1
|
Zhang P, Awika JM. Effect of sorghum bran addition on antioxidant activities, sensory properties, and in vitro starch digestibility of Chinese southern-style steamed bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9652-9659. [PMID: 39092915 DOI: 10.1002/jsfa.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 05/06/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Chinese steamed bread (CSB) is one of the most important staple foods in China and is also popular in South-East Asia. Developing functional CSB could improve people's resistance to inflammatory and non inflammatory diseases. This work investigated the effect of sorghum bran addition on antioxidant activities, sensory properties, and in vitro starch digestibility of Chinese southern-style steamed bread (CSSB). RESULTS In this study, the enhanced CSSB with 0-200 g kg-1 of fine black and tannin (sumac) sorghum bran addition was developed. A small change in phenol content and antioxidant activity was observed at various stages in the processing procedure before steaming. Moreover, a high retention of antioxidant phenolics CSSB with sorghum bran addition was observed. Sorghum bran addition significantly increased the total phenol content and antioxidant activity of CSSB by 4.5-10 times, on average, relative to control. Sorghum bran addition significantly also increased the content of resistant starch, and significantly decreased in vitro starch digestibility in CSSB; these effects were likely due to the joint inhibitory effect of tannins and ferulic acid on starch digestibility. Interestingly, the sorghum bran breads scored higher or similar to control in sensory color preference and overall appearance, but lower on most textural and mouthfeel attributes. CONCLUSION Sorghum bran addition significantly increased the antioxidant activity of CSSB and significantly decreased starch digestibility. Moreover, the color and appearance properties were maintained or improved. However, the sensorial textural attributes were negatively impacted by the sorghum bran substitutions. Strategies to improve the texture of bran-fortified breads would likely enhance their consumer acceptability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pingping Zhang
- Institute of Food Crops, Provincial Key Lab for Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Collaborative innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Joseph M Awika
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Chen Z, Mense AL, Brewer LR, Shi YC. Wheat bran arabinoxylans: Chemical structure, extraction, properties, health benefits, and uses in foods. Compr Rev Food Sci Food Saf 2024; 23:e13366. [PMID: 38775125 DOI: 10.1111/1541-4337.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Wheat bran (WB) is a well-known and valuable source of dietary fiber. Arabinoxylan (AX) is the primary hemicellulose in WB and can be isolated and used as a functional component in various food products. Typically, AX is extracted from the whole WB using different processes after mechanical treatments. However, WB is composed of different layers, namely, the aleurone layer, pericarp, testa, and hyaline layer. The distribution, structure, and extractability of AX vary within these layers. Modern fractionation technologies, such as debranning and electrostatic separation, can separate the different layers of WB, making it possible to extract AX from each layer separately. Therefore, AX in WB shows potential for broader applications if it can be extracted from the different layers separately. In this review, the distribution and chemical structures of AX in WB layers are first discussed followed by extraction, physicochemical properties, and health benefits of isolated AX from WB. Additionally, the utilization of AX isolated from WB in foods, including cereal foods, packaging film, and the delivery of food ingredients, is reviewed. Future perspectives on challenges and opportunities in the research field of AX isolated from WB are highlighted.
Collapse
Affiliation(s)
- Zhongwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, P. R. China
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Andrew L Mense
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
- Wheat Marketing Center, Portland, Oregon, USA
| | - Lauren R Brewer
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
4
|
Liu Y, Huang S, Meng T, Wang Y, Zhang Z. Effects of steam explosion on the nutritional and functional properties of black-grained wheat bran and its application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2175-2185. [PMID: 36541582 DOI: 10.1002/jsfa.12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In recent years, an increasing interest in healthy functional foods has been documented among health-conscious consumers. Steam explosion (SE)-treated black-grained wheat (BGW) bran was explored for the development of chiffon cakes with high nutritional and functional value. RESULTS The content of crude fat and total starch decreased with increasing SE pressure, whereas water-holding capacity and antioxidant activity increased, suggesting SE at 0.6-1.0 MPa could be an effective technique for enhancing the nutritional and functional properties of wheat bran. The protein, iron, zinc, manganese, selenium, and soluble dietary fiber contents, the water-holding, oil-binding, swelling, cholesterol binding, and cation-exchange capacities, and antioxidant activity of SE BGW bran were better than those of SE white-grained wheat bran. The addition of SE bran (0.8 MPa) to flour significantly decreased the peak viscosity, final viscosity, and setback and increased the pasting temperature. The effect of SE bran on the pasting properties of low-gluten and medium-gluten flour was stronger than that of high-gluten flour. SE BGW bran altered the physicochemical properties of chiffon cakes. When 6% SE BGW bran (0.8 MPa) was added, chiffon cakes exhibited good specific volume, hardness, chewiness, and other sensory qualities. CONCLUSIONS These results indicate that SE at 0.6-1.0 MPa is an effective technique for enhancing the nutritional and functional properties of wheat bran. SE BGW bran can be alternatives to food materials for developing health functional cereal-based products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxiu Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Tianqi Meng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yizhao Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengmao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Zeng Q, Kong F, Li Y, Guo X. Correlation of steam explosion severity with morphological and physicochemical characterization of soybean meal. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.991888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Steam explosion, a novel effective technology for cereal modification, integrates high-temperature autohydrolysis and structural disruption, which can significantly influence the morphological and physicochemical characterization of the feedstocks. The deep knowledge of the structural changes that are brought about by the treatment severity is connected with the technological demands to improve the processing efficiency and to increase the industrial application of the feedstocks by steam explosion. In this study, the changes in morphological and physicochemical properties of soybean meal induced by steam explosion were investigated. The correlation of steam explosion severity with soybean meal's final quality was also analyzed. The results showed that steam explosion effectively increased the fractal dimension from 1.6553 to 1.8871, the glycinin content from 151.38 to 334.94 mg/g, and the 2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging activity from 28.69 to 63.78%. The gray value, color (L* and a* values), and the total phenol and polysaccharide contents of soybean meal were reduced with greater steam explosion severity. Steam explosion severity had a remarkable positive correlation with the fractal dimension and DPPH radical scavenging activity. However, steam explosion severity had no significant correlation with the textural and adsorption properties of the soybean meal. This study focused on the morphological and physicochemical property changes of the soybean meal during a steam explosion process, which could guide the application of steam explosion in food systems.
Collapse
|
6
|
Ma C, Ni L, Guo Z, Zeng H, Wu M, Zhang M, Zheng B. Principle and Application of Steam Explosion Technology in Modification of Food Fiber. Foods 2022; 11:3370. [PMID: 36359983 PMCID: PMC9658468 DOI: 10.3390/foods11213370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Steam explosion is a widely used hydrothermal pretreatment method, also known as autohydrolysis, which has become a popular pretreatment method due to its lower energy consumption and lower chemical usage. In this review, we summarized the technical principle of steam explosion, and its definition, modification and application in dietary fiber, which have been explored by researchers in recent years. The principle and application of steam explosion technology in the modification of food dietary fiber were analyzed. The change in dietary fiber structure; physical, chemical, and functional characteristics; the advantages and disadvantages of the method; and future development trends were discussed, with the aim to strengthen the economic value and utilization of plants with high dietary fiber content and their byproducts.
Collapse
Affiliation(s)
- Chao Ma
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Liying Ni
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Zebin Guo
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Maoyu Wu
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Ming Zhang
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China
| | - Baodong Zheng
- Department of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Wang B, Li G, Li L, Zhang M, Yang T, Xu Z, Qin T. Novel processing strategies to enhance the bioaccessibility and bioavailability of functional components in wheat bran. Crit Rev Food Sci Nutr 2022; 64:3044-3058. [PMID: 36190261 DOI: 10.1080/10408398.2022.2129582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary fiber, polysaccharides and phenols are the representative functional components in wheat bran, which have important nutritional properties and pharmacological effects. However, the most functional components in wheat bran exist in bound form with low bioaccessibility. This paper reviews these functional components, analyzes modification methods, and focuses on novel solid-state fermentation (SSF) strategies in the release of functional components. Mining efficient microbial resources from traditional fermented foods, exploring the law of material exchange between cell populations, and building a stable self-regulation co-culture system are expected to strengthen the SSF process. In addition, emerging biotechnology such as synthetic biology and genome editing are used to transform the mixed fermentation system. Furthermore, combined with the emerging physical-field pretreatment coupled with SSF strategies applied to the modification of wheat bran, which provides a theoretical basis for the high-value utilization of wheat bran and the development of related functional foods and drugs.
Collapse
Affiliation(s)
- Baoshi Wang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Guangyao Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Linbo Li
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Zhang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Tianyou Yang
- School of Life Science and Technology, Henan Collaborative Innovation Center in Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS); Beijing Capital Agribusiness Future Biotechnology, Beijing, China
| |
Collapse
|
8
|
Wang L, Pang T, Kong F, Chen H. Steam Explosion Pretreatment for Improving Wheat Bran Extrusion Capacity. Foods 2022; 11:foods11182850. [PMID: 36140978 PMCID: PMC9498297 DOI: 10.3390/foods11182850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Extrusion improves the texture of wheat bran and enhances its product edibility, making it a promising processing method. However, the extrusion performance of wheat bran without any treatment is not satisfactory and limits the utilization of wheat bran in food processing. In this study, steam explosion pretreatment was used to treat wheat bran to investigate its promotion of wheat bran extrusion. The results showed that steam explosion could increase the extrusion ratio of wheat bran extrudate by 36%. Grinding the steam-exploded wheat bran extrudate yields wheat bran flour with smaller particle sizes and higher cell wall breakage. Fourier transform infrared spectroscopy and chemical composition results revealed that steam explosion degraded insoluble dietary fiber and disrupted the dense structure of the cell wall in wheat bran. The water-extracted arabinoxylan and soluble dietary fiber content of steam-exploded wheat bran were 13.95% and 7.47%, respectively, improved by 1567.42% and 241.75% compared to untreated samples. The total phenol and flavonoid contents, water solubility index, and cation exchange capacity of steam-exploded wheat bran extrudate were all superior to raw wheat bran extrudate. In summary, this study demonstrates that steam explosion improves the extrusion capacity of wheat bran and facilitates its utilization.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Biochemical Engineering, Beijing Key Laboratory of Biomass Refining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Jie, Zhongguancun, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Correspondence: ; Tel.: +86-010-8254-4978
| | - Tairan Pang
- State Key Laboratory of Biochemical Engineering, Beijing Key Laboratory of Biomass Refining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Jie, Zhongguancun, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Feng Kong
- State Key Laboratory of Biochemical Engineering, Beijing Key Laboratory of Biomass Refining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Jie, Zhongguancun, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hongzhang Chen
- State Key Laboratory of Biochemical Engineering, Beijing Key Laboratory of Biomass Refining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Bei-Er-Jie, Zhongguancun, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
9
|
Pérez‐Ramírez EE, Ramos‐Galicia L, de la Luz‐Asunción M, Saucedo‐Rivalcoba V, Martínez‐Hernández AL, Rubio‐Rosas E, Velasco‐Santos C. A Green and Easy Large Scale Method for Obtaining Graphene Nanoplatelets by Steam Explosion and Ultrasonic Exfoliation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eduardo E. Pérez‐Ramírez
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Lourdes Ramos‐Galicia
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Miguel de la Luz‐Asunción
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Verónica Saucedo‐Rivalcoba
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México – Instituto Tecnológico Superior de Tierra Blanca Av. Veracruz s/n Esq. Calle Héroes de Puebla 95180 Tierra Blanca Veracruz México
| | - Ana L. Martínez‐Hernández
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Efraín Rubio‐Rosas
- Centro Universitario de Vinculación y Transferencia de Tecnología Benemérita Universidad Autónoma de Puebla Prolongación 24 sur S/N CU San Manuel, C.P. 72570 Puebla México
| | - Carlos Velasco‐Santos
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| |
Collapse
|
10
|
Optimized Cellulase-Hydrolyzed Deoiled Coconut Cake Powder as Wheat Flour Substitute in Cookies. Foods 2022; 11:foods11172709. [PMID: 36076899 PMCID: PMC9455168 DOI: 10.3390/foods11172709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Deoiled coconut cake powder (DCCP) was hydrolyzed to reduce the ratio of insoluble/soluble dietary fiber (RIS) by partially converting insoluble dietary fiber to soluble using Celluclast 1.5 L, a commercial cellulase preparation in citrate buffer medium. Firstly, the influence of citrate buffer amount, enzyme concentration, pH, and retention time on the enzymatic hydrolysis efficiency was investigated. Then, response surface methodology (RSM) was employed to optimize the process in which the insoluble and soluble dietary fiber contents were the responses. The results revealed that 10.3 g buffer/g of materials, 3.7 U/g of the materials, and 60 min of retention time were the optimal conditions for the enzymatic hydrolysis to obtain the insoluble and soluble contents of 68.21%db and 8.18%db, respectively. Finally, DCCP or hydrolyzed DCCP (HDCCP) was partially substituted for wheat flour at different replacement ratios in a cookie recipe at 0, 10, 20, 30, and 40%. The cookies with a 10% replacement ratio of hydrolyzed deoiled coconut cake powders had a lower RIS by more than two folds those of DCCP and had the same sensorial score as the control sample. This study proposed that Celluclast 1.5 L effectively reduced RIS by partially converting insoluble to soluble dietary fiber, improving the soluble dietary fiber content in fiber-enriched cookies.
Collapse
|
11
|
Kong F, Zeng Q, Li Y, Di X, Ding Y, Guo X. Effect of steam explosion on nutritional components, physicochemical and rheological properties of brown rice powder. Front Nutr 2022; 9:954654. [PMID: 36071937 PMCID: PMC9441901 DOI: 10.3389/fnut.2022.954654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Brown rice powder is underutilized mainly due to its lower starch digestibility and poor processing performance. The present study investigated the potential of steam explosion on the improvement of nutritional and physicochemical characteristic in brown rice powder and rheological property of paste. Compared with native brown rice powder, steam explosion at 0.5 MPa for 7 min increased the water-extractable arabinoxylans (5.77%), reducing sugar content (21.04%), and iodine blue value (30.38%), which indicated steam explosion that destroyed the intact cells of brown rice. Later the crystalline structure of brown rice powder was destroyed into an amorphous structure by steam explosion. Steam explosion enhanced the degree of gelatinization (4.76~351.85%) and solvent retention capacity (SRC) of brown rice powder, compared with native sample. The effect on the intact cells and starch structure of brown rice caused the starch digestibility enhancement remarkable. Viscoelastic profiles confirmed that steam explosion weakened the paste strength and elasticity corresponded with hardness and cohesiveness by increasing the loss factor (tanδ). This work provided important information for brown rice powder modified by steam explosion (0.5 MPa, 7 min) with good nutritional property (nutrients and digestibility) and processability (SRC, textural, and rheological property). Steam exploded brown rice powder (0.5 MPa, 7 min) could serve as a potential ingredient widely used in food products.
Collapse
|
12
|
Kong F, Zeng Q, Li Y, Zhao Y, Guo X. Improving bioaccessibility and physicochemical property of blue-grained wholemeal flour by steam explosion. Front Nutr 2022; 9:877704. [PMID: 35967773 PMCID: PMC9363763 DOI: 10.3389/fnut.2022.877704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Whole grain contains many health-promoting ingredients, but due to its poor bioaccessibility and processibility, it is not widely accepted by consumers. The steam explosion was exploited to modify the nutritional bioaccessibility and the physicochemical properties of wholemeal flour in this study. In vitro starch digestibility, in vitro protein digestibility of wholemeal flour, total flavonoids content, and total phenolics content of digestive juice were used to evaluate the bioaccessibility, and a significant variation (p < 0.05) was noted. Results showed that steam explosion enhanced the gastric protein digestibility ranged from 5.67 to 6.92% and the intestinal protein digestibility ranged from 16.77 to 49.12%. Steam-exploded wholemeal flour (0.5 MPa, 5 min) had the highest protein digestibility and rapidly digestible starch content. Compared with native flour, steam explosion (0.5 MPa, 5 min) contributed to a 0.72-fold and 0.33-fold increment of total flavonoids content and total phenolics content in digestible juice. Chemical changes of wholemeal flour, induced by steam explosion, caused the changes in the solvent retention capacity, rheological property of wholemeal flour, and altered the falling number (and liquefaction number). An increasing tendency to solid-like behavior and the gel strength of wholemeal flour was significantly enhanced by the steam explosion at 0.5 MPa for 5 min, while the gluten was not weakened. This study indicated that steam-exploded wholemeal flour (0.5 MPa, 5 min) could serve as a potential ingredient with the noticeable bioaccessibility and physicochemical properties in cereal products.
Collapse
Affiliation(s)
| | | | | | | | - Xingfeng Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
13
|
Lin S. Dietary fiber in bakery products: Source, processing, and function. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:37-100. [PMID: 35595397 DOI: 10.1016/bs.afnr.2021.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bakery products are prevalently consumed foods in the world, and they have been regarded as convenient dietary vehicles for delivering nutritive ingredients into people's diet, of which, dietary fiber (DF) is one of the most popular items. The food industry attempts to produce fiber-enriched bakery products with both increasing nutritional value and appealing palatability. As many new sources of DFs become available, and consumers are moving towards healthier diets, studies of using these DFs as functional ingredients in baked goods are becoming vast. Besides, the nutrition value of DF is commonly accepted, and many investigations have also revealed the health benefits of fiber-enriched bakery products. Thus, this chapter presents an overview of (1) trends in supplementation of DF from various sources, (2) impact of DF on dough processing, quality and physiological functionality of bakery products, and (3) technologies used to improve the compatibility of DF in bakery products.
Collapse
Affiliation(s)
- Suyun Lin
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
14
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022; 11:1026. [PMID: 35407113 PMCID: PMC8997659 DOI: 10.3390/foods11071026] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Ángela Bravo Núñez
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
15
|
Bile acid binding capacity, dietary fibre and phenolic contents of modern and old bread wheat varieties and landraces: a comparison over the course of around one century. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Wheat Bran Modifications for Enhanced Nutrition and Functionality in Selected Food Products. Molecules 2021; 26:molecules26133918. [PMID: 34206885 PMCID: PMC8271396 DOI: 10.3390/molecules26133918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/12/2023] Open
Abstract
The established use of wheat bran (WB) as a food ingredient is related to the nutritional components locked in its dietary fibre. Concurrently, the technological impairment it poses has impeded its use in product formulations. For over two decades, several modifications have been investigated to combat this problem. Ninety-three (93) studies (review and original research) published in English between January 1997 and April 2021 reporting WB modifications for improved nutritional, structural, and functional properties and prospective utilisation in food formulations were included in this paper. The modification methods include mechanical (milling), bioprocessing (enzymatic hydrolysis and fermentation with yeasts and bacteria), and thermal (dry heat, extrusion, autoclaving), treatments. This review condenses the current knowledge on the single and combined impact of various WB pre-treatments on its antioxidant profile, fibre solubilisation, hydration properties, microstructure, chemical properties, and technological properties. The use of modified WB in gluten-free, baked, and other food products was reviewed and possible gaps for future research are proposed. The application of modified WB will have broader application prospects in food formulations.
Collapse
|
17
|
Cheng W, Sun Y, Fan M, Li Y, Wang L, Qian H. Wheat bran, as the resource of dietary fiber: a review. Crit Rev Food Sci Nutr 2021; 62:7269-7281. [PMID: 33938774 DOI: 10.1080/10408398.2021.1913399] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wheat bran is a major by-product of white flour milling and had been produced in large quantities around the world; it is rich in dietary fiber and had already been used in many products such as whole grain baking or high dietary fiber addition. It has been confirmed that a sufficient intake of dietary fiber in wheat bran with appropriate physiological functions is beneficial to human health. Wheat bran had been considered as the addition with a large potential for improving the nutritional condition of the human body based on the dietary fiber supplement. The present review summarized the available information on wheat bran related to its dietary fiber functions, which may be helpful for further development of wheat bran as dietary fiber resource.
Collapse
Affiliation(s)
- Wen Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Nguyen SN, Vien MD, Le TTT, Tran TTT, Ton NMN, Le VVM. Effects of enzymatic treatment conditions on dietary fibre content of wheat bran and use of cellulase‐treated bran in cookie. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Si Nhat Nguyen
- Department of Food Technology Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University –Ho Chi Minh City (VNU‐HCM) Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Man Dat Vien
- Department of Food Technology Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University –Ho Chi Minh City (VNU‐HCM) Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Thi Thu Trang Le
- Department of Food Technology Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University –Ho Chi Minh City (VNU‐HCM) Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Thi Thu Tra Tran
- Department of Food Technology Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University –Ho Chi Minh City (VNU‐HCM) Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nu Minh Nguyet Ton
- Department of Food Technology Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University –Ho Chi Minh City (VNU‐HCM) Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Van Viet Man Le
- Department of Food Technology Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University –Ho Chi Minh City (VNU‐HCM) Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
19
|
Modifying Effects of Physical Processes on Starch and Dietary Fiber Content of Foodstuffs. Processes (Basel) 2020. [DOI: 10.3390/pr9010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates are one of the most important nutrients in human consumption. The digestible part of carbohydrates has a significant role in maintaining the energy status of the body and the non-digestible parts like dietary fibers have specific nutritional functions. One of the key issues of food processing is how to influence the technological and nutritional properties of carbohydrates to meet modern dietary requirements more effectively, considering particularly the trends in the behavior of people and food-related health issues. Physical processing methods have several advantages compared to the chemical methods, where chemical reagents, such as acids or enzymes, are used for the modification of components. Furthermore, in most cases, these is no need to apply them supplementarily in the technology, only a moderate modification of current technology can result in significant changes in dietary properties. This review summarizes the novel results about the nutritional and technological effects of physical food processing influencing the starch and dietary fiber content of plant-derived foodstuffs.
Collapse
|
20
|
Effects of dietary fiber on the digestion and structure of gluten under different thermal processing conditions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Kong F, Wang L, Chen H, Zhao X. Improving storage property of wheat bran by steam explosion. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14630] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Feng Kong
- State Key Laboratory of Biochemical Engineering Beijing Key Laboratory of Biomass Refining Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing100190China
- University of Chinese Academy of Sciences Beijing100049China
| | - Lan Wang
- State Key Laboratory of Biochemical Engineering Beijing Key Laboratory of Biomass Refining Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing100190China
| | - Hongzhang Chen
- State Key Laboratory of Biochemical Engineering Beijing Key Laboratory of Biomass Refining Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing100190China
| | - Xuan Zhao
- State Key Laboratory of Biochemical Engineering Beijing Key Laboratory of Biomass Refining Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing100190China
| |
Collapse
|
22
|
Kong F, Wang L, Gao H, Chen H. Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Aktas-Akyildiz E, Masatcioglu MT, Köksel H. Effect of extrusion treatment on enzymatic hydrolysis of wheat bran. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Lauková M, Karovičová J, Minarovičová L, Kohajdová Z. Effect of thermal stabilization on physico-chemical parameters and functional properties of wheat bran. POTRAVINARSTVO 2020. [DOI: 10.5219/1321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The food industry also focuses on the use of by-products from food processing. Wheat bran is a valuable by-product of the wheat milling process, which is rich in dietary fiber. In addition to nutritional value, dietary fiber has a functional potential in the production of novel foods. Pre-treatment of the dietary fiber using different methods can change its functional properties. The objective of this study was to evaluate the effect of stabilization process on physico-chemical parameters and functional properties of wheat bran. Wheat bran from two wheat variety was treated using microwave and hot air heating. It was observed that wheat bran included more than 45% of total dietary fiber. Results suggested that treatment of bran using both method increased total dietary fiber content. Thermal treatment process decreased the anti-nutritional agent in bran samples. Phytic acid content diminishing of 44% and 49% was observed in microwave treated bran samples. Moreover, treatment of bran using a hot air heating improved the hydration properties (water holding, water retention and swelling capacity), while oil holding capacity was not significantly altered. Treatment decreased the antioxidant activity of treated bran samples. It was observed that thermal treatment modified the color parameters of bran (lightness, yellowness and hue angle decreased and redness and Chroma increased).
Collapse
|
25
|
Probing the effect of physical modifications on cereal bran chemistry and antioxidant potential. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00438-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Chen XW, Luo DY, Chen YJ, Wang JM, Guo J, Yang XQ. Dry fractionation of surface abrasion for polyphenol-enriched buckwheat protein combined with hydrothermal treatment. Food Chem 2019; 285:414-422. [DOI: 10.1016/j.foodchem.2019.01.182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022]
|
27
|
Sui W, Xie X, Liu R, Wu T, Zhang M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Piechowiak T, Józefczyk R, Balawejder M. Impact of ozonation process of wheat flour on the activity of selected enzymes. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Wu T, Li Z, Liu R, Sui W, Zhang M. Effect of Extrusion, Steam Explosion and Enzymatic Hydrolysis on Functional Properties of Wheat Bran. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Zhi Li
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology); Engineering Research Center of Food Biotechnology, Ministry of Education
| |
Collapse
|