1
|
Zhang H, Gou X, Ma L, Zhang X, Qu J, Wang X, Huang W, Yan S, Zhang X, Xue J, Xu S. Reveal the kernel dehydration mechanisms in maize based on proteomic and metabolomic analysis. BMC PLANT BIOLOGY 2024; 24:15. [PMID: 38163910 PMCID: PMC10759482 DOI: 10.1186/s12870-023-04692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Kernel dehydration is an important factor for the mechanized harvest in maize. Kernel moisture content (KMC) and kernel dehydration rate (KDR) are important indicators for kernel dehydration. Although quantitative trait loci and genes related to KMC have been identified, where most of them only focus on the KMC at harvest, these are still far from sufficient to explain all genetic variations, and the relevant regulatory mechanisms are still unclear. In this study, we tried to reveal the key proteins and metabolites related to kernel dehydration in proteome and metabolome levels. Moreover, we preliminarily explored the relevant metabolic pathways that affect kernel dehydration combined proteome and metabolome. These results could accelerate the development of further mechanized maize technologies. RESULTS In this study, three maize inbred lines (KB182, KB207, and KB020) with different KMC and KDR were subjected to proteomic analysis 35, 42, and 49 days after pollination (DAP). In total, 8,358 proteins were quantified, and 2,779 of them were differentially expressed proteins in different inbred lines or at different stages. By comparative analysis, K-means cluster, and weighted gene co-expression network analysis based on the proteome data, some important proteins were identified, which are involved in carbohydrate metabolism, stress and defense response, lipid metabolism, and seed development. Through metabolomics analysis of KB182 and KB020 kernels at 42 DAP, 18 significantly different metabolites, including glucose, fructose, proline, and glycerol, were identified. CONCLUSIONS In sum, we inferred that kernel dehydration could be regulated through carbohydrate metabolism, antioxidant systems, and late embryogenesis abundant protein and heat shock protein expression, all of which were considered as important regulatory factors during kernel dehydration process. These results shed light on kernel dehydration and provide new insights into developing cultivars with low moisture content.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China
| | - Xiaonan Gou
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China
| | - Liangchuan Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China
| | - Xiaojun Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China
| | - Xiaoyue Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China.
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China.
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, College of Agronomy, Northwest A&F University, Shaanxi, 712100, Yangling, China.
- Maize Engineering Technology Research Centre, Shaanxi, 712100, Yangling, China.
| |
Collapse
|
2
|
Ferreira MM, Santos AS, Santos AS, Zugaib M, Pirovani CP. Plant Serpins: Potential Inhibitors of Serine and Cysteine Proteases with Multiple Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3619. [PMID: 37896082 PMCID: PMC10609998 DOI: 10.3390/plants12203619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 10/29/2023]
Abstract
Plant serpins are a superfamily of protein inhibitors that have been continuously studied in different species and have great biotechnological potential. However, despite ongoing studies with these inhibitors, the biological role of this family in the plant kingdom has not yet been fully clarified. In order to obtain new insights into the potential of plant serpins, this study presents the first systematic review of the topic, whose main objective was to scrutinize the published literature to increase knowledge about this superfamily. Using keywords and the eligibility criteria defined in the protocol, we selected studies from the Scopus, PubMed, and Web of Science databases. According to the eligible studies, serpins inhibit different serine and non-serine proteases from plants, animals, and pathogens, and their expression is affected by biotic and abiotic stresses. Moreover, serpins like AtSerpin1, OSP-LRS, MtSer6, AtSRP4, AtSRP5, and MtPiI4, act in resistance and are involved in stress-induced cell death in the plant. Also, the system biology analysis demonstrates that serpins are related to proteolysis control, cell regulation, pollen development, catabolism, and protein dephosphorylation. The information systematized here contributes to the design of new studies of plant serpins, especially those aimed at exploring their biotechnological potential.
Collapse
Affiliation(s)
- Monaliza Macêdo Ferreira
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Ariana Silva Santos
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | | | - Maria Zugaib
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Carlos Priminho Pirovani
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| |
Collapse
|
3
|
Ge N, Yang K, Yang L, Meng ZG, Li LG, Chen JW. iTRAQ and RNA-seq analyses provide an insight into mechanisms of recalcitrance in a medicinal plant Panax notoginseng seeds during the after-ripening process. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:68-88. [PMID: 34822750 DOI: 10.1071/fp21197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is an important economic and medicinal plant from the family of Araliaceae, and its seed is characterised by the recalcitrance and after-ripening process. However, the molecular mechanism on the dehydration sensitivity is not clear in recalcitrant seeds. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) and RNA-seq were used to analyse the proteomic and transcriptomic changes in seeds of P. notoginseng in days after-ripening (DAR). A total of 454 differentially expressed proteins (DEPs) and 12000 differentially expressed genes (DEGs) were obtained. The activity of enzymes related to antioxidant system were significantly increased, and the late embryogenesis abundant (LEA) protein family and most members of glutathione metabolism enzymes have been downregulated during the after-ripening process. The lack or inadequate accumulation of LEA proteins in the embryo and the low activity of antioxidant defense in glutathione metabolism might be the key factors leading to the dehydration sensitivity in recalcitrant seeds of P. notoginseng. In addition, the increased activity of elycolysis (EMP), citric acid cycle (TCA) and pentose phosphate pathway (PPP) pathways might be one of important signals to complete the after-ripening process. Overall, our study might provide a new insight into the molecular mechanism on dehydration sensitivity of recalcitrant seeds.
Collapse
Affiliation(s)
- Na Ge
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Kai Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Long-Geng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| |
Collapse
|
4
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Wen D, Xu H, He M, Zhang C. Proteomic analysis of wheat seeds produced under different nitrogen levels before and after germination. Food Chem 2020; 340:127937. [PMID: 32889215 DOI: 10.1016/j.foodchem.2020.127937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/27/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022]
Abstract
The objective of this study was to investigate differentially abundant proteins (DAPs) of wheat seeds produced under two nitrogen levels (0 and 240 kg/ha) before and after germination. We selected samples at 8 and 72 h after imbibition (HAI) to identify DAPs by iTRAQ. The results showed 190 and 124 DAPs at 8 and 72 HAI, respectively. Alpha-gliadin and chlorophyll a-b binding protein showed the biggest difference in abundance before and after germination. In GO enrichment analysis, the most significantly enriched GO term was nutrient reservoir activity at 8 HAI and endopeptidase inhibitor activity at 72 HAI. Moreover, many DAPs involved in mobilization of stored nutrients and photosynthesis were mapped to KEGG pathways. Dough development time, dough stability time and seedling chlorophyll content under N240 were significantly higher than those under N0, which validated the results of proteomic analysis. These results are crucial for food nutrition and food processing.
Collapse
Affiliation(s)
- Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China.
| | - Haicheng Xu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China
| | - Mingrong He
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China.
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai'an, Shandong Province 271018, PR China.
| |
Collapse
|
6
|
Kumar RR, Singh K, Ahuja S, Tasleem M, Singh I, Kumar S, Grover M, Mishra D, Rai GK, Goswami S, Singh GP, Chinnusamy V, Rai A, Praveen S. Quantitative proteomic analysis reveals novel stress-associated active proteins (SAAPs) and pathways involved in modulating tolerance of wheat under terminal heat. Funct Integr Genomics 2018; 19:329-348. [PMID: 30465139 DOI: 10.1007/s10142-018-0648-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Terminal heat stress has detrimental effect on the growth and yield of wheat. Very limited information is available on heat stress-associated active proteins (SAAPs) in wheat. Here, we have identified 159 protein groups with 4271 SAAPs in control (22 ± 3 °C) and HS-treated (38 °C, 2 h) wheat cvs. HD2985 and HD2329 using iTRAQ. We identified 3600 proteins to be upregulated and 5825 proteins to be downregulated in both the wheat cvs. under HS. We observed 60.3% of the common SAAPs showing upregulation in HD2985 (thermotolerant) and downregulation in HD2329 (thermosusceptible) under HS. GO analysis showed proton transport (molecular), photosynthesis (biological), and ATP binding (cellular) to be most altered under HS. Most of the SAAPs identified were observed to be chloroplast localized and involved in photosynthesis. Carboxylase enzyme was observed most abundant active enzymes in wheat under HS. An increase in the degradative isoenzymes (α/β-amylases) was observed, as compared to biosynthesis enzymes (ADP-glucophosphorylase, soluble starch synthase, etc.) under HS. Transcript profiling showed very high relative fold expression of HSP17, CDPK, Cu/Zn SOD, whereas downregulation of AGPase, SSS under HS. The identified SAAPs can be used for targeted protein-based precision wheat-breeding program for the development of 'climate-smart' wheat.
Collapse
Affiliation(s)
- Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Khushboo Singh
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sumedha Ahuja
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mohd Tasleem
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Indra Singh
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Sanjeev Kumar
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Monendra Grover
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Dwijesh Mishra
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Gyanendra K Rai
- Sher-E-Kashmir University of Agriculture Science and Technology, Chatta, Jammu and Kashmir, 180009, India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gyanendra P Singh
- Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Rai
- CABin, Indian Agricultural Statistical Research Institute (IASRI), Pusa, New Delhi, 110012, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|