol-soluble proteins was reduced, the Glu/Gli ratio was increased and high-quality wheat lines were obtained. The sedimentation values and mixograph parameters of the gene pyramids under different genetic backgrounds were significantly increased. Among all the pyramids, the trigenic lines in Zhengmai 7698, which was the genetic background, had the highest sedimentation value. The mixograph parameters of the midline peak time (MPT), midline peak value (MPV), midline peak width (MPW), curve tail value (CTV), curve tail width (CTW), midline value at 8 min (MTxV), midline width at 8 min (MTxW) and midline integral at 8 min (MTxI) of the gene pyramids were markedly enhanced, especially in the trigenic lines. Therefore, the pyramiding processes of the 1Dx5+1Dy10, Sec-1S and NGli-D2 genes improved dough elasticity. The overall protein composition of the modified gene pyramids was better than that of the wild type. The Glu/Gli ratios of the type I digenic line and trigenic lines containing the NGli-D2 locus were higher than that of the type II digenic line without the NGli-D2 locus. The trigenic lines with Hengguan 35 as the genetic background had the highest Glu/Gli ratio among the specimens. The unextractable polymeric protein (UPP%) and Glu/Gli ratios of the type II digenic line and trigenic lines were significantly higher than those of the wild type. The UPP% of the type II digenic line was higher than that of the trigenic lines, while the Glu/Gli ratio was slightly lower than that of the trigenic lines. In addition, the celiac disease (CD) epitopes' level of the gene pyramids significantly decreased. The strategy and information reported in this study could be very useful for improving wheat processing quality and reducing wheat CD epitopes.
Collapse
Affiliation(s)
- Zhimu Bu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Gongyan Fang
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Haixia Yu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Dewei Kong
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Yanbing Huo
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyu Ma
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Chong
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Guan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Daxin Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Kexin Fan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Min Yan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Chengyang District, Qingdao 266109, China
| | - Jiansheng Chen
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
11
|
Branlard G, d'Orlando A, Tahir A, Schmutz M, Rhazi L, Faye A, Aussenac T. The conformation of glutenin polymers in wheat grain: some genetic and environmental factors associated with this important characteristic. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2653-2666. [PMID: 36629279 DOI: 10.1093/jxb/erad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/09/2023] [Indexed: 06/06/2023]
Abstract
In a previous study we used asymmetric-flow field-flow fractionation to determine the polymer mass (Mw), gyration radius (Rw) and the polydispersity index of glutenin polymers (GPs) in wheat (Triticum aestivum). Here, using the same multi-location trials (4 years, 11 locations, and 192 cultivars), we report the factors that are associated with the conformation (Conf) of the polymers, which is the slope of Log(Rw) versus a function of Log(Mw). We found that Conf varied between 0.285 and 0.740, it had low broad-sense heritability (H2=16.8), and it was significantly influenced by the temperature occurring over the last month of grain filling. Higher temperatures were found to increase Rw and the compactness and sphericity of GPs. Alleles for both high- and low-molecular-weight glutenin subunits had a significant influence on the Conf value. Assuming a Gaussian distribution for Mw, the number of polymers present in wheat grains was computed for different kernel weights and protein concentrations, and it was found to exceed 1012 GPs per grain. Using atomic force microscopy and cryo-TEM, images of GPs were obtained for the first time. Under higher average temperature, GPs became larger and more spherical and consequently less prone to rapid hydrolysis. We propose some orientations that could be aimed at potentially reducing the impact of numerous GPs on people suffering from non-celiac gluten sensitivity.
Collapse
Affiliation(s)
- Gérard Branlard
- The French National Research Institute for Agriculture, Food and the Environment (INRAE), UCA UMR1095 GDEC, 5 Chemin de Beaulieu, 63100 Clermont-Ferrand, France
| | - Angelina d'Orlando
- The French National Research Institute for Agriculture, Food and the Environment (INRAE), Unité BIA-Plateforme BIBS, 3 Impasse Yvette Cauchois, 44 316 Nantes, France
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, 45550 Islamabad, Pakistan
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron, 23 rue du Loess, B.P. 84047, 67034 Strasbourg Cedex, France
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| | - Annie Faye
- The French National Research Institute for Agriculture, Food and the Environment (INRAE), UCA UMR1095 GDEC, 5 Chemin de Beaulieu, 63100 Clermont-Ferrand, France
| | - Thierry Aussenac
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| |
Collapse
|
12
|
Zhou Y, Jin W, Duan M, She X, Zhu S, Zhou X, Song J, Zhu D. Effects of exogenous strain fermentation on protein structure and allergenicity of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients 2023; 15:nu15020373. [PMID: 36678244 PMCID: PMC9865409 DOI: 10.3390/nu15020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.
Collapse
|
14
|
A Prolyl Endopeptidase from Flammulina velutipes Degrades Celiac Disease-Inducing Peptides in Grain Flour Samples. Catalysts 2023. [DOI: 10.3390/catal13010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Celiac disease (CD) is an inflammatory disorder of the small intestine. Gluten peptides are supposed to be responsible for the reaction, the best-researched of which is the so-called ‘33-mer’. Analogous peptides in secalins (rye) and hordeins (barley) have been described. This study presents the degradation of gliadins, glutenins, hordeins and secalins purified from the respective flours using a prolyl endopeptidase from the Basidiomycete Flammulina velutipes (FvpP). The flour fractions were incubated with the enzyme, and the cleavage sites were determined using high-resolution nLC-qTOF-MS/MS. For the wheat samples, eight cleavage sites in the 33-mer peptide were shown, and all of the six described epitopes were successfully cleaved. For the commercially available prolyl-specific endopeptidase from Aspergillus niger (An-Pep), which was used as a control, only two cleavage sites that cleaved three of the six epitopes were identified. For the secalins, four prolyl-specific cleavage sites in the CD-active peptide QPFPQPQQPIPQ were found for the FvpP but none for the An-Pep. The CD-active peptide QPFPQPEQPFPW in C-hordein was cleaved at three prolyl-specific positions by the FvpP. The study proves the usability of FvpP to degrade CD-inducing peptides in real-grain flour samples and indicates its higher effectiveness compared with An-Pep. A clinical study would be required to assess the therapeutic or preventive potential of FvpP for CD.
Collapse
|
15
|
Shewry P. Wheat grain proteins: Past, present, and future. Cereal Chem 2023; 100:9-22. [PMID: 37064052 PMCID: PMC10087814 DOI: 10.1002/cche.10585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Abstract
Background and Objectives Research on wheat grain proteins is reviewed, including achievements over the past century and priorities for future research. The focus is on three groups of proteins that have major impacts on wheat quality and utilization: the gluten proteins which determine dough viscoelasticity but also trigger celiac disease in susceptible individuals, the puroindolines which are major determinants of grain texture and the amylase/trypsin inhibitors which are food and respiratory allergens and are implicated in triggering celiac disease and nonceliac wheat sensitivity. Findings Although earlier work focused on protein structure and properties, the development of genomics and high-sensitivity proteomics has resulted in the availability of a vast amount of information on the amino acid sequences of individual wheat proteins, including allelic variants of gluten proteins which are associated with good processing quality and of puroindolines, which are associated with a hard or soft grain texture, and on protein expression and polymorphism. Conclusions However, our ability to exploit this knowledge is limited by a lack of detailed understanding of the structure:function relationships of wheat proteins. In particular, we need to understand how the three-dimensional structures of the individual proteins determine their interactions with other grain components (to determine functional properties) and with the immune systems of susceptible consumers (to trigger adverse responses), how these interactions are affected by allelic variation, and how they can be manipulated. Significance and Novelty The article, therefore, identifies priorities for future research which should enable the adoption of a more rational approach to improving the quality of wheat grain proteins.
Collapse
|
16
|
Wieczorek M, Kowalczewski P, Drabińska N, Różańska M, Jeleń H. Effect of Cricket Powder Incorporation on the Profile of Volatile Organic Compounds, Free Amino Acids and Sensory Properties of Gluten-Free Bread. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/156404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Gell G, Karsai I, Berki Z, Horváth Á, Florides CG, Birinyi Z, Nagy-Réder D, Varga B, Cseh A, Békés F, Veisz O. Effect of additional water supply during grain filling on protein composition and epitope characteristics of winter oats. Curr Res Food Sci 2022; 5:2146-2161. [DOI: 10.1016/j.crfs.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
|
18
|
Sun C, Li X, Huang B, Li N, Wang A, An C, Jiang J, Shen Y, Wang C, Zhan S, Gooneratne R, Cui H, Wang Y. Construction and characterization of ethyl cellulose-based nano-delivery system for phenamacril. Int J Biol Macromol 2022; 221:1251-1258. [PMID: 36070820 DOI: 10.1016/j.ijbiomac.2022.08.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
Abstract
Fungicide-resistant Fusarium has become a threaten to wheat production. Novel fungicide formulations can improve the efficacy of active ingredient and minimize the emergence of resistance. Encapsulation of fungicides in biodegradable carriers, especially, in polysaccharide, is a feasible approach to develop environment-friendly and efficient formulation. This study focused on the synthesis of ethyl cellulose-based phenamacril nano-delivery system by combining emulsion-solvent evaporation and high-pressure homogenization technology to improve the control of fusarium head blight in wheat. Emulsifier 125 and Tersperse 2500 were screened from eleven commonly used surfactants. Emulsifier 125 and Tersperse 2500 in a ratio of 2:1 and phenamacril nanocapsules with the mean particle size of 152.5 ± 1.3 nm were prepared. These showed excellent storage stability and wettability on crop leaves. A bioassay comparing the nanocapsules with a commercial preparation against Fusarium graminearum showed significantly improved biological activity. This formulation could be used to effectively not only to control fusarium head blight but also delay the occurrence of resistance.
Collapse
Affiliation(s)
- Changjiao Sun
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Xingye Li
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Ningjun Li
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Anqi Wang
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Jiajun Jiang
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No.12 South Street of Zhongguancun, Haidian District, Beijing 100081, China.
| |
Collapse
|
19
|
Costantini A, Da Ros A, Nikoloudaki O, Montemurro M, Di Cagno R, Genot B, Gobbetti M, Giuseppe Rizzello C. How cereal flours, starters, enzymes, and process parameters affect the in vitro digestibility of sourdough bread. Food Res Int 2022; 159:111614. [DOI: 10.1016/j.foodres.2022.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
|
20
|
Actinidin reduces gluten-derived immunogenic peptides reaching the small intestine in an in vitro semi-dynamic gastrointestinal tract digestion model. Food Res Int 2022; 159:111560. [DOI: 10.1016/j.foodres.2022.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
|
21
|
Mollakhalili‐Meybodi N, Nejati R, Sayadi M, Nematollahi A. Novel nonthermal food processing practices: Their influences on nutritional and technological characteristics of cereal proteins. Food Sci Nutr 2022; 10:1725-1744. [PMID: 35702299 PMCID: PMC9179168 DOI: 10.1002/fsn3.2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cereals, as the main crops cultivated and consumed in the world, are a rich source of carbohydrates, proteins, dietary fiber, and minerals. Despite the nutritional importance, their technological applicability in food matrices is also considerably important to be determined. Cereal processing is done to achieve goals as increasing the shelf-life, obtaining the desired technological function, and enhancing the nutritional value. Nonthermal processing is preferred regarding its potential to provide beneficial impacts with minimum adverse effect. Technological functionality and nutritional performance are considered as the most basic challenges through cereal processing, with proteins as the main factor to take part in such roles. Technological and nutritional functionalities of proteins have been found to be changed through nonthermal processing, which is generally attributed to conformational and structural changes. Therefore, this study is aimed to investigate the impact of nonthermal processing on nutritional and technological characteristics of cereal proteins.
Collapse
Affiliation(s)
- Neda Mollakhalili‐Meybodi
- Department of Food Sciences and TechnologySchool of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and SafetyShahid Sadoughi University of Medical SciencesYazdIran
| | - Roghayeh Nejati
- Department of Food Safety and HygieneSchool of HealthFasa University of Medical SciencesFasaIran
| | - Mehran Sayadi
- Department of Food Safety and HygieneSchool of HealthFasa University of Medical SciencesFasaIran
| | - Amene Nematollahi
- Department of Food Safety and HygieneSchool of HealthFasa University of Medical SciencesFasaIran
| |
Collapse
|
22
|
Zhang M, Jia R, Ma M, Yang T, Sun Q, Li M. Versatile wheat gluten: functional properties and application in the food-related industry. Crit Rev Food Sci Nutr 2022; 63:10444-10460. [PMID: 35608010 DOI: 10.1080/10408398.2022.2078785] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gluten is a key component that allows wheat flour to form a dough, and it is also a byproduct of the production of wheat starch. As a commercial product, wheat gluten is increasingly used in the food-related industry because of its versatile functional properties and wide range of sources. Wheat gluten is manufactured industrially on a large scale through the Martin process and batter process and variants thereof. Gliadin and glutenin impart cohesiveness and elasticity properties, respectively, to wheat gluten. The formation of gluten networks and polymers depends mainly on covalent bonds (disulfide bonds) and noncovalent bonds (ionic bonds, hydrogen bonds, and hydrophobic interactions). The multifunctional properties (viscoelasticity, gelation, foamability, etc.) of wheat gluten are shown by rehydration and other processing techniques. Wheat gluten has been widely used in wheat-based products, food auxiliary agents, food packaging, encapsulation and release of food functional ingredients, food adsorption and heat insulation materials, special purpose foods, and versatile applications. In the future, wheat gluten protein will be used as an important raw material to participate in the development and preparation of various food and degradable materials, and the application potential of wheat gluten in food-related industries will be massive. This review summarizes the main manufacturing processes, composition, and structure of gluten protein, and the various functional properties that support its application in the food and related industries.
Collapse
Affiliation(s)
- Mengli Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P.R. China
| | - Ruobing Jia
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P.R. China
| | - Meng Ma
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P.R. China
- United States Department of Agriculture-Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
| | - Tianbao Yang
- United States Department of Agriculture-Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P.R. China
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, P.R. China
| |
Collapse
|
23
|
Fu W, Chen C, Xie Q, Gu S, Tao S, Xue W. Pediococcus acidilactici Strain Alleviates Gluten-Induced Food Allergy and Regulates Gut Microbiota in Mice. Front Cell Infect Microbiol 2022; 12:845142. [PMID: 35531345 PMCID: PMC9072736 DOI: 10.3389/fcimb.2022.845142] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat flour, the most important source of food globally, is also one of the most common causative agents of food allergy. Wheat gluten protein, which accounts for 80% of the total wheat protein, is a major determinant of important wheat-related disorders. In this study, the effects of Pediococcus acidilactici XZ31 against gluten-induced allergy were investigated in a mouse model. The oral administration of P. acidilactici XZ31 attenuated clinical and intestinal allergic responses in allergic mice. Further results showed that P. acidilactici XZ31 regulated Th1/Th2 immune balance toward Th1 polarization, which subsequently induced a reduction in gluten-specific IgE production. We also found that P. acidilactici XZ31 modulated gut microbiota homeostasis by balancing the Firmicutes/Bacteroidetes ratio and increasing bacterial diversity and the abundance of butyrate-producing bacteria. Specifically, the abundance of Firmicutes and Erysipelotrichaceae is positively correlated with concentrations of gluten-specific IgE and may act as a fecal biomarker for diagnosis. The evidence for the role of P. acidilactici XZ31 in alleviating gluten-induced allergic responses sheds light on the application of P. acidilactici XZ31 in treating wheat allergy.
Collapse
Affiliation(s)
- Wenhui Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sha Tao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Wentong Xue, ;
| |
Collapse
|
24
|
Zhu X, Zhao XH, Zhang Q, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. How does a celiac iceberg really float? The relationship between celiac disease and gluten. Crit Rev Food Sci Nutr 2022; 63:9233-9261. [PMID: 35435771 DOI: 10.1080/10408398.2022.2064811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Qiang Zhang
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Zhou Z, Geng S, Guan H, Liu C, Qin M, Li W, Shi X, Dai Z, Yao W, Lei Z, Wu Z, Hou J. Dissection of the Genetic Architecture for Quantities of Gliadins Fractions in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:826909. [PMID: 35401644 PMCID: PMC8988047 DOI: 10.3389/fpls.2022.826909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiyue Guan
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
26
|
Yao Y, Jia Y, Lu X, Li H. Release and conformational changes in allergenic proteins from wheat gluten induced by high hydrostatic pressure. Food Chem 2022; 368:130805. [PMID: 34404002 DOI: 10.1016/j.foodchem.2021.130805] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
The gluten proteins of wheat are major causative agents of harmful immune responses. This study investigated the effects of high hydrostatic pressure (200, 300, 400, and 500 MPa), treatment time (5-25 min) and protein concentration (1%-5% protein weight/volume) on the structures underlying the allergenicity wheat gluten. The results showed that a combination of 400 MPa, 20 min treatment time and 3% protein reduced the wheat gluten allergenicity by 72.2%. Moreover, a Western blotting showed that the allergenicity of 26, 28, 48, 68 kDa and high molecular weight glutenin was sharply reduced. Fourier infrared spectroscopy and surface hydrophobicity indicated that gluten molecules aggregated after HHP treatment. Intermolecular forces indicated that gluten aggregated mainly through hydrophobic interactions and disulfide bonds but not by hydrogen bonds after HHP treatment. These results suggest that structural changes contributed to the reduction of wheat gluten allergenicity and that HHP may enhance safety for susceptible individuals.
Collapse
Affiliation(s)
- Yaya Yao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), China
| | - Xuerui Lu
- Beijing Dongfu Jiuheng Instrument Technology Co., Ltd., China
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), China.
| |
Collapse
|
27
|
Peng Y, Zhao Y, Yu Z, Zeng J, Xu D, Dong J, Ma W. Wheat Quality Formation and Its Regulatory Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:834654. [PMID: 35432421 PMCID: PMC9006054 DOI: 10.3389/fpls.2022.834654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
Elucidation of the composition, functional characteristics, and formation mechanism of wheat quality is critical for the sustainable development of wheat industry. It is well documented that wheat processing quality is largely determined by its seed storage proteins including glutenins and gliadins, which confer wheat dough with unique rheological properties, making it possible to produce a series of foods for human consumption. The proportion of different gluten components has become an important target for wheat quality improvement. In many cases, the processing quality of wheat is closely associated with the nutritional value and healthy effect of the end-products. The components of wheat seed storage proteins can greatly influence wheat quality and some can even cause intestinal inflammatory diseases or allergy in humans. Genetic and environmental factors have great impacts on seed storage protein synthesis and accumulation, and fertilization and irrigation strategies also greatly affect the seed storage protein content and composition, which together determine the final end-use quality of wheat. This review summarizes the recent progress in research on the composition, function, biosynthesis, and regulatory mechanism of wheat storage proteins and their impacts on wheat end-product quality.
Collapse
Affiliation(s)
- Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yun Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zitong Yu
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Wujun Ma,
| |
Collapse
|
28
|
Homem RV, Doneda D, Kist TL, Venzke JG, da Silva VL, de Oliveira VR. Influence of tef flour and its association with other flours on the nutritional, technological, and sensory quality of bakery products. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Raisa Vieira Homem
- Postgraduate Program in Food Nutrition and Health – Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília Porto Alegre RS 90035‐003 Brazil
| | - Divair Doneda
- Department of Nutrition Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília Porto Alegre RS 90035‐003 Brazil
| | - Tarso Ledur Kist
- Department of Biophysics Institute of Biosciences Federal University of Rio Grande do Sul (UFRGS) Av. Bento Gonçalves Porto Alegre RS 9500 ‐ 91501‐970 Brazil
| | - Janaína Guimarães Venzke
- Department of Nutrition Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília Porto Alegre RS 90035‐003 Brazil
| | - Vanuska Lima da Silva
- Postgraduate Program in Food Nutrition and Health – Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília Porto Alegre RS 90035‐003 Brazil
- Department of Nutrition Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília Porto Alegre RS 90035‐003 Brazil
| | - Viviani Ruffo de Oliveira
- Postgraduate Program in Food Nutrition and Health – Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília Porto Alegre RS 90035‐003 Brazil
- Department of Nutrition Federal University of Rio Grande do Sul (UFRGS) Ramiro Barcelos Street, 2400, Santa Cecília Porto Alegre RS 90035‐003 Brazil
| |
Collapse
|
29
|
Delving into the Role of Dietary Fiber in Gluten-Free Bread Formulations: Integrating Fundamental Rheological, Technological, Sensory, and Nutritional Aspects. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides3010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The evidenced relevance of dietary fibers (DF) as functional ingredients shifted the research focus towards their incorporation into gluten-free (GF) bread, aiming to attain the DF contents required for the manifestation of health benefits. Numerous studies addressing the inclusion of DF from diverse sources rendered useful information regarding the role of DF in GF batter’s rheological properties, as well as the end product’s technological and nutritional qualities. The presented comprehensive review aspires to provide insight into the changes in fiber-enriched GF batter’s fundamental rheological properties, and technological, sensory, and nutritional GF bread quality from the insoluble and soluble DF (IDF and SDF) perspective. Different mechanisms for understanding IDF and SDF action on GF batter and bread were discussed. In general, IDF and SDF can enhance, but also diminish, the properties of GF batter and bread, depending on their addition level and the presence of available water in the GF system. However, it was seen that SDF addition provides a more homogenous GF batter structure, leading to bread with higher volumes and softer crumb, compared to IDF. The sensory properties of fiber-enriched GF breads were acceptable in most cases when the inclusion level was up to 7 g/100 g, regardless of the fiber type, enabling the labeling of the bread as a source of fiber.
Collapse
|
30
|
Marjanović-Balaban Ž, Cvjetković VG, Grujić R. Gliadin proteins from wheat flour: the optimal determination conditions by ELISA. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-364-370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. The number of people with celiac disease is rapidly increasing. Gluten, is one of the most common food allergens, consists of two fractions: gliadins and glutenins. The research objective was to determine the optimal conditions for estimating gliadins by using enzyme-linked immunosorbent assay (ELISA).
Study objects and methods. The experiment involved wheat flour samples (0.10; 0.20, 0.25, 0.50, and 1.0 g) suspended in different solvents (ethanol, methanol, 1-propanol, and isopropanol) of different concentrations (40, 50, 60, 70, 80, and 90% v/v). The samples were diluted with Tris buffer in ratios of 1:50, 1:100, 1:150, and 1:200. The gliadin test was performed using a Gliadin/Gluten Biotech commercial ELISA kit (Immunolab).
Results and discussion. The optimal conditions for determining gliadin proteins that provided the highest gliadin concentration were: solvent – 70% v/v ethanol, extract:Tris buffer ratio – 1:50, and sample weight – 1.0 g.
Conclusion. The obtained results can be of great importance to determine gliadin/gluten concentrations in food products by rapid analysis methods.
Collapse
|
31
|
Laczkowski MS, Baqueta MR, de Oliveira VMAT, Gonçalves TR, Gomes STM, Março PH, Matsushita M, Valderrama P. Application of chemometric tools in the development and sensory evaluation of gluten-free cracknel biscuits with the addition of chia seeds and turmeric powder. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4118-4126. [PMID: 34538896 DOI: 10.1007/s13197-020-04874-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Gluten-free biscuits were developed with the addition of chia seeds (Salvia hispanica L.) and turmeric powder. An experimental design 22 were employed in the formulation optimization that promotes better sensory acceptance through acceptance test with a hedonic scale of 9 points. For characterization purposes, the centesimal composition from chia seeds and the turmeric powder were determined. The biscuits were produced from an optimized formulation with and without chia seeds and turmeric powder with microbiological results safe for consumption by evaluation Salmonella sp., positive coagulase Staphylococcus, and Coliforms to 45 °C. The Principal Components Analysis (PCA) was used in the investigation of sensory results (color, flavor, texture, smell, appearance, overall impression). It was also considered the habits of consuming food with/without gluten, purchase intentions, including age and gender. The results show that there is no distinction between the biscuits with the addition of chia seeds and turmeric powder. A statistical test using the confidence ellipse confirms that there no significant difference, at a 95% confidence level, among the sensory results for the biscuits with and without chia seeds and turmeric powder.
Collapse
Affiliation(s)
- Mirian S Laczkowski
- UEM - Universidade Estadual de Maringá, Maringá, Paraná CEP 87020-900 Brazil
| | - Michel R Baqueta
- UTFPR - Universidade Tecnológica Federal do Paraná, P.O. Box 271, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Vitória M A T de Oliveira
- UTFPR - Universidade Tecnológica Federal do Paraná, P.O. Box 271, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Thays R Gonçalves
- UEM - Universidade Estadual de Maringá, Maringá, Paraná CEP 87020-900 Brazil
| | - Sandra T M Gomes
- UEM - Universidade Estadual de Maringá, Maringá, Paraná CEP 87020-900 Brazil
| | - Paulo H Março
- UTFPR - Universidade Tecnológica Federal do Paraná, P.O. Box 271, Campo Mourão, Paraná CEP 87301-899 Brazil
| | - Makoto Matsushita
- UEM - Universidade Estadual de Maringá, Maringá, Paraná CEP 87020-900 Brazil
| | - Patrícia Valderrama
- UTFPR - Universidade Tecnológica Federal do Paraná, P.O. Box 271, Campo Mourão, Paraná CEP 87301-899 Brazil
| |
Collapse
|
32
|
Gell G, Bugyi Z, Florides CG, Birinyi Z, Réder D, Szegő Z, Mucsi E, Schall E, Ács K, Langó B, Purgel S, Simon K, Varga B, Vida G, Veisz O, Tömösközi S, Békés F. Investigation of Protein and Epitope Characteristics of Oats and Its Implications for Celiac Disease. Front Nutr 2021; 8:702352. [PMID: 34660657 PMCID: PMC8511309 DOI: 10.3389/fnut.2021.702352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
The use of pure oats (oats cultivated with special care to avoid gluten contamination from wheat, rye, and barley) in the gluten-free diet (GFD) represents important nutritional benefits for the celiac consumer. However, emerging evidence suggests that some oat cultivars may contain wheat gliadin analog polypeptides. Consequently, it is necessary to screen oats in terms of protein and epitope composition to be able to select safe varieties for gluten-free applications. The overall aim of our study is to investigate the variability of oat protein composition directly related to health-related and techno-functional properties. Elements of an oat sample population representing 162 cultivated varieties from 20 countries and the protein composition of resulting samples have been characterized. Size distribution of the total protein extracts has been analyzed by size exclusion-high performance liquid chromatography (SE-HPLC) while the 70% ethanol-extracted proteins were analyzed by RP-HPLC. Protein extracts separated into three main groups of fractions on the SE-HPLC column: polymeric proteins, avenins (both containing three subgroups based on their size), and soluble proteins, representing respectively 68.79–86.60, 8.86–27.72, and 2.89–11.85% of the total protein content. The ratio of polymeric to monomeric proteins varied between 1.37 and 3.73. Seventy-six reversed phase-HPLC-separated peaks have been differentiated from the ethanol extractable proteins of the entire population. Their distribution among the cultivars varied significantly, 6–23 peaks per cultivar. The number of appearances of peaks also showed large variation: one peak has been found in 107 samples, while 15 peaks have been identified, which appeared in less than five cultivars. An estimation method for ranking the avenin-epitope content of the samples has been developed by using MS spectrometric data of collected RP-HPLC peaks and bioinformatics methods. Using ELISA methodology with the R5 antibody, a high number of the investigated samples were found to be contaminated with wheat, barley, or rye.
Collapse
Affiliation(s)
- Gyöngyvér Gell
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, EötvösLoránd Research Network, Martonvásár, Hungary.,Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsuzsanna Bugyi
- Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Zsófia Birinyi
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, EötvösLoránd Research Network, Martonvásár, Hungary
| | - Dalma Réder
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, EötvösLoránd Research Network, Martonvásár, Hungary
| | - Zsuzsanna Szegő
- Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edina Mucsi
- Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest University of Technology and Economics, Budapest, Hungary
| | - Eszter Schall
- Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest University of Technology and Economics, Budapest, Hungary
| | - Katalin Ács
- Cereal Research Non-Profit Ltd., Szeged, Hungary
| | | | | | | | - Balázs Varga
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, EötvösLoránd Research Network, Martonvásár, Hungary
| | - Gyula Vida
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, EötvösLoránd Research Network, Martonvásár, Hungary
| | - Ottó Veisz
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, EötvösLoránd Research Network, Martonvásár, Hungary
| | - Sándor Tömösközi
- Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest University of Technology and Economics, Budapest, Hungary
| | | |
Collapse
|
33
|
Urrego MIG, Pedreira RS, Santos KDM, Ernandes MC, Santos JPF, Vendramini THA, Eberlin MN, Balieiro JCDC, Pontieri CFF, Brunetto MA. Dietary protein sources and their effects on faecal odour and the composition of volatile organic compounds in faeces of French Bulldogs. J Anim Physiol Anim Nutr (Berl) 2021; 105 Suppl 1:65-75. [PMID: 34622486 DOI: 10.1111/jpn.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023]
Abstract
The strong odour of faeces and excessive production of gases in some dog breeds have long been a concern of owners. The pet food industry uses nutritional alternatives, such as high-quality ingredients and additives, to improve the odour of faeces. However, there are still some dog breeds, such as the French Bulldog, that present this problem due to the presence into the large intestine of indigested protein. Therefore, a deeper understanding of the volatile compounds that influence the odour of dog faeces is important. This study aimed to identify changes of faecal odour compounds that are most prevalent in French Bulldogs based on food containing different high-quality protein sources and their effect in sensory analysis. Four maintenance foods with different protein sources were formulated: P, poultry meal food; W, wheat gluten food; PW, poultry meal and wheat gluten food; and PWH, poultry meal, wheat gluten, and hydrolysed protein food. Eight adult French Bulldogs were arranged in a 4x4 Latin square design and adapted to foods for 28 days. Fresh faeces were collected for analysis of volatile organic compounds (VOCs) and sensory analysis. The means were compared by SAS, and statistical significance was indicated by p ≤ 0.05. No adverse effects were observed in the animals regarding VOCs, and a significant difference was observed in two of the 68 compounds identified. The animals fed a P food had higher concentrations of phenol in the faeces, whereas the indole compound was present at higher concentrations in animals fed the W food. P food was associated with higher odour perception during sensory evaluation. In summary, the source of protein in the foods had little impact on the composition of VOCs, and a greater perception of the odour was determined by sensory analysis when foods containing animal protein were administered.
Collapse
Affiliation(s)
| | | | - Karine de Melo Santos
- Animal Nutrition and Production Department, School of Veterinary Medicine and Animal Science, Pet Nutrology Research Center, University of São Paulo (USP), Pirassununga, Brazil
| | - Mariane Ceschin Ernandes
- Animal Nutrition and Production Department, School of Veterinary Medicine and Animal Science, Pet Nutrology Research Center, University of São Paulo (USP), Pirassununga, Brazil
| | - João Paulo Fernandes Santos
- Animal Nutrition and Production Department, School of Veterinary Medicine and Animal Science, Pet Nutrology Research Center, University of São Paulo (USP), Pirassununga, Brazil
| | - Thiago Henrique Annibale Vendramini
- Animal Nutrition and Production Department, School of Veterinary Medicine and Animal Science, Pet Nutrology Research Center, University of São Paulo (USP), Pirassununga, Brazil
| | - Marcos Nogueira Eberlin
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Julio Cesar de Carvalho Balieiro
- Animal Nutrition and Production Department, School of Veterinary Medicine and Animal Science, Pet Nutrology Research Center, University of São Paulo (USP), Pirassununga, Brazil
| | | | - Marcio Antonio Brunetto
- College of Animal Science and Food Engineering, Sao Paulo State University, Pirassununga, Brazil
| |
Collapse
|
34
|
Comettant-Rabanal R, Carvalho CWP, Ascheri JLR, Chávez DWH, Germani R. Extruded whole grain flours and sprout millet as functional ingredients for gluten-free bread. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Akhtar A, Aslam S, Khan S, McClements DJ, Khalid N, Maqsood S. Utilization of diverse protein sources for the development of protein-based nanostructures as bioactive carrier systems: A review of recent research findings (2010-2021). Crit Rev Food Sci Nutr 2021; 63:2719-2737. [PMID: 34565242 DOI: 10.1080/10408398.2021.1980370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Consumer awareness of the relationship between health and nutrition has caused a substantial increase in the demand for nutraceuticals and functional foods containing bioactive compounds (BACs) with potential health benefits. However, the direct incorporation of many BACs into commercial food and beverage products is challenging because of their poor matrix compatibility, chemical instability, low bioavailability, or adverse impact on food quality. Advanced encapsulation technologies are therefore being employed to overcome these problems. In this article, we focus on the utilization of plant and animal derived proteins to fabricate micro and nano-particles that can be used for the oral delivery of BACs such as omega-3 oils, vitamins and nutraceuticals. This review comprehensively discusses different methods being implemented for fabrications of protein-based delivery vehicles, types of proteins used, and their compatibility for the purpose. Finally, some of the challenges and limitations of different protein matrices for encapsulation of BACs are deliberated upon. Various approaches have been developed for the fabrication of protein-based microparticles and nanoparticles, including injection-gelation, controlled denaturation, and antisolvent precipitation methods. These methods can be used to construct particle-based delivery systems with different compositions, sizes, surface hydrophobicity, and electrical characteristics, thereby enabling them to be used in a wide range of applications.
Collapse
Affiliation(s)
- Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sadia Aslam
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
36
|
Gazikalović I, Mijalković J, Šekuljica N, Luković N, Jakovetić Tanasković S, Culetu A, Knežević‐Jugović Z. Hydrolysis of soft wheat flour: Enhanced functional properties and the effect of starch on allergenicity reduction. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivana Gazikalović
- Innovation Center of Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| | - Jelena Mijalković
- Department of Biotechnology and Biochemical Engineering Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| | - Nataša Šekuljica
- Innovation Center of Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| | - Nevena Luković
- Department of Biotechnology and Biochemical Engineering Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| | - Sonja Jakovetić Tanasković
- Department of Biotechnology and Biochemical Engineering Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| | - Alina Culetu
- National Institute of Research & Development for Food Bioresources – IBA Bucharest Bucharest Romania
| | - Zorica Knežević‐Jugović
- Department of Biotechnology and Biochemical Engineering Faculty of Technology and Metallurgy University of Belgrade Belgrade Serbia
| |
Collapse
|
37
|
Gazikalović I, Mijalković J, Šekuljica N, Jakovetić Tanasković S, Đukić Vuković A, Mojović L, Knežević-Jugović Z. Synergistic Effect of Enzyme Hydrolysis and Microwave Reactor Pretreatment as an Efficient Procedure for Gluten Content Reduction. Foods 2021; 10:foods10092214. [PMID: 34574324 PMCID: PMC8469833 DOI: 10.3390/foods10092214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, we assessed the effects of microwave irradiation of wheat gluten proteins as a pretreatment performed in a microwave reactor that could accurately control process parameters as a function of power and temperature, as well as comparing it with conventional heat treatment. The aim was to identify suitable combinations of partial enzymatic hydrolysis and microwave pretreatment parameters to produce gluten hydrolysates with reduced allergenicity and conserved techno-functional features for food application. FTIR analysis, and total and reactive SH group contents confirmed that the microwave-controlled heating can significantly change the secondary structure and conformation of gluten protein. The microwave treatment had the largest effect at 200 W and 100 °C, at which the content of gluten has been reduced by about 2.5-fold. The microwave pretreatment also accelerated the enzymatic hydrolysis of gluten, changing the kinetic profile. The apparent hydrolysis rate constants (k2) were 1.00, 3.68, 3.48, 4.64 and 4.17 min−1 for untreated gluten, and those pretreated with microwave power of 200, 400, 600 and 800 W, respectively. Compared to the heat treatment, it appeared that microwave specific non-thermal effects had a significant influence on the gluten structure and allergenicity and, in combination with the enzymatic hydrolysis, ultimately yielded protein hydrolysates with enhanced antioxidant and functional properties.
Collapse
Affiliation(s)
- Ivana Gazikalović
- Innovation Center, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia; (I.G.); (N.Š.)
| | - Jelena Mijalković
- Department of Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.); (S.J.T.); (A.Đ.V.); (L.M.)
| | - Nataša Šekuljica
- Innovation Center, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia; (I.G.); (N.Š.)
| | - Sonja Jakovetić Tanasković
- Department of Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.); (S.J.T.); (A.Đ.V.); (L.M.)
| | - Aleksandra Đukić Vuković
- Department of Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.); (S.J.T.); (A.Đ.V.); (L.M.)
| | - Ljiljana Mojović
- Department of Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.); (S.J.T.); (A.Đ.V.); (L.M.)
| | - Zorica Knežević-Jugović
- Department of Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (J.M.); (S.J.T.); (A.Đ.V.); (L.M.)
- Correspondence:
| |
Collapse
|
38
|
Halstead-Nussloch G, Tanaka T, Copetti D, Paape T, Kobayashi F, Hatakeyama M, Kanamori H, Wu J, Mascher M, Kawaura K, Shimizu KK, Handa H. Multiple Wheat Genomes Reveal Novel Gli-2 Sublocus Location and Variation of Celiac Disease Epitopes in Duplicated α-Gliadin Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:715985. [PMID: 34539709 PMCID: PMC8446623 DOI: 10.3389/fpls.2021.715985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 05/28/2023]
Abstract
The seed protein α-gliadin is a major component of wheat flour and causes gluten-related diseases. However, due to the complexity of this multigene family with a genome structure composed of dozens of copies derived from tandem and genome duplications, little was known about the variation between accessions, and thus little effort has been made to explicitly target α-gliadin for bread wheat breeding. Here, we analyzed genomic variation in α-gliadins across 11 recently published chromosome-scale assemblies of hexaploid wheat, with validation using long-read data. We unexpectedly found that the Gli-B2 locus is not a single contiguous locus but is composed of two subloci, suggesting the possibility of recombination between the two during breeding. We confirmed that the number of immunogenic epitopes among 11 accessions varied. The D subgenome of a European spelt line also contained epitopes, in agreement with its hybridization history. Evolutionary analysis identified amino acid sites under diversifying selection, suggesting their functional importance. The analysis opens the way for improved grain quality and safety through wheat breeding.
Collapse
Affiliation(s)
- Gwyneth Halstead-Nussloch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Tsuyoshi Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Brookhaven National Laboratory, Upton, NY, United States
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
39
|
Ma F, Baik BK. Influences of grain and protein characteristics on in vitro protein digestibility of modern and ancient wheat species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4578-4584. [PMID: 33474737 DOI: 10.1002/jsfa.11100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The resistance of proteins to gastrointestinal digestion contributes to their ability to act as allergens. Near-complete digestion of protein in wheat products is important with respect to avoiding the potential immunogenic effects of undigested peptides. Five modern US wheat classes (soft red winter, hard winter, hard red spring, club and durum) including 17 wheat varieties, as well as three ancient wheat classes (spelt, emmer and einkorn) including nine wheat varieties, were analyzed for kernel hardness (KH) and flour protein characteristics, in addition to in vitro protein digestibility (IVPD) of cooked flour, flour without albumins and globulins (FWOAG), gluten, albumins, and globulins, aiming to identify the factors influencing the protein digestibility of flour. RESULTS IVPDs of flour, FWOAG, gluten and albumins of wheat varieties ranged from 86.5% to 92.3%, 85.8% to 90.3%, 90.6% to 94.6% and 74.8% to 85.1%, respectively. The IVPD of gluten was significantly higher than the IVPDs of flour and FWOAG, indicating that non-protein components substantially affect protein digestibility. Significant differences were observed in IVPDs of flour and albumins among eight wheat classes, but not in the IVPDs of FWOAG, gluten and globulins. There were apparent differences in undigested protein bands and intensities of wheat classes with low and high flour IVPDs. KH and albumin proportion exhibited negative and positive relationships, respectively, with flour IVPD. CONCLUSION The results of the present study demonstrate that KH, non-protein components and albumin proportion have a major influence on protein digestion and need to be considered when developing wheat cultivars with higher protein digestibility.
Collapse
Affiliation(s)
- Fengyun Ma
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, Soft Wheat Quality Laboratory, Wooster, OH, USA
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, USA
| | - Byung-Kee Baik
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, Soft Wheat Quality Laboratory, Wooster, OH, USA
| |
Collapse
|
40
|
Yu Z, She M, Zheng T, Diepeveen D, Islam S, Zhao Y, Zhang Y, Tang G, Zhang Y, Zhang J, Blanchard CL, Ma W. Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Commun Biol 2021; 4:945. [PMID: 34362999 PMCID: PMC8346565 DOI: 10.1038/s42003-021-02458-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Two challenges that the global wheat industry is facing are a lowering nitrogen-use efficiency (NUE) and an increase in the reporting of wheat-protein related health issues. Sulphur deficiencies in soil has also been reported as a global issue. The current study used large-scale field and glasshouse experiments to investigate the sulphur fertilization impacts on sulphur deficient soil. Here we show that sulphur addition increased NUE by more than 20% through regulating glutamine synthetase. Alleviating the soil sulphur deficiency highly significantly reduced the amount of gliadin proteins indicating that soil sulphur levels may be related to the biosynthesis of proteins involved in wheat-induced human pathologies. The sulphur-dependent wheat gluten biosynthesis network was studied using transcriptome analysis and amino acid metabolomic pathway studies. The study concluded that sulphur deficiency in modern farming systems is not only having a profound negative impact on productivity but is also impacting on population health.
Collapse
Affiliation(s)
- Zitong Yu
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Ting Zheng
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Triticeas Research Institute, Sichuan Agriculture University, Chengdu, China
| | - Dean Diepeveen
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Shahidul Islam
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Yun Zhao
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Yingquan Zhang
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guixiang Tang
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yujuan Zhang
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Christopher L Blanchard
- ARC Industrial Transformation Training Centre for Functional Grain, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Wujun Ma
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.
| |
Collapse
|
41
|
Geisslitz S, Shewry P, Brouns F, America AHP, Caio GPI, Daly M, D'Amico S, De Giorgio R, Gilissen L, Grausgruber H, Huang X, Jonkers D, Keszthelyi D, Larré C, Masci S, Mills C, Møller MS, Sorrells ME, Svensson B, Zevallos VF, Weegels PL. Wheat ATIs: Characteristics and Role in Human Disease. Front Nutr 2021; 8:667370. [PMID: 34124122 PMCID: PMC8192694 DOI: 10.3389/fnut.2021.667370] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Amylase/trypsin-inhibitors (ATIs) comprise about 2-4% of the total wheat grain proteins and may contribute to natural defense against pests and pathogens. However, they are currently among the most widely studied wheat components because of their proposed role in adverse reactions to wheat consumption in humans. ATIs have long been known to contribute to IgE-mediated allergy (notably Bakers' asthma), but interest has increased since 2012 when they were shown to be able to trigger the innate immune system, with attention focused on their role in coeliac disease which affects about 1% of the population and, more recently, in non-coeliac wheat sensitivity which may affect up to 10% of the population. This has led to studies of their structure, inhibitory properties, genetics, control of expression, behavior during processing, effects on human adverse reactions to wheat and, most recently, strategies to modify their expression in the plant using gene editing. We therefore present an integrated account of this range of research, identifying inconsistencies, and gaps in our knowledge and identifying future research needs. Note This paper is the outcome of an invited international ATI expert meeting held in Amsterdam, February 3-5 2020.
Collapse
Affiliation(s)
- Sabrina Geisslitz
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Fred Brouns
- Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Antoine H. P. America
- BU Bioscience, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Giacomo Pietro Ismaele Caio
- Department of Morphology, Surgery and Experimental Medicine, St. Anna Hospital, University of Ferrara, Ferrara, Italy
| | - Matthew Daly
- Division of Infection, Immunity and Respiratory Medicine, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Stefano D'Amico
- Institute for Animal Nutrition and Feed, AGES - Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Roberto De Giorgio
- Division of Infection, Immunity and Respiratory Medicine, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Luud Gilissen
- Wageningen University and Research, Plant Breeding, Wageningen, Netherlands
| | - Heinrich Grausgruber
- Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Xin Huang
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Daisy Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine and School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine and School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Colette Larré
- INRAE UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, Nantes, France
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, Viterbo, Italy
| | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Marie Sofie Møller
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Mark E. Sorrells
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, United States
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Victor F. Zevallos
- Nutrition and Food Research Group, Department of Applied and Health Sciences, University of Northumbria, Newcastle Upon Tyne, United Kingdom
| | - Peter Louis Weegels
- Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
42
|
Cao W, Baumert JL, Downs ML. Tracking Gluten throughout Brewing Using N-Terminal Labeling Mass Spectrometry. J Proteome Res 2021; 20:3230-3241. [PMID: 34029081 DOI: 10.1021/acs.jproteome.1c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gluten-containing grains cause adverse health effects in individuals with celiac disease. Fermentation of these grains results in gluten-derived polypeptides with largely uncharacterized sizes and sequences, which may still trigger an immune response. This research used N-terminal labeling mass spectrometry to characterize protein hydrolysates during each stage of bench-scale brewing, including malting, mashing, boiling, fermentation, and aging. Gluten hydrolysates from each brewing step were tracked, and the immunotoxic potential was evaluated by sequence comparison with peptides known to stimulate celiac immune responses. The results indicate that proteolysis and precipitation of gliadins occurring during brewing differ by protein region and brewing stage. The termini of gliadins were hydrolyzed throughout the entire brewing process, but the central regions remained relatively stable. Most hydrolysis occurred during malting, and most precipitation occurred during boiling. The addition of yeast yielded new cleavage sites but did not result in complete hydrolysis. Consistent detection of peptides within the clinically important regions of gliadin corroborated the hydrolytic resistance of this region. N-terminal labeling mass spectrometry served as a novel approach to track the fate of gliadin/gluten throughout bench-scale brewing. Consistently identified fragments could serve as improved targets for the detection of hydrolyzed gluten in fermented products.
Collapse
Affiliation(s)
- Wanying Cao
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| | - Joseph L Baumert
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| | - Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, Food Innovation Center, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
43
|
Kõiv V, Tenson T. Gluten-degrading bacteria: availability and applications. Appl Microbiol Biotechnol 2021; 105:3045-3059. [PMID: 33837830 PMCID: PMC8053163 DOI: 10.1007/s00253-021-11263-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Gluten is a mixture of storage proteins in wheat and occurs in smaller amounts in other cereal grains. It provides favorable structure to bakery products but unfortunately causes disease conditions with increasing prevalence. In the human gastrointestinal tract, gluten is cleaved into proline and gluten rich peptides that are not degraded further. These peptides trigger immune responses that might lead to celiac disease, wheat allergy, and non-celiac gluten sensitivity. The main treatment option is a gluten-free diet. Alternatively, using enzymes or microorganisms with gluten-degrading properties might alleviate the disease. These components can be used during food production or could be introduced into the digestive tract as food supplements. In addition, natural food from the environment is known to enrich the microbial communities in gut and natural environmental microbial communities have high potential to degrade gluten. It remains to be investigated if food and environment-induced changes in the gut microbiome could contribute to the triggering of gluten-related diseases. KEY POINTS: • Wheat proteins, gluten, are incompletely digested in human digestive tract leading to gluten intolerance. • The only efficient treatment of gluten intolerance is life-long gluten-free diet. • Environmental bacteria acquired together with food could be source of gluten-degrading bacteria detoxifying undigested gluten peptides.
Collapse
Affiliation(s)
- Viia Kõiv
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
44
|
Fu W, Liu C, Meng X, Tao S, Xue W. Co-culture fermentation of Pediococcus acidilactici XZ31 and yeast for enhanced degradation of wheat allergens. Int J Food Microbiol 2021; 347:109190. [PMID: 33836445 DOI: 10.1016/j.ijfoodmicro.2021.109190] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Previous researchers have shown the potential of sourdough and isolated lactic acid bacteria in reducing wheat allergens. As the interactions of lactic acid bacteria with yeast is a key event in sourdough fermentation, we wished to investigate how yeast affects metabolism of lactic acid bacteria, thereby affecting protein degradation and antigenic response. In this study, three strains isolated from sourdough were selected for dough fermentation, namely Pediococcus acidilactici XZ31, Saccharomyces cerevisiae JM1 and Torulaspora delbrueckii JM4. The changes in dough protein during the fermentation process were studied. Protein degradation and antigenic response in dough inoculated with Pediococcus acidilactici XZ31 monoculture and co-culture with yeast were mainly evaluated by SDS-PAGE, immunoblotting, ELISA and Liquid chromatography-tandem mass spectrometry assay. The whole-genome transcriptomic changes in Pediococcus acidilactici XZ31 were also investigated by RNA sequencing. The results showed that water/salt soluble protein and Tri a 28/19 allergens content significantly decreased after 24 h fermentation. Co-culture fermentation accelerated the degradation of protein, and reduced the allergen content to a greater extent. RNA-sequencing analysis further demonstrated that the presence of yeast could promote protein metabolism in Pediococcus acidilactici XZ31 for a certain period of time. These results revealed a synergistic effect between Pediococcus acidilactici XZ31 and yeast degrading wheat allergens, and suggested the potential use of the multi-strain leavening agent for producing hypoallergenic wheat products.
Collapse
Affiliation(s)
- Wenhui Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chenglong Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Meng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Sha Tao
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
45
|
Woldemariam KY, Yuan J, Wan Z, Yu Q, Cao Y, Mao H, Liu Y, Wang J, Li H, Sun B. Celiac Disease and Immunogenic Wheat Gluten Peptides and the Association of Gliadin Peptides with HLA DQ2 and HLA DQ8. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1907755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kalekristos Yohannes Woldemariam
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Juanli Yuan
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Zhen Wan
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Qinglin Yu
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yating Cao
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Huijia Mao
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yingli Liu
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Jing Wang
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Hongyan Li
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Baoguo Sun
- School of Food and Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
46
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
47
|
Watson HG, Decloedt AI, Hemeryck LY, Van Landschoot A, Prenni J. Peptidomics of an industrial gluten-free barley malt beer and its non-gluten-free counterpart: Characterisation and immunogenicity. Food Chem 2021; 355:129597. [PMID: 33878557 DOI: 10.1016/j.foodchem.2021.129597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Recent research suggests that gluten-free beers by prolyl-endopeptidase treatment may not be safe for coeliac disease (CD) patients. Therefore, the gluten peptidome of an industrial gluten-free prolyl-endopeptidase treated malt beer (<10 ppm gluten) was compared to its untreated counterpart (58 ppm gluten) as a reference. NanoLC-HRMS analysis revealed the presence of 155 and 158 gluten peptides in the treated and reference beer, respectively. Characterisation of the peptides in treated beer showed that prolyl-endopeptidase activity was not complete with many peptides containing (multiple) internal proline-residues. Yet, prolyl-endopeptidase treatment did eliminate complete CD-immunogenic motifs, however, 18 peptides still contained partial, and potentially unsafe, motifs. In the reference beer respectively 7 and 37 gluten peptides carried (multiple) complete and/or partial CD-immunogenic motifs. Worrying is that many of these partial immunogenic gluten peptides do not contain a recognition epitope for the R5-antibody and would be overlooked in the current ELISA analysis for gluten quantification.
Collapse
Affiliation(s)
- Hellen G Watson
- Ghent University, Faculty of Bioscience Engineering, Department of Biotechnology, Valentin Vaerwyckweg 1, Ghent 9000, Belgium.
| | - Anneleen I Decloedt
- Ghent University, Faculty of Veterinary Medicine, Laboratory of Chemical Analysis, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Lieselot Y Hemeryck
- Ghent University, Faculty of Veterinary Medicine, Laboratory of Chemical Analysis, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Anita Van Landschoot
- Ghent University, Faculty of Bioscience Engineering, Department of Biotechnology, Valentin Vaerwyckweg 1, Ghent 9000, Belgium
| | - Jessica Prenni
- Colorado State University, Proteomics & Metabolomics Facility, 2021 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
48
|
Liu YY, Lee CC, Hsu JH, Leu WM, Meng M. Efficient Hydrolysis of Gluten-Derived Celiac Disease-Triggering Immunogenic Peptides by a Bacterial Serine Protease from Burkholderia gladioli. Biomolecules 2021; 11:biom11030451. [PMID: 33802942 PMCID: PMC8002681 DOI: 10.3390/biom11030451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Celiac disease is an autoimmune disorder triggered by toxic peptides derived from incompletely digested glutens in the stomach. Peptidases that can digest the toxic peptides may formulate an oral enzyme therapy to improve the patients’ health condition. Bga1903 is a serine endopeptidase secreted by Burkholderia gladioli. The preproprotein of Bga1903 consists of an N-terminal signal peptide, a propeptide region, and an enzymatic domain that belongs to the S8 subfamily. Bga1903 could be secreted into the culture medium when it was expressed in E. coli. The purified Bga1903 is capable of hydrolyzing the gluten-derived toxic peptides, such as the 33- and 26-mer peptides, with the preference for the peptide bonds at the carbonyl site of glutamine (P1 position). The kinetic assay of Bga1903 toward the chromogenic substrate Z-HPQ-pNA at 37 °C, pH 7.0, suggests that the values of Km and kcat are 0.44 ± 0.1 mM and 17.8 ± 0.4 s−1, respectively. The addition of Bga1903 in the wort during the fermentation step of beer could help in making gluten-free beer. In summary, Bga1903 is usable to reduce the gluten content in processed foods and represents a good candidate for protein engineering/modification aimed to efficiently digest the gluten at the gastric condition.
Collapse
Affiliation(s)
- Yu-You Liu
- Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan;
| | - Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (C.-C.L.); (J.-H.H.); (W.-M.L.)
| | - Jun-Hao Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (C.-C.L.); (J.-H.H.); (W.-M.L.)
| | - Wei-Ming Leu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (C.-C.L.); (J.-H.H.); (W.-M.L.)
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (C.-C.L.); (J.-H.H.); (W.-M.L.)
- Correspondence: ; Tel.: +886-4-22840328
| |
Collapse
|
49
|
M Victorio VC, O Alves T, M F Souza GH, Gutkoski LC, Cameron LC, S L Ferreira M. NanoUPLC-MS E reveals differential abundance of gluten proteins in wheat flours of different technological qualities. J Proteomics 2021; 239:104181. [PMID: 33677101 DOI: 10.1016/j.jprot.2021.104181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Gluten proteins contribute to the rheological properties of dough. Mass spectrometric techniques help to understand the contribution of these proteins to the quality of the end product. This work aimed to apply modern proteomic techniques to characterize and provide a better understanding of gluten proteins in wheat flours of different technological qualities. Nine Brazilian wheat flours (Triticum aestivum) classified by rheological gluten force were used to extract the proteins. Extracts were pooled together by technological qualities in low (LW), medium (MD), and superior (SP). Peptides were analyzed by nanoUPLC and mass spectrometry multiplex method (MSE). Collectively, 3545 peptides and 1297 proteins were identified, and 116 proteins were found differentially abundant. Low molecular weight glutenin subunits (LMW-GS) were found up-regulated only in SP samples. Proteins related to wheat grain hardness, such as puroindoline-A, were found in significant concentration in LW samples. After domain prediction, LW presented a different pattern with a lower abundance of functional domains, and SP presented chaperones, known to be involved in adequate folding of the storage proteins. NanoUPLC-MSE was efficient in analyzing and distinguishing the proteomic pattern of wheat flours from different qualities, pointing out the differentially abundant gluten proteins and providing a better understanding of wheat flour quality. SIGNIFICANCE: Common wheat is one of the most important staple food sources in the world. The improvement and comprehension of wheat quality has been a major objective of plant breeders and cereal chemists. Our findings highlighted the application of a modern proteomic approach to obtain a better understanding of the impact of gluten proteins on the technological quality of different wheat flours. The obtained data revealed different abundances of wheat quality-related proteins in superior quality flours when compared with samples of low rheological properties. In addition, multivariate statistical analysis clearly distinguished the flours of different qualities. This work contributes to the consolidation of research in the field of wheat technological quality.
Collapse
Affiliation(s)
- V C M Victorio
- Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, 22290-240, RJ, Brazil.
| | - T O Alves
- Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, 22290-240, RJ, Brazil.
| | | | - L C Gutkoski
- Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, 22290-240, RJ, Brazil
| | - L C Cameron
- Center of Innovation in Mass Spectrometry-Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil.
| | - M S L Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of the State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, 22290-240, RJ, Brazil; Center of Innovation in Mass Spectrometry-Laboratory of Protein Biochemistry (IMasS-LBP), UNIRIO, Brazil.
| |
Collapse
|
50
|
Wang Z, Ma S, Sun B, Wang F, Huang J, Wang X, Bao Q. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. Int J Biol Macromol 2021; 177:474-484. [PMID: 33636262 DOI: 10.1016/j.ijbiomac.2021.02.175] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Starch and gluten, the most important macromolecules in wheat flour, vary in thermal properties. The thermal behavior of starch, gluten and their complexes during the manufacture and quality control of flour products need to be accurately understood. However, the high complexity of starch-gluten systems impedes the accurate description of their interactions. When heated within varying temperature ranges and when water molecules are involved, the behaviors of amylose and amylopectin change, and the properties of the starch are modified. Moreover, important indicators of starch granules such as gelatinization temperature, peak viscosity, and so on, which are encapsulated by the gluten matrix, are altered. Meanwhile, the high-temperature environment induces the opening of the intrachain disulfide bonds of gliadin, leading to an increase in the probability of interchain disulfide bond formation in the gluten network system. These behaviors are notable and may provide insights into this complex interaction. In this review, the relationship between the thermal behavior of wheat starch and gluten and the quality of flour products is analyzed. Several methods used to investigate the thermal characteristics of wheat and its flour products are summarized, and some thermal interaction models of starch and gluten are proposed.
Collapse
Affiliation(s)
- Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Fengcheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|