1
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
2
|
Bergsten E, Rydberg M, Dahlin LB, Zimmerman M. Carpal Tunnel Syndrome and Ulnar Nerve Entrapment at the Elbow Are Not Associated With Plasma Levels of Caspase-3, Caspase-8 or HSP27. Front Neurosci 2022; 16:809537. [PMID: 35310100 PMCID: PMC8931660 DOI: 10.3389/fnins.2022.809537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Nerve compression disorders, such as carpal tunnel syndrome (CTS) and ulnar entrapment at the elbow (UNE), may be associated with apoptosis and neuroprotective mechanisms in the peripheral nerve that may be detected by biomarkers in the blood. The relationships between CTS and UNE and two biomarkers of apoptosis, i.e., caspase-3 and caspase-8, and the neuroprotective factor Heat Shock Protein 27 (HSP27) in plasma were examined in a population-based cohort. Method The biomarkers caspase-3, caspase-8 and HSP27 were measured in plasma at inclusion of 4,284 study participants aged 46-68 years in the population-based Malmö Diet and Cancer study (MDCS). End-point retrieval was made from national registers concerning CTS and UNE. Independent t-test was used to examine the association between caspase-3, caspase-8 and HSP27 plasma levels and incidence of CTS and UNE. Cox proportional hazards regression was used to investigate if plasma levels of caspase-3, caspase-8 and HSP27 affected time to diagnosis of CTS or UNE. Results During the mean follow-up time of 22 years, 189/4,284 (4%) participants were diagnosed with CTS and 42/4,284 (1%) were diagnosed with UNE. No associations were found between incident CTS or UNE and the biomarkers caspase-3, caspase-8 and HSP27 in plasma. Conclusion The apoptotic biomarkers caspase-3 and caspase-8 and the neuroprotective factor HSP27 in plasma, factors conceivably related to a nerve injury, are not associated with the nerve compression disorders CTS and UNE in a general population.
Collapse
Affiliation(s)
- Elin Bergsten
- Department of Orthopedics, Helsingborg Hospital, Helsingborg, Sweden
- Department of Translational Medicine—Hand Surgery, Lund University, Lund, Sweden
| | - Mattias Rydberg
- Department of Translational Medicine—Hand Surgery, Lund University, Lund, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, Lund, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Malin Zimmerman
- Department of Orthopedics, Helsingborg Hospital, Helsingborg, Sweden
- Department of Translational Medicine—Hand Surgery, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Lebon C, Neubauer H, Berdugo M, Delaunay K, Markert E, Becker K, Baum-Kroker KS, Prestle J, Fuchs H, Bakker RA, Behar-Cohen F. Evaluation of an Intravitreal Rho-Associated Kinase Inhibitor Depot Formulation in a Rat Model of Diabetic Retinopathy. Pharmaceutics 2021; 13:pharmaceutics13081105. [PMID: 34452066 PMCID: PMC8401380 DOI: 10.3390/pharmaceutics13081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Rho-associated kinase (ROCK) activation was shown to contribute to microvascular closure, retinal hypoxia, and to retinal pigment epithelium (RPE) barrier disruption in a rat model of diabetic retinopathy. Fasudil, a clinically approved ROCK inhibitor, improved retinal perfusion and reduced edema in this model, indicating that ROCK inhibition could be a promising new therapeutic approach for the treatment of diabetic retinopathy. However, due to its short intravitreal half-life, fasudil is not suitable for long-term treatment. In this study, we evaluated a very potent ROCK1/2 inhibitor (BIRKI) in a depot formulation administered as a single intravitreal injection providing a slow release for at least four weeks. Following BIRKI intravitreal injection in old Goto-Kakizaki (GK) type 2 diabetic rats, we observed a significant reduction in ROCK1 activity in the retinal pigment epithelium/choroid complex after 8 days and relocation of ROCK1 to the cytoplasm and nucleus in retinal pigment epithelium cells after 28 days. The chronic ROCK inhibition by the BIRKI depot formulation restored retinal pigment epithelial cell morphology and distribution, favored retinal capillaries dilation, and reduced hypoxia and inner blood barrier leakage observed in the diabetic retina. No functional or morphological negative effects were observed, indicating suitable tolerability of BIRKI after intravitreous injection. In conclusion, our data suggest that sustained ROCK inhibition, provided by BIRKI slow-release formulation, could be a valuable treatment option for diabetic retinopathy, especially with regard to the improvement of retinal vascular infusion and protection of the outer retinal barrier.
Collapse
Affiliation(s)
- Cecile Lebon
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Marianne Berdugo
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Kimberley Delaunay
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
| | - Elke Markert
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (E.M.); (K.B.)
| | - Kolja Becker
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (E.M.); (K.B.)
| | - Katja S. Baum-Kroker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany;
| | - Jürgen Prestle
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Holger Fuchs
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Remko A. Bakker
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach, Germany; (H.N.); (J.P.); (H.F.); (R.A.B.)
| | - Francine Behar-Cohen
- Team 17: Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006 Paris, France; (C.L.); (M.B.); (K.D.)
- Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophthalmopole, 75014 Paris, France
- Correspondence:
| |
Collapse
|
4
|
Hazer Rosberg DB, Hazer B, Stenberg L, Dahlin LB. Gold and Cobalt Oxide Nanoparticles Modified Poly-Propylene Poly-Ethylene Glycol Membranes in Poly (ε-Caprolactone) Conduits Enhance Nerve Regeneration in the Sciatic Nerve of Healthy Rats. Int J Mol Sci 2021; 22:7146. [PMID: 34281198 PMCID: PMC8268459 DOI: 10.3390/ijms22137146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of nerve defects is a clinical challenge. Autologous nerve grafts as the gold standard treatment may result in an incomplete restoration of extremity function. Biosynthetic nerve conduits are studied widely, but still have limitations. Here, we reconstructed a 10 mm sciatic nerve defect in healthy rats and analyzed nerve regeneration in poly (ε-caprolactone) (PCL) conduits longitudinally divided by gold (Au) and gold-cobalt oxide (AuCoO) nanoparticles embedded in poly-propylene poly-ethylene glycol (PPEG) membranes (AuPPEG or AuCoOPPEG) and compared it with unmodified PPEG-membrane and hollow PCL conduits. After 21 days, we detected significantly better axonal outgrowth, together with higher numbers of activated Schwann cells (ATF3-labelled) and higher HSP27 expression, in reconstructed sciatic nerve and in corresponding dorsal root ganglia (DRG) in the AuPPEG and AuCoOPPEG groups; whereas the number of apoptotic Schwann cells (cleaved caspase 3-labelled) was significantly lower. Furthermore, numbers of activated and apoptotic Schwann cells in the regenerative matrix correlated with axonal outgrowth, whereas HSP27 expression in the regenerative matrix and in DRGs did not show any correlation with axonal outgrowth. We conclude that gold and cobalt-oxide nanoparticle modified membranes in conduits improve axonal outgrowth and increase the regenerative performance of conduits after nerve reconstruction.
Collapse
Affiliation(s)
- Derya Burcu Hazer Rosberg
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
- Department of Neurosurgery, Mugla Sitki Kocman University, Mugla 48100, Turkey
| | - Baki Hazer
- Department of Aircraft Airflame Engine Maintenance, Kapadokya University, Ürgüp 50420, Turkey;
- Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
| | - Lena Stenberg
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
| | - Lars B. Dahlin
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
5
|
Zimmerman M, Pourhamidi K, Rolandsson O, Dahlin LB. Autonomic Neuropathy-a Prospective Cohort Study of Symptoms and E/ I Ratio in Normal Glucose Tolerance, Impaired Glucose Tolerance, and Type 2 Diabetes. Front Neurol 2018; 9:154. [PMID: 29593644 PMCID: PMC5861181 DOI: 10.3389/fneur.2018.00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background Autonomic neuropathy in diabetes, in addition to causing a range of symptoms originating from the autonomic nervous system, may increase cardiovascular morbidity. Our aim was to study the progression of autonomic neuropathy, based on symptom score and evaluation of an autonomic test, in persons with normal and impaired glucose tolerance and in patients with type 2 diabetes (T2D). Methods Participants were recruited in 2003/2004 with a follow-up in 2014. The participants’ glucose tolerance was categorized using oral glucose tolerance tests. Symptoms were evaluated using an autonomic symptom score (ASS), ECG was used to test cardiac autonomic function based on the expiration/inspiration ratio (E/I ratio), and blood samples were taken on both occasions. Results ASSs were higher at follow-up in the T2D patients than in the normal glucose tolerance group (mean 1.21 ± 1.30 vs. 0.79 ± 0.7; p < 0.05). E/I ratio did not deteriorate more than could be expected as an aging effect in well-controlled T2D. No relationship was found between E/I ratio and HbA1c or ASS. Conclusion The presence of autonomic symptoms increased over time in T2D patients, but the symptoms did not correlate with the E/I ratio in this metabolically well-controlled cohort. ASSs can be a useful clinical tool when assessing the progression of autonomic dysfunction in patients with abnormal glucose metabolism.
Collapse
Affiliation(s)
- Malin Zimmerman
- Hand Surgery, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Kaveh Pourhamidi
- Family Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Olov Rolandsson
- Family Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Lars B Dahlin
- Hand Surgery, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective. Int J Mol Sci 2017; 18:ijms18122709. [PMID: 29240668 PMCID: PMC5751310 DOI: 10.3390/ijms18122709] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/22/2023] Open
Abstract
Heat shock proteins (HSPs) are a large family of proteins highly conserved throughout evolution because of their unique cytoprotective properties. Besides assisting protein refolding and regulating proteostasis under stressful conditions, HSPs also play an important role in protecting cells from oxidative stress, inflammation, and apoptosis. Therefore, HSPs are crucial in counteracting the deleterious effects of hyperglycemia in target organs of diabetes vascular complications. Changes in HSP expression have been demonstrated in diabetic complications and functionally related to hyperglycemia-induced cell injury. Moreover, associations between diabetic complications and altered circulating levels of both HSPs and anti-HSPs have been shown in clinical studies. HSPs thus represent an exciting therapeutic opportunity and might also be valuable as clinical biomarkers. However, this field of research is still in its infancy and further studies in both experimental diabetes and humans are required to gain a full understanding of HSP relevance. In this review, we summarize current knowledge and discuss future perspective.
Collapse
|