1
|
Takahashi T, Aoyanagi H, Pigolotti S, Toyabe S. Blocking uncertain mispriming errors of PCR. Biophys J 2024; 123:3558-3568. [PMID: 39257000 PMCID: PMC11494492 DOI: 10.1016/j.bpj.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024] Open
Abstract
The polymerase chain reaction (PCR) plays a central role in genetic engineering and is routinely used in various applications, from biological and medical research to the diagnosis of viral infections. PCR is an extremely sensitive method for detecting target DNA sequences, but it is substantially error prone. In particular, the mishybridization of primers to contaminating sequences can result in false positives for virus tests. The blocker method, also called the clamping method, has been developed to suppress mishybridization errors. However, its application is limited by the requirement that the contaminating template sequence be known in advance. Here, we demonstrate that a mixture of multiple blocker sequences effectively suppresses the amplification of contaminating sequences even in the presence of uncertainty. The blocking effect was characterized by a simple model validated by experiments. Furthermore, the modeling allowed us to minimize the errors by optimizing the blocker concentrations. The results highlighted an inherent robustness of the blocker method in that fine-tuning the blocker concentrations is not necessary. Our method extends the applicability of PCR and other hybridization-based techniques, including genome editing, RNA interference, and DNA nanotechnology, by improving their fidelity.
Collapse
Affiliation(s)
- Takumi Takahashi
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hiroyuki Aoyanagi
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Shoichi Toyabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
2
|
Ndiaye M, Kane M, Balde D, Sankhé S, Mbanne M, Diop SMS, Ahmad U, Mboowa G, Sagne SN, Cisse M, Dia N, Sall AA, Faye O, Fall G, Faye O, Weidmann M, Diagne MM, Dieng I. CDC Trioplex diagnostic assay underperforms in detection of circulating Chikungunya West African genotype. J Clin Microbiol 2024; 62:e0040524. [PMID: 38869270 PMCID: PMC11250485 DOI: 10.1128/jcm.00405-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
- Mignane Ndiaye
- Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mouhamed Kane
- Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | | | | | | | | | - Umar Ahmad
- Africa Centres for Disease Control and Prevention (Africa CDC), Addis Ababa, Ethiopia
| | - Gerald Mboowa
- Africa Centres for Disease Control and Prevention (Africa CDC), Addis Ababa, Ethiopia
| | - Samba Niang Sagne
- Epidemiology Data Sciences and Clinical Research, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mamadou Cisse
- Epidemiology Data Sciences and Clinical Research, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ndongo Dia
- Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Ousmane Faye
- Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Manfred Weidmann
- Institute of Microbiology and Virology, Brandenburg Medical School, Senftenberg, Germany
| | | | - Idrissa Dieng
- Virology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
3
|
Jafar S, Anjum KM, Zahoor MY, Shehzad W, Naseem A, Imran M. Development and validation of a universal primer pair for the taxonomic and phylogenetic studies of vertebrates. Mol Biol Rep 2024; 51:332. [PMID: 38393511 DOI: 10.1007/s11033-023-09175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Recent studies in the field of molecular identification have described 16S rRNA gene as a highly informative fragment of mitochondrial DNA for species discrimination. This study presents a newly developed universal primer pair yielding an approximately 350 bp fragment of mitochondrial 16S rRNA, variable enough to encompass and identify all vertebrate classes. METHODS AND RESULTS The primers were designed by aligning and analyzing over 1500 16S rRNA sequences downloaded from the NCBI nucleotide database. A total of 93 vertebrate species, spanning 27 orders and 55 families, were PCR-amplified to validate the primers. All the target species were successfully amplified and identified when aligned with reference sequences from the NCBI nucleotide database. Using the Kimura 2-parameter model, low intra-species genetic divergence of the target region was observed - from 0 to 4.63%, whereas relatively higher inter-species genetic divergence was observed, ranging from 4.88% to 69.81%. Moreover, the newly developed primers were successfully applied to a direct PCR protocol, making the workflow very cost-effective, time-saving and less laborious in comparison to conventional PCR. CONCLUSIONS The short length, high variability and conserved priming sites of the target fragment across all vertebrate species make it a highly desirable marker for species identification and discrimination.
Collapse
Affiliation(s)
- Sana Jafar
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Khalid Mahmood Anjum
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Kasur, Punjab, Pakistan
| | - Muhammad Yasir Zahoor
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Wasim Shehzad
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Asif Naseem
- Department of Zoology, Institute of Molecular Biology and Biotechnology, The University of Lahore (Sargodha Campus), Sargodha, Punjab, Pakistan
| | - Muhammad Imran
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan.
| |
Collapse
|
4
|
Huang K, Zhang J, Li J, Qiu H, Wei L, Yang Y, Wang C. Exploring the Impact of Primer-Template Mismatches on PCR Performance of DNA Polymerases Varying in Proofreading Activity. Genes (Basel) 2024; 15:215. [PMID: 38397205 PMCID: PMC10888005 DOI: 10.3390/genes15020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Polymerase chain reaction (PCR) is a widely used technique in gene expression analysis, diagnostics, and various molecular biology applications. However, the accuracy and sensitivity of PCR can be compromised by primer-template mismatches, potentially leading to erroneous results. In this study, we strategically designed 111 primer-template combinations with varying numbers, types, and locations of mismatches to meticulously assess their impact on qPCR performance while two distinctly different types of DNA polymerases were used. Notably, when a single-nucleotide mismatch occurred at the 3' end of the primer, we observed significant decreases in the analytical sensitivity (0-4%) with Invitrogen™ Platinum™ Taq DNA Polymerase High Fidelity, while the analytical sensitivity remained unchanged with Takara Ex Taq Hot Start Version DNA Polymerase. Leveraging these findings, we designed a highly specific PCR to amplify Babesia while effectively avoiding the genetically close Theileria. Through elucidating the critical interplay between types of DNA polymerases and primer-template mismatches, this research provides valuable insights for improving PCR accuracy and performance. These findings have important implications for researchers aiming to achieve robust qPCR results in various molecular biology applications.
Collapse
Affiliation(s)
- Ke Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (K.H.); (J.L.); (H.Q.)
- Center of Animal Disease Control and Prevention, Songjiang District, Shanghai 201600, China
| | - Jilei Zhang
- College of Medicine, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Jing Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (K.H.); (J.L.); (H.Q.)
| | - Haixiang Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (K.H.); (J.L.); (H.Q.)
| | - Lanjing Wei
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA;
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (K.H.); (J.L.); (H.Q.)
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Brown K, Ceci A, Roby C, Briggs R, Ziolo D, Korba R, Mejia R, Kelly S, Toney D, Friedlander M, Finkielstein C. A comparative analysis exposes an amplification delay distinctive to SARS-CoV-2 Omicron variants of clinical and public health relevance. Emerg Microbes Infect 2023; 12:2154617. [PMID: 36458572 PMCID: PMC9793939 DOI: 10.1080/22221751.2022.2154617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
ABSTRACTMutations in the SARS-CoV-2 genome may negatively impact a diagnostic test, have no effect, or turn into an opportunity for rapid molecular screening of variants. Using an in-house Emergency Use Authorized RT-qPCR-based COVID-19 diagnostic assay, we combined sequence surveillance of viral variants and computed PCR efficiencies for mismatched templates. We found no significant mismatches for the N, E, and S set of assay primers until the Omicron variant emerged in late November 2021. We found a single mismatch between the Omicron sequence and one of our assay's primers caused a > 4 cycle delay during amplification without impacting overall assay performance.Starting in December 2021, clinical specimens received for COVID-19 diagnostic testing that generated a Cq delay greater than 4 cycles were sequenced and confirmed as Omicron. Clinical samples without a Cq delay were largely confirmed as the Delta variant. The primer-template mismatch was then used as a rapid surrogate marker for Omicron. Primers that correctly identified Omicron were designed and tested, which prepared us for the emergence of future variants with novel mismatches to our diagnostic assay's primers. Our experience demonstrates the importance of monitoring sequences, the need for predicting the impact of mismatches, their value as a surrogate marker, and the relevance of adapting one's molecular diagnostic test for evolving pathogens.
Collapse
Affiliation(s)
- K.L. Brown
- Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, USA,Center for Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - A. Ceci
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - C. Roby
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - R. Briggs
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - D. Ziolo
- ZC Lab Services, Greenacreas, FL, USA
| | - R. Korba
- Molecular Detection and Characterization, Department of General Services, Division of Consolidated Laboratory Services, Richmond, VA, USA
| | - R. Mejia
- Molecular Detection and Characterization, Department of General Services, Division of Consolidated Laboratory Services, Richmond, VA, USA
| | - S.T. Kelly
- Molecular Detection and Characterization, Department of General Services, Division of Consolidated Laboratory Services, Richmond, VA, USA
| | - D. Toney
- Molecular Detection and Characterization, Department of General Services, Division of Consolidated Laboratory Services, Richmond, VA, USA
| | - M.J. Friedlander
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - C.V. Finkielstein
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA,Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA,Center for Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA, C.V. Finkielstein Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, 4 Riverside Cr., Roanoke, VA, 24016, USA
| |
Collapse
|
6
|
Song J, Kim S, Kwak E, Park Y. Evaluating the Efficiency of the Cobas 6800 System for BK Virus Detection in Plasma and Urine Samples. Diagnostics (Basel) 2023; 13:2860. [PMID: 37685397 PMCID: PMC10487002 DOI: 10.3390/diagnostics13172860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
We evaluated the overall performance of the Cobas 6800 BKV test in detecting BK virus (BKV). We examined the imprecision of the Cobas 6800 BKV test and compared the qualitative and quantitative results obtained from the Cobas 6800 BKV test and the Real-Q BKV quantification assay. We assessed 88 plasma and 26 urine samples collected between September and November 2022 from patients with BKV infection using the Real-Q BKV quantitative assay. The lognormal coefficient of variation indicated that the inter-assay precision of the Cobas 6800 BKV test ranged from 13.86 to 33.83%. A strong correlation was observed between the quantitative results obtained using the Cobas 6800 BKV test and the Real-Q BKV quantification assay for plasma samples. The Spearman's rank correlation coefficients (ρ) for plasma, polymerase chain reaction (PCR) media-stabilized urine, and raw urine samples were 0.939, 0.874, and 0.888, respectively. Our analyses suggest that the Cobas 6800 BKV test is suitable for clinical applications owing to the strong correlation between the results obtained using this test and the Real-Q BKV quantification assay in plasma and urine samples. Furthermore, utilizing fresh raw urine samples can be a viable approach for the Cobas 6800 BKV test as it is less labor- and time-intensive.
Collapse
Affiliation(s)
| | | | | | - Younhee Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Peñarrubia L, Rao SN, Porco R, Varo M, Muñoz-Torrero P, Ortiz-Martinez F, Pareja J, López-Fontanals M, Manissero D. Detecting zoonotic Influenza A using QIAstat-Dx Respiratory SARS-CoV-2 panel for pandemic preparedness. Sci Rep 2023; 13:2833. [PMID: 36807577 PMCID: PMC9936110 DOI: 10.1038/s41598-023-29838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Recent reports from the World Health Organization regarding Influenza A cases of zoonotic origin in humans (H1v and H9N2) and publications describing emergence swine Influenza A cases in humans together with "G4" Eurasian avian-like H1N1 Influenza A virus have drawn global attention to Influenza A pandemic threat. Additionally, the current COVID-19 epidemic has stressed the importance of surveillance and preparedness to prevent potential outbreaks. One feature of the QIAstat-Dx Respiratory SARS-CoV-2 panel is the double target approach for Influenza A detection of seasonal strains affecting humans using a generic Influenza A assay plus the three specific human subtype assays. This work explores the potential use of this double target approach in the QIAstat-Dx Respiratory SARS-Co-V-2 Panel as a tool to detect zoonotic Influenza A strains. A set of recently recorded H9 and H1 spillover strains and the G4 EA Influenza A strains as example of recent zoonotic Flu A strains were subjected to detection prediction with QIAstat-Dx Respiratory SARS-CoV-2 Panel using commercial synthetic dsDNA sequences. In addition, a large set of available commercial human and non-human influenza A strains were also tested using QIAstat-Dx Respiratory SARS-CoV-2 Panel for a better understanding of detection and discrimination of Influenza A strains. Results show that QIAstat-Dx Respiratory SARS-CoV-2 Panel generic Influenza A assay detects all the recently recorded H9, H5 and H1 zoonotic spillover strains and all the G4 EA Influenza A strains. Additionally, these strains yielded negative results for the three-human seasonal IAV (H1, H3 and H1N1 pandemic) assays. Additional non-human strains corroborated those results of Flu A detection with no subtype discrimination, whereas human Influenza strains were positively discriminated. These results indicate that QIAstat-Dx Respiratory SARS-CoV-2 Panel could be a useful tool to diagnose zoonotic Influenza A strains and differentiate them from the seasonal strains commonly affecting humans.
Collapse
Affiliation(s)
- Luis Peñarrubia
- STAT-Dx Life S.L. (A QIAGEN Company), Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Sonia N. Rao
- grid.421680.90000 0004 0404 0296QIAGEN Inc., 19300 Germantown Road, Germantown, MD 20874 USA
| | - Roberto Porco
- STAT-Dx Life S.L. (A QIAGEN Company), Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Marta Varo
- STAT-Dx Life S.L. (A QIAGEN Company), Baldiri Reixac, 4, 08028 Barcelona, Spain
| | | | | | - Josep Pareja
- STAT-Dx Life S.L. (A QIAGEN Company), Baldiri Reixac, 4, 08028 Barcelona, Spain
| | | | - Davide Manissero
- grid.474454.20000 0004 0451 3823QIAGEN Manchester Ltd, Skelton House, Lloyd Street North, Manchester, M15 6SH UK
| |
Collapse
|
8
|
Silva PGD, Nascimento MSJ, Sousa SIV, Mesquita JR. SARS-CoV-2 in outdoor air following the third wave lockdown release, Portugal, 2021. J Med Microbiol 2023; 72. [PMID: 36763082 DOI: 10.1099/jmm.0.001659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Aiming to contribute with more data on the presence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in outdoor environments, we performed air sampling in outdoor terraces from restaurants in three major cities of Portugal in April 2021, following the third wave lockdown release in the country. Air samples (n=19) were collected in 19 restaurant terraces during lunch time. Each air sample was collected using a Coriolis Compact air sampler, followed by RNA extraction and real-time quantitative PCR for the detection of viral RNA. Viral viability was also assessed through RNAse pre-treatment of samples. Only one of the 19 air samples was positive for SARS-CoV-2 RNA, with 7337 gene copies m-3 for the genomic region N2, with no viable virus in this sample. The low number of positive samples found in this study is not surprising, as sampling took place in outdoor settings where air circulation is optimal, and aerosols are rapidly dispersed by the air currents. These results are consistent with previous reports stating that transmission of SARS-CoV-2 in outdoor spaces is low, although current evidence shows an association of exposures in settings where drinking and eating is possible on-site with an increased risk in acquiring SARS-CoV-2 infection. Moreover, the minimal infectious dose for SARS-CoV-2 still needs to be determined so that the real risk of infection in different environments can be accurately established.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal.,Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.,LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | | | - Sofia I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João R Mesquita
- ICBAS - School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal.,Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
9
|
Sharma D, Notarte KI, Fernandez RA, Lippi G, Gromiha MM, Henry BM. In silico evaluation of the impact of Omicron variant of concern sublineage BA.4 and BA.5 on the sensitivity of RT-qPCR assays for SARS-CoV-2 detection using whole genome sequencing. J Med Virol 2023; 95:e28241. [PMID: 36263448 PMCID: PMC9874926 DOI: 10.1002/jmv.28241] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC) Omicron (B.1.1.529) has rapidly spread around the world, presenting a new threat to global public human health. Due to the large number of mutations accumulated by SARS-CoV-2 Omicron, concerns have emerged over potentially reduced diagnostic accuracy of reverse-transcription polymerase chain reaction (RT-qPCR), the gold standard diagnostic test for diagnosing coronavirus disease 2019 (COVID-19). Thus, we aimed to assess the impact of the currently endemic Omicron sublineages BA.4 and BA.5 on the integrity and sensitivity of RT-qPCR assays used for coronavirus disease 2019 (COVID-19) diagnosis via in silico analysis. We employed whole genome sequencing data and evaluated the potential for false negatives or test failure due to mismatches between primers/probes and the Omicron VoC viral genome. METHODS In silico sensitivity of 12 RT-qPCR tests (containing 30 primers and probe sets) developed for detection of SARS-CoV-2 reported by the World Health Organization (WHO) or available in the literature, was assessed for specifically detecting SARS-CoV-2 Omicron BA.4 and BA.5 sublineages, obtained after removing redundancy from publicly available genomes from National Center for Biotechnology Information (NCBI) and Global Initiative on Sharing Avian Influenza Data (GISAID) databases. Mismatches between amplicon regions of SARS-CoV-2 Omicron VoC and primers and probe sets were evaluated, and clustering analysis of corresponding amplicon sequences was carried out. RESULTS From the 1164 representative SARS-CoV-2 Omicron VoC BA.4 sublineage genomes analyzed, a substitution in the first five nucleotides (C to T) of the amplicon's 3'-end was observed in all samples resulting in 0% sensitivity for assays HKUnivRdRp/Hel (mismatch in reverse primer) and CoremCharite N (mismatch in both forward and reverse primers). Due to a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC), the sensitivity of the ChinaCDC N assay was at 0.69%. The 10 nucleotide mismatches in the reverse primer resulted in 0.09% sensitivity for Omicron sublineage BA.4 for Thai N assay. Of the 1926 BA.5 sublineage genomes, HKUnivRdRp/Hel assay also had 0% sensitivity. A sensitivity of 3.06% was observed for the ChinaCDC N assay because of a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC). Similarly, due to the 10 nucleotide mismatches in the reverse primer, the Thai N assay's sensitivity was low at 0.21% for sublineage BA.5. Further, eight assays for BA.4 sublineage retained high sensitivity (more than 97%) and 9 assays for BA.5 sublineage retained more than 99% sensitivity. CONCLUSION We observed four assays (HKUnivRdRp/Hel, ChinaCDC N, Thai N, CoremCharite N) that could potentially result in false negative results for SARS-CoV-2 Omicron VoCs BA.4 and BA.5 sublineages. Interestingly, CoremCharite N had 0% sensitivity for Omicron Voc BA.4 but 99.53% sensitivity for BA.5. In addition, 66.67% of the assays for BA.4 sublineage and 75% of the assays for BA.5 sublineage retained high sensitivity. Further, amplicon clustering and additional substitution analysis along with sensitivity analysis could be used for the modification and development of RT-qPCR assays for detecting SARS-CoV-2 Omicron VoC sublineages.
Collapse
Affiliation(s)
- Divya Sharma
- Protein Bioinformatics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiTamil NaduIndia
| | - Kin Israel Notarte
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rey Arturo Fernandez
- Ateneo de Manila University Professional SchoolsRockwell CenterMakatiPhilippines
| | - Giuseppe Lippi
- Section of Clinical BiochemistryUniversity of VeronaVeronaItaly
| | - M. Michael Gromiha
- Protein Bioinformatics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiTamil NaduIndia
| | - Brandon M. Henry
- Clinical Laboratory, Division of Nephrology and HypertensionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
10
|
Identification of mutations in SARS-CoV-2 PCR primer regions. Sci Rep 2022; 12:18651. [PMID: 36333366 PMCID: PMC9636223 DOI: 10.1038/s41598-022-21953-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Due to the constantly increasing number of mutations in the SARS-CoV-2 genome, concerns have emerged over the possibility of decreased diagnostic accuracy of reverse transcription-polymerase chain reaction (RT-PCR), the gold standard diagnostic test for SARS-CoV-2. We propose an analysis pipeline to discover genomic variations overlapping the target regions of commonly used PCR primer sets. We provide the list of these mutations in a publicly available format based on a dataset of more than 1.2 million SARS-CoV-2 samples. Our approach distinguishes among mutations possibly having a damaging impact on PCR efficiency and ones anticipated to be neutral in this sense. Samples are categorized as "prone to misclassification" vs. "likely to be correctly detected" by a given PCR primer set based on the estimated effect of mutations present. Samples susceptible to misclassification are generally present at a daily rate of 2% or lower, although particular primer sets seem to have compromised performance when detecting Omicron samples. As different variant strains may temporarily gain dominance in the worldwide SARS-CoV-2 viral population, the efficiency of a particular PCR primer set may change over time, therefore constant monitoring of variations in primer target regions is highly recommended.
Collapse
|
11
|
Sarkes A, Yang Y, Dijanovic S, Fu H, Zahr K, Harding MW, Feindel D, Feng J. Detection of Xanthomonas translucens pv. undulosa, pv. translucens, and pv. secalis by Quantitative PCR. PLANT DISEASE 2022; 106:2876-2883. [PMID: 35442047 DOI: 10.1094/pdis-03-22-0574-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A probe-based quantitative PCR (qPCR) protocol was developed for detection and evaluation of the wheat bacterial leaf streak pathogen Xanthomonas translucens pathovar (pv.) undulosa. The protocol can also detect X. translucens pv. translucens and X. translucens pv. secalis but can't differentiate the three pathovars. When tested on nontarget DNA (i.e., from plant; bacteria other than X. translucens pv. undulosa, X. translucens pv. translucens, and X. translucens pv. secalis; and culture of microorganisms from wheat grains), the qPCR showed a high specificity. On purified X. translucens pv. undulosa DNA, the qPCR was more sensitive than a loop-mediated isothermal amplification assay. When DNA samples from a set of serial dilutions of X. translucens pv. undulosa cells were tested, the qPCR method could repeatedly generate quantification cycle (Cq) values from the dilutions containing ≥1,000 cells. Since 2 µl of the total 50 µl of DNA was used in one reaction, one qPCR reaction could detect the presence of the bacteria in samples containing as few as 40 bacterial cells. The qPCR could detect the bacteria from both infected grain and leaf tissues. For seed testing, a protocol for template preparation was standardized, which allowed one qPCR reaction to test DNA from the surface of one wheat grain. Thus, the qPCR system could detect X. translucens pv. undulosa, X. translucens pv. translucens, and/or X. translucens pv. secalis in samples where the bacteria had an average concentration of ≥40 cells per grain.
Collapse
Affiliation(s)
- Alian Sarkes
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Yalong Yang
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Snezana Dijanovic
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Heting Fu
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Kher Zahr
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Michael W Harding
- Crop Diversification Centre South, AAFRED, Brooks, AB, T1R 1E6, Canada
| | - David Feindel
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| | - Jie Feng
- Alberta Plant Health Lab, Crop Diversification Centre North, Alberta Agriculture, Forestry and Rural Economic Development (AAFRED), Edmonton, AB, T5Y 6H3, Canada
| |
Collapse
|
12
|
Lindstedt K, Buczek D, Pedersen T, Hjerde E, Raffelsberger N, Suzuki Y, Brisse S, Holt K, Samuelsen Ø, Sundsfjord A. Detection of Klebsiella pneumoniae human gut carriage: a comparison of culture, qPCR, and whole metagenomic sequencing methods. Gut Microbes 2022; 14:2118500. [PMID: 36045603 PMCID: PMC9450895 DOI: 10.1080/19490976.2022.2118500] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is an important opportunistic healthcare-associated pathogen and major contributor to the global spread of antimicrobial resistance. Gastrointestinal colonization with K. pneumoniae is a major predisposing risk factor for infection and forms an important hub for the dispersal of resistance. Current culture-based detection methods are time consuming, give limited intra-sample abundance and strain diversity information, and have uncertain sensitivity. Here we investigated the presence and abundance of K. pneumoniae at the species and strain level within fecal samples from 103 community-based adults by qPCR and whole metagenomic sequencing (WMS) compared to culture-based detection. qPCR demonstrated the highest sensitivity, detecting K. pneumoniae in 61.2% and 75.8% of direct-fecal and culture-enriched sweep samples, respectively, including 52/52 culture-positive samples. WMS displayed lower sensitivity, detecting K. pneumoniae in 71.2% of culture-positive fecal samples at a 0.01% abundance cutoff, and was inclined to false positives in proportion to the relative abundance of other Enterobacterales present. qPCR accurately quantified K. pneumoniae to 16 genome copies/reaction while WMS could estimate relative abundance to at least 0.01%. Quantification by both methods correlated strongly with each other (Spearman's rho = 0.91). WMS also supported accurate intra-sample K. pneumoniae sequence type (ST)-level diversity detection from fecal microbiomes to 0.1% relative abundance, agreeing with the culture-based detected ST in 16/19 samples. Our results show that qPCR and WMS are sensitive and reliable tools for detection, quantification, and strain analysis of K. pneumoniae from fecal samples with potential to support infection control and enhance insights in K. pneumoniae gastrointestinal ecology.
Collapse
Affiliation(s)
- Kenneth Lindstedt
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,CONTACT Kenneth Lindstedt
| | - Dorota Buczek
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, UiT the Arctic University of Norway, Tromsø, Norway
| | - Niclas Raffelsberger
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Kathryn Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway,Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway,Arnfinn Sundsfjord Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, 9038, Norway
| |
Collapse
|
13
|
Hernandez MM, Banu R, Gonzalez-Reiche AS, Gray B, Shrestha P, Cao L, Chen F, Shi H, Hanna A, Ramírez JD, van de Guchte A, Sebra R, Gitman MR, Nowak MD, Cordon-Cardo C, Schutzbank TE, Simon V, van Bakel H, Sordillo EM, Paniz-Mondolfi AE. RT-PCR/MALDI-TOF Diagnostic Target Performance Reflects Circulating SARS-CoV-2 Variant Diversity in New York City. J Mol Diagn 2022; 24:738-749. [PMID: 35525388 PMCID: PMC9067105 DOI: 10.1016/j.jmoldx.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/07/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate, multiple variants of concern have emerged. New variants pose challenges for diagnostic platforms because sequence diversity can alter primer/probe-binding sites (PBSs), causing false-negative results. The MassARRAY SARS-CoV-2 Panel (Agena Bioscience) uses RT-PCR and mass spectrometry to detect five multiplex targets across N and ORF1ab genes. Herein, we use a data set of 256 SARS-CoV-2-positive specimens collected between April 11, 2021, and August 28, 2021, to evaluate target performance with paired sequencing data. During this time frame, two targets in the N gene (N2 and N3) were subject to the greatest sequence diversity. In specimens with N3 dropout, 69% harbored the Alpha-specific A28095U polymorphism that introduces a 3'-mismatch to the N3 forward PBS and increases risk of target dropout relative to specimens with 28095A (relative risk, 20.02; 95% CI, 11.36 to 35.72; P < 0.0001). Furthermore, among specimens with N2 dropout, 90% harbored the Delta-specific G28916U polymorphism that creates a 3'-mismatch to the N2 probe PBS and increases target dropout risk (relative risk, 11.92; 95% CI, 8.17 to 14.06; P < 0.0001). These findings highlight the robust capability of MassARRAY SARS-CoV-2 Panel target results to reveal circulating virus diversity, and they underscore the power of multitarget design to capture variants of concern.
Collapse
Affiliation(s)
- Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Radhika Banu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brandon Gray
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paras Shrestha
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Liyong Cao
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feng Chen
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Huanzhi Shi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ayman Hanna
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Sema4, a Mount Sinai venture, Stamford, Connecticut
| | - Melissa R Gitman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael D Nowak
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alberto E Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
14
|
Liu D, Rodriguez GD, Zhou HY, Cheng YX, Li X, Tang W, Prasad N, Chen CC, Singh V, Konadu E, James KK, Bahamon MF, Chen Y, Segal-Maurer S, Wu A, Rodgers WH. SARS-CoV-2 Continuous Genetic Divergence and Changes in Multiplex RT-PCR Detection Pattern on Positive Retesting Median 150 Days after Initial Infection. Int J Mol Sci 2022; 23:ijms23116254. [PMID: 35682933 PMCID: PMC9181733 DOI: 10.3390/ijms23116254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Being in the epicenter of the COVID-19 pandemic, our lab tested 193,054 specimens for SARS-CoV-2 RNA by diagnostic multiplex reverse transcription polymerase chain reaction (mRT-PCR) starting in March 2020, of which 17,196 specimens resulted positive. To investigate the dynamics of virus molecular evolution and epidemiology, whole genome amplification (WGA) and Next Generation Sequencing (NGS) were performed on 9516 isolates. 7586 isolates with a high quality were further analyzed for the mutation frequency and spectrum. Lastly, we evaluated the utility of the mRT-PCR detection pattern among 26 reinfected patients with repeat positive testing three months after testing negative from the initial infection. Our results show a continuation of the genetic divergence in viral genomes. Furthermore, our results indicate that independent mutations in the primer and probe regions of the nucleocapsid gene amplicon and envelope gene amplicon accumulate over time. Some of these mutations correlate with the changes of detection pattern of viral targets of mRT-PCR. Our data highlight the significance of a continuous genetic divergence on a gene amplification-based assay, the value of the mRT-PCR detection pattern for complementing the clinical diagnosis of reinfection, and the potential for WGA and NGS to identify mutation hotspots throughout the entire viral genome to optimize the design of the PCR-based gene amplification assay.
Collapse
Affiliation(s)
- Dakai Liu
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - George D. Rodriguez
- Division of Infectious Disease, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (N.P.); (S.S.-M.)
- Correspondence: (G.D.R.); (A.W.); (W.H.R.)
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (H.-Y.Z.); (Y.-X.C.)
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Ye-Xiao Cheng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (H.-Y.Z.); (Y.-X.C.)
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Xiaofeng Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, China;
| | - Wenwen Tang
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Nishant Prasad
- Division of Infectious Disease, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (N.P.); (S.S.-M.)
| | - Chun-Cheng Chen
- Department of Surgery, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA;
| | - Vishnu Singh
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Eric Konadu
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Keither K. James
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Maria F. Bahamon
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Yvonne Chen
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
| | - Sorana Segal-Maurer
- Division of Infectious Disease, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (N.P.); (S.S.-M.)
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (H.-Y.Z.); (Y.-X.C.)
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
- Correspondence: (G.D.R.); (A.W.); (W.H.R.)
| | - William Harry Rodgers
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, 56-45 Main Street Flushing, New York, NY 11355, USA; (D.L.); (V.S.); (E.K.); (K.K.J.); (M.F.B.); (Y.C.)
- Department of Pathology and Laboratory Medicine, Weil Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
- Correspondence: (G.D.R.); (A.W.); (W.H.R.)
| |
Collapse
|
15
|
Knudsen SW, Hesselsøe M, Thaulow J, Agersnap S, Hansen BK, Jacobsen MW, Bekkevold D, Jensen SKS, Møller PR, Andersen JH. Monitoring of environmental DNA from nonindigenous species of algae, dinoflagellates and animals in the North East Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153093. [PMID: 35038516 DOI: 10.1016/j.scitotenv.2022.153093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/04/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Monitoring the distribution of marine nonindigenous species is a challenging task. To support this monitoring, we developed and validated the specificity of 12 primer-probe assays for detection of environmental DNA (eDNA) from marine species, all nonindigenous to Europe. The species include sturgeons, a Pacific red algae, oyster thief, a freshwater hydroid from the Black Sea, Chinese mitten crab, Pacific oyster, warty comb jelly, sand gaper, round goby, pink salmon, rainbow trout and North American mud crab. We tested all assays in the laboratory, on DNA extracted from both the target and non-target species to ensure that they only amplified DNA from the intended species. Subsequently, all assays were used to analyse water samples collected at 16 different harbours across two different seasons during 2017. We also included six previously published assays targeting eDNA from goldfish, European carp, two species of dinoflagellates of the genera Karenia and Prorocentrum, two species of the heterokont flagellate genus Pseudochattonella. Conventional monitoring was carried out alongside eDNA sampling but with only one sampling event over the one year. Because eDNA was relatively fast and easy to collect compared to conventional sampling, we sampled eDNA twice during 2017, which showed seasonal changes in the distribution of nonindigenous species. Comparing eDNA levels with salinity gradients did not show any correlation. A significant correlation was observed between number of species detected with conventional monitoring methods and number of species found using eDNA at each location. This supports the use of eDNA for surveillance of the distribution of marine nonindigenous species, where the speed and relative easy sampling in the field combined with fast molecular analysis may provide advantages compared to conventional monitoring methods. Prior validation of assays increases taxonomic precision, and laboratorial setup facilitates analysis of multiple samples simultaneously. The specific eDNA assays presented here can be implemented directly in monitoring programmes across Europe and potentially worldwide to infer a more precise picture of the dynamics in the distribution of marine nonindigenous species.
Collapse
Affiliation(s)
- Steen Wilhelm Knudsen
- NIVA Denmark Water Research, Njalsgade 76, DK-2300 Copenhagen, Denmark; Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | | - Jens Thaulow
- NIVA Denmark Water Research, Njalsgade 76, DK-2300 Copenhagen, Denmark
| | - Sune Agersnap
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Building 1540, DK-8000 Aarhus, Denmark
| | - Brian Klitgaard Hansen
- Danish Technical University of Denmark, Section for Marine Living Resources, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Magnus Wulff Jacobsen
- Danish Technical University of Denmark, Section for Marine Living Resources, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Dorte Bekkevold
- Danish Technical University of Denmark, Section for Marine Living Resources, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Norwegian College of Fishery Science, UiT Norwegian Arctic University, Tromsø, Norway
| | - Jesper H Andersen
- NIVA Denmark Water Research, Njalsgade 76, DK-2300 Copenhagen, Denmark
| |
Collapse
|
16
|
Hernandez MM, Banu R, Gonzalez-Reiche AS, van de Guchte A, Khan Z, Shrestha P, Cao L, Chen F, Shi H, Hanna A, Alshammary H, Fabre S, Amoako A, Obla A, Alburquerque B, Patiño LH, Ramírez JD, Sebra R, Gitman MR, Nowak MD, Cordon-Cardo C, Schutzbank TE, Simon V, van Bakel H, Sordillo EM, Paniz-Mondolfi AE. Robust clinical detection of SARS-CoV-2 variants by RT-PCR/MALDI-TOF multitarget approach. J Med Virol 2021; 94:1606-1616. [PMID: 34877674 DOI: 10.1002/jmv.27510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Radhika Banu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paras Shrestha
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Liyong Cao
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feng Chen
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huanzhi Shi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ayman Hanna
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shelcie Fabre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela Amoako
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ajay Obla
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bremy Alburquerque
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Sema4, a Mount Sinai Venture, Stamford, Connecticut, USA
| | - Melissa R Gitman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael D Nowak
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ted E Schutzbank
- Senior Scientific Affairs Manager, Infectious Diseases, Agena Bioscience, San Diego, California, USA
| | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alberto E Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Van Poelvoorde LAE, Gand M, Fraiture MA, De Keersmaecker SCJ, Verhaegen B, Van Hoorde K, Cay AB, Balmelle N, Herman P, Roosens N. Strategy to Develop and Evaluate a Multiplex RT-ddPCR in Response to SARS-CoV-2 Genomic Evolution. Curr Issues Mol Biol 2021; 43:1937-1949. [PMID: 34889894 PMCID: PMC8928932 DOI: 10.3390/cimb43030134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since 2019 has highlighted the importance of rapid and reliable diagnostic testing to prevent and control the viral transmission. However, inaccurate results may occur due to false negatives (FN) caused by polymorphisms or point mutations related to the virus evolution and compromise the accuracy of the diagnostic tests. Therefore, PCR-based SARS-CoV-2 diagnostics should be evaluated and evolve together with the rapidly increasing number of new variants appearing around the world. However, even by using a large collection of samples, laboratories are not able to test a representative collection of samples that deals with the same level of diversity that is continuously evolving worldwide. In the present study, we proposed a methodology based on an in silico and in vitro analysis. First, we used all information offered by available whole-genome sequencing data for SARS-CoV-2 for the selection of the two PCR assays targeting two different regions in the genome, and to monitor the possible impact of virus evolution on the specificity of the primers and probes of the PCR assays during and after the development of the assays. Besides this first essential in silico evaluation, a minimal set of testing was proposed to generate experimental evidence on the method performance, such as specificity, sensitivity and applicability. Therefore, a duplex reverse-transcription droplet digital PCR (RT-ddPCR) method was evaluated in silico by using 154 489 whole-genome sequences of SARS-CoV-2 strains that were representative for the circulating strains around the world. The RT-ddPCR platform was selected as it presented several advantages to detect and quantify SARS-CoV-2 RNA in clinical samples and wastewater. Next, the assays were successfully experimentally evaluated for their sensitivity and specificity. A preliminary evaluation of the applicability of the developed method was performed using both clinical and wastewater samples.
Collapse
Affiliation(s)
- Laura A. E. Van Poelvoorde
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| | - Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| | - Marie-Alice Fraiture
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| | - Sigrid C. J. De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| | - Bavo Verhaegen
- Food Pathogens, Sciensano, 1050 Brussels, Belgium; (B.V.); (K.V.H.)
| | | | - Ann Brigitte Cay
- Enzootic, Vector-Borne and Bee Diseases, Sciensano, 1180 Brussels, Belgium; (A.B.C.); (N.B.)
| | - Nadège Balmelle
- Enzootic, Vector-Borne and Bee Diseases, Sciensano, 1180 Brussels, Belgium; (A.B.C.); (N.B.)
| | - Philippe Herman
- Expertise and Service Provision, Sciensano, 1050 Brussels, Belgium;
| | - Nancy Roosens
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (L.A.E.V.P.); (M.G.); (M.-A.F.); (S.C.J.D.K.)
| |
Collapse
|
18
|
Khan KA, Duceppe MO. Cross-reactivity and inclusivity analysis of CRISPR-based diagnostic assays of coronavirus SARS-CoV-2. PeerJ 2021; 9:e12050. [PMID: 34703657 PMCID: PMC8489407 DOI: 10.7717/peerj.12050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/03/2021] [Indexed: 12/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; initially named as 2019-nCoV) is the cause of the novel coronavirus disease 2019 (COVID-19) pandemic. Its diagnosis relies on the molecular detection of the viral RNA by polymerase chain reaction (PCR) while newer rapid CRISPR-based diagnostic tools are being developed. As molecular diagnostic assays rely on the detection of unique sequences of viral nucleic acid, the target regions must be common to all coronavirus SARS-CoV-2 circulating strains, yet unique to SARS-CoV-2 with no cross-reactivity with the genome of the host and other normal or pathogenic organisms potentially present in the patient samples. This stage 1 protocol proposes in silico cross-reactivity and inclusivity analysis of the recently developed CRISPR-based diagnostic assays. Cross-reactivity will be analyzed through comparison of target regions with the genome sequence of the human, seven coronaviruses and 21 other organisms. Inclusivity analysis will be performed through the verification of the sequence variability within the target regions using publicly available SARS-CoV-2 sequences from around the world. The absence of cross-reactivity and any mutations in target regions of the assay used would provide a higher degree of confidence in the CRISPR-based diagnostic tests being developed while the presence could help guide the assay development efforts. We believe that this study would provide potentially important information for clinicians, researchers, and decision-makers.
Collapse
Affiliation(s)
| | - Marc-Olivier Duceppe
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
19
|
de Melo AA, Nunes R, Telles MPDC. Same information, new applications: revisiting primers for the avian COI gene and improving DNA barcoding identification. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00507-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Comparison of RT-qPCR results of different gene targets for SARS-CoV-2 in asymptomatic individuals during COVID-19 pandemic. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
A reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) is regarded as the most sensitive method available and is being used for screening procedure for all incoming passengers to Northern Cyprus for SARS-CoV-2. This study investigated the compatibility of two different RT-qPCR methodologies Diagnovital® and Bio-Speedy® by re-analyzing the previously confirmed positive samples. A total of 43 previously confirmed positive samples were re-analyzed by two different commercially available SARS-CoV-2 RT-qPCR kits. Only 23.5% of positive samples detected by Diagnovital® RT-qPCR kit were detected by Bio-Speedy® detection kit.
In conclusion, adoption of Diagnovital® RT-qPCR kit detecting two regions of SARS-CoV-2 genome in our laboratories enabled the detection of SARS-CoV-2 in asymptomatic cases with higher sensitivity and contributed to the prevention of viral transmission within the country. The timely detection of infection in asymptomatic individuals may be the key to a successful fight against the COVID- 19 pandemic.
Collapse
|
21
|
Gand M, Vanneste K, Thomas I, Van Gucht S, Capron A, Herman P, Roosens NHC, De Keersmaecker SCJ. Deepening of In Silico Evaluation of SARS-CoV-2 Detection RT-qPCR Assays in the Context of New Variants. Genes (Basel) 2021; 12:genes12040565. [PMID: 33924636 PMCID: PMC8069896 DOI: 10.3390/genes12040565] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
For 1 year now, the world is undergoing a coronavirus disease-2019 (COVID-19) pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most widely used method for COVID-19 diagnosis is the detection of viral RNA by RT-qPCR with a specific set of primers and probe. It is important to frequently evaluate the performance of these tests and this can be done first by an in silico approach. Previously, we reported some mismatches between the oligonucleotides of publicly available RT-qPCR assays and SARS-CoV-2 genomes collected from GISAID and NCBI, potentially impacting proper detection of the virus. In the present study, 11 primers and probe sets investigated during the first study were evaluated again with 84,305 new SARS-CoV-2 unique genomes collected between June 2020 and January 2021. The lower inclusivity of the China CDC assay targeting the gene N has continued to decrease with new mismatches detected, whereas the other evaluated assays kept their inclusivity above 99%. Additionally, some mutations specific to new SARS-CoV-2 variants of concern were found to be located in oligonucleotide annealing sites. This might impact the strategy to be considered for future SARS-CoV-2 testing. Given the potential threat of the new variants, it is crucial to assess if they can still be correctly targeted by the primers and probes of the RT-qPCR assays. Our study highlights that considering the evolution of the virus and the emergence of new variants, an in silico (re-)evaluation should be performed on a regular basis. Ideally, this should be done for all the RT-qPCR assays employed for SARS-CoV-2 detection, including also commercial tests, although the primer and probe sequences used in these kits are rarely disclosed, which impedes independent performance evaluation.
Collapse
Affiliation(s)
- Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (M.G.); (K.V.); (N.H.C.R.)
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (M.G.); (K.V.); (N.H.C.R.)
| | - Isabelle Thomas
- Viral Diseases, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (I.T.); (S.V.G.)
| | - Steven Van Gucht
- Viral Diseases, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (I.T.); (S.V.G.)
| | - Arnaud Capron
- Quality of Laboratories, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium;
| | - Philippe Herman
- Expertise and Service Provision, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium;
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (M.G.); (K.V.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (M.G.); (K.V.); (N.H.C.R.)
- Correspondence: ; Tel.: +32-2-642-5257
| |
Collapse
|
22
|
Sapoval N, Mahmoud M, Jochum MD, Liu Y, Elworth RAL, Wang Q, Albin D, Ogilvie HA, Lee MD, Villapol S, Hernandez KM, Maljkovic Berry I, Foox J, Beheshti A, Ternus K, Aagaard KM, Posada D, Mason CE, Sedlazeck FJ, Treangen TJ. SARS-CoV-2 genomic diversity and the implications for qRT-PCR diagnostics and transmission. Genome Res 2021; 31:635-644. [PMID: 33602693 PMCID: PMC8015855 DOI: 10.1101/gr.268961.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has sparked an urgent need to uncover the underlying biology of this devastating disease. Though RNA viruses mutate more rapidly than DNA viruses, there are a relatively small number of single nucleotide polymorphisms (SNPs) that differentiate the main SARS-CoV-2 lineages that have spread throughout the world. In this study, we investigated 129 RNA-seq data sets and 6928 consensus genomes to contrast the intra-host and inter-host diversity of SARS-CoV-2. Our analyses yielded three major observations. First, the mutational profile of SARS-CoV-2 highlights intra-host single nucleotide variant (iSNV) and SNP similarity, albeit with differences in C > U changes. Second, iSNV and SNP patterns in SARS-CoV-2 are more similar to MERS-CoV than SARS-CoV-1. Third, a significant fraction of insertions and deletions contribute to the genetic diversity of SARS-CoV-2. Altogether, our findings provide insight into SARS-CoV-2 genomic diversity, inform the design of detection tests, and highlight the potential of iSNVs for tracking the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael D Jochum
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA
| | - Yunxi Liu
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - R A Leo Elworth
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Qi Wang
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Rice University, Houston, Texas 77005, USA
| | - Dreycey Albin
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Rice University, Houston, Texas 77005, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Michael D Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, California 94043, USA
- Blue Marble Space Institute of Science, Seattle, Washington 98104, USA
| | - Sonia Villapol
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Kyle M Hernandez
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
- Center for Translational Data Science, University of Chicago, Chicago, Illinois 60637, USA
| | | | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | | | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
23
|
Elaswad A, Fawzy M. Mutations in Animal SARS-CoV-2 Induce Mismatches with the Diagnostic PCR Assays. Pathogens 2021; 10:371. [PMID: 33808783 PMCID: PMC8003424 DOI: 10.3390/pathogens10030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was detected in several animal species. After transmission to animals, the virus accumulates mutations in its genome as adaptation to the new animal host progresses. Therefore, we investigated whether these mutations result in mismatches with the diagnostic PCR assays and suggested proper modifications to the oligo sequences accordingly. A comprehensive bioinformatic analysis was conducted using 28 diagnostic PCR assays and 793 publicly available SARS-CoV-2 genomes isolated from animals. Sixteen out of the investigated 28 PCR assays displayed at least one mismatch with their targets at the 0.5% threshold. Mismatches were detected in seven, two, two, and six assays targeting the ORF1ab, spike, envelope, and nucleocapsid genes, respectively. Several of these mismatches, such as the deletions and mismatches at the 3' end of the primer or probe, are expected to negatively affect the diagnostic PCR assays resulting in false-negative results. The modifications to the oligo sequences should result in stronger template binding by the oligos, better sensitivity of the assays, and higher confidence in the result. It is necessary to monitor the targets of diagnostic PCR assays for any future mutations that may occur as the virus continues to evolve in animals.
Collapse
Affiliation(s)
- Ahmed Elaswad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Middle East for Vaccines (ME VAC®), Sharquia 44813, Egypt
| |
Collapse
|
24
|
Anis E, Turner G, Ellis JC, Di Salvo A, Barnard A, Carroll S, Murphy L. Evaluation of a real-time RT-PCR panel for detection of SARS-CoV-2 in bat guano. J Vet Diagn Invest 2021; 33:331-335. [PMID: 33522461 DOI: 10.1177/1040638721990333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which is an ongoing global health concern. The exact source of the virus has not been identified, but it is believed that this novel coronavirus originated in animals; bats in particular have been implicated as the primary reservoir of the virus. SARS-CoV-2 can also be transmitted from humans to other animals, including tigers, cats, and mink. Consequently, infected people who work directly with bats could transfer the virus to a wild North American bat, resulting in a new natural reservoir for the virus, and lead to new outbreaks of human disease. We evaluated a reverse-transcription real-time PCR panel for detection of SARS-CoV-2 in bat guano. We found the panel to be highly specific for SARS-CoV-2, and able to detect the virus in bat guano samples spiked with SARS-CoV-2 viral RNA. Our panel could be utilized by wildlife agencies to test bats in rehabilitation facilities prior to their release to the wild, minimizing the risk of spreading this virus to wild bat populations.
Collapse
Affiliation(s)
- Eman Anis
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA.,Department of Virology, Faculty of Veterinary Medicine, University of Sadat, El Beheira Governorate, Sadat City, Egypt
| | - Greg Turner
- Pennsylvania Game Commission, Bureau of Wildlife Management, Harrisburg, PA
| | - Julie C Ellis
- Northeast Wildlife Disease Cooperative, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA
| | - Andrew Di Salvo
- Pennsylvania Game Commission, Bureau of Wildlife Management, Harrisburg, PA
| | - Amanda Barnard
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA
| | - Susan Carroll
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA
| | - Lisa Murphy
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square, PA
| |
Collapse
|
25
|
Khan KA, Cheung P. Evaluation of the Sequence Variability within the PCR Primer/Probe Target Regions of the SARS-CoV-2 Genome. Bio Protoc 2020; 10:e3871. [PMID: 33659508 PMCID: PMC7842606 DOI: 10.21769/bioprotoc.3871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; initially named 2019-nCoV) is responsible for the recent coronavirus disease (COVID-19) pandemic, and polymerase chain reaction (PCR) is the current standard method for diagnosis from patient samples. As PCR assays are prone to sequence mismatches due to mutations in the viral genome, it is important to verify the genomic variability at primer/probe binding regions periodically. This step-by-step protocol describes a bioinformatics approach for an extensive evaluation of the sequence variability within the primer/probe target regions of the SARS-CoV-2 genome. The protocol can be applied to any molecular diagnostic assay of choice using freely available software programs and the ready-to-use multiple sequence alignment (MSA) file provided. Graphic abstract Overview of the sequence tracing protocol. The figure was created using the Library of Science and Medical Illustrations from somersault18:24 licensed under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/). Video abstract: https://youtu.be/M1lV1liWE9k.
Collapse
Affiliation(s)
| | - Peter Cheung
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
26
|
Genomic Surveillance Enables Suitability Assessment of Salmonella Gene Targets Used for Culture-Independent Diagnostic Testing. J Clin Microbiol 2020; 58:JCM.00038-20. [PMID: 32580953 PMCID: PMC7448617 DOI: 10.1128/jcm.00038-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Salmonella is a highly diverse genus consisting of over 2,600 serovars responsible for high-burden food- and waterborne gastroenteritis worldwide. Sensitivity and specificity of PCR-based culture-independent diagnostic testing (CIDT) systems for Salmonella, which depend on a highly conserved gene target, can be affected by single nucleotide polymorphisms (SNPs), indels, and genomic rearrangements within primer and probe sequences. This report demonstrates the value of prospectively collected genomic data for verifying CIDT targets. Salmonella is a highly diverse genus consisting of over 2,600 serovars responsible for high-burden food- and waterborne gastroenteritis worldwide. Sensitivity and specificity of PCR-based culture-independent diagnostic testing (CIDT) systems for Salmonella, which depend on a highly conserved gene target, can be affected by single nucleotide polymorphisms (SNPs), indels, and genomic rearrangements within primer and probe sequences. This report demonstrates the value of prospectively collected genomic data for verifying CIDT targets. We utilized the genomes of 3,165 Salmonella isolates prospectively collected and sequenced in Australia. The sequences of Salmonella CIDT PCR gene targets (ttrA, spaO, and invA) were systematically interrogated to measure nucleotide dissimilarity. Analysis of 52 different serovars and 79 multilocus sequencing types (MLST) demonstrated dissimilarity within and between PCR gene targets ranging between 0 and 81.3 SNP/kbp (0 and 141 SNPs). The lowest average dissimilarity was observed in the ttrA target gene used by the Roche LightMix at 2.0 SNP/kbp (range, 0 to 46.7); however, entropy across the gene demonstrates that it may not be the most stable CIDT target. While debate continues over the benefits and pitfalls of replacing bacterial culture with molecular assays, the growing volumes of genomic surveillance data enable periodic regional reassessment and validation of CIDT targets against both prevalent and emerging serovars. If PCR systems are to become the primary screening and diagnostic tool for laboratory diagnosis of salmonellosis, ongoing monitoring of the genomic diversity in PCR target regions is warranted, as is the potential inclusion of two Salmonella PCR targets in frontline diagnostic systems.
Collapse
|
27
|
Gand M, Vanneste K, Thomas I, Van Gucht S, Capron A, Herman P, Roosens NHC, De Keersmaecker SCJ. Use of Whole Genome Sequencing Data for a First in Silico Specificity Evaluation of the RT-qPCR Assays Used for SARS-CoV-2 Detection. Int J Mol Sci 2020; 21:E5585. [PMID: 32759818 PMCID: PMC7432934 DOI: 10.3390/ijms21155585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
The current COronaVIrus Disease 2019 (COVID-19) pandemic started in December 2019. COVID-19 cases are confirmed by the detection of SARS-CoV-2 RNA in biological samples by RT-qPCR. However, limited numbers of SARS-CoV-2 genomes were available when the first RT-qPCR methods were developed in January 2020 for initial in silico specificity evaluation and to verify whether the targeted loci are highly conserved. Now that more whole genome data have become available, we used the bioinformatics tool SCREENED and a total of 4755 publicly available SARS-CoV-2 genomes, downloaded at two different time points, to evaluate the specificity of 12 RT-qPCR tests (consisting of a total of 30 primers and probe sets) used for SARS-CoV-2 detection and the impact of the virus' genetic evolution on four of them. The exclusivity of these methods was also assessed using the human reference genome and 2624 closely related other respiratory viral genomes. The specificity of the assays was generally good and stable over time. An exception is the first method developed by the China Center for Disease Control and prevention (CDC), which exhibits three primer mismatches present in 358 SARS-CoV-2 genomes sequenced mainly in Europe from February 2020 onwards. The best results were obtained for the assay of Chan et al. (2020) targeting the gene coding for the spiking protein (S). This demonstrates that our user-friendly strategy can be used for a first in silico specificity evaluation of future RT-qPCR tests, as well as verifying that the former methods are still capable of detecting circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Mathieu Gand
- Transversal activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (M.G.); (K.V.); (N.H.C.R.)
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (M.G.); (K.V.); (N.H.C.R.)
| | - Isabelle Thomas
- Viral Diseases, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (I.T.); (S.V.G.)
| | - Steven Van Gucht
- Viral Diseases, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (I.T.); (S.V.G.)
| | - Arnaud Capron
- Quality of Laboratories, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium;
| | - Philippe Herman
- Expertise and Service Provision, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium;
| | - Nancy H. C. Roosens
- Transversal activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (M.G.); (K.V.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Transversal activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, B-1050 Brussels, Belgium; (M.G.); (K.V.); (N.H.C.R.)
| |
Collapse
|
28
|
Sapoval N, Mahmoud M, Jochum MD, Liu Y, Elworth RAL, Wang Q, Albin D, Ogilvie H, Lee MD, Villapol S, Hernandez KM, Berry IM, Foox J, Beheshti A, Ternus K, Aagaard KM, Posada D, Mason CE, Sedlazeck F, Treangen TJ. Hidden genomic diversity of SARS-CoV-2: implications for qRT-PCR diagnostics and transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.02.184481. [PMID: 32637955 PMCID: PMC7337385 DOI: 10.1101/2020.07.02.184481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The COVID-19 pandemic has sparked an urgent need to uncover the underlying biology of this devastating disease. Though RNA viruses mutate more rapidly than DNA viruses, there are a relatively small number of single nucleotide polymorphisms (SNPs) that differentiate the main SARS-CoV-2 clades that have spread throughout the world. In this study, we investigated over 7,000 SARS-CoV-2 datasets to unveil both intrahost and interhost diversity. Our intrahost and interhost diversity analyses yielded three major observations. First, the mutational profile of SARS-CoV-2 highlights iSNV and SNP similarity, albeit with high variability in C>T changes. Second, iSNV and SNP patterns in SARS-CoV-2 are more similar to MERS-CoV than SARS-CoV-1. Third, a significant fraction of small indels fuel the genetic diversity of SARS-CoV-2. Altogether, our findings provide insight into SARS-CoV-2 genomic diversity, inform the design of detection tests, and highlight the potential of iSNVs for tracking the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Michael D. Jochum
- Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Yunxi Liu
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Qi Wang
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Houston, TX
| | - Dreycey Albin
- Systems, Synthetic, and Physical Biology (SSPB) Graduate Program, Houston, TX
| | - Huw Ogilvie
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Michael D. Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA
- Blue Marble Space Institute of Science, Seattle, WA
| | | | - Kyle M. Hernandez
- Department of Medicine, University of Chicago, Chicago, IL
- Center for Translational Data Science, University of Chicago, Chicago, IL
| | | | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA
| | - Krista Ternus
- Signature Science, LLC, 8329 North Mopac Expressway, Austin TX 78759
| | | | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology School of Biology, University of Vigo, Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Fritz Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| |
Collapse
|
29
|
Truong AD, Ly DV, Vu TH, Hoang VT, Nguyen TC, Chu TN, Nguyen HT, Nguyen TV, Pham NT, Tran HTT, Dang HV. Unexpected cases in field diagnosis of African swine fever virus in Vietnam: The needs consideration when performing molecular diagnostic tests. Open Vet J 2020; 10:189-197. [PMID: 32821663 PMCID: PMC7419073 DOI: 10.4314/ovj.v10i2.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/29/2020] [Indexed: 11/17/2022] Open
Abstract
Background The first confirmed case of African swine fever (ASF) in Vietnam was reported officially in February 2019. To date, ASF virus (ASFV) have been detected in 63/63 provinces in Vietnam. Currently, real-time polymerase chain reaction (PCR) is considered to be a powerful tool for viral detection in field samples, including ASFV. However, some recent reports have suggested that mismatches in primer and probe binding regions may directly affect real-time PCR qualification, leading a false-negative result. Aim This study aims to further examine a conflicting result obtained from two OIE recommended methods, conventional PCR and real-time PCR, for ASFV detection. Methods Two ASF suspected pigs from different provinces in the north of Vietnam were selected for this study based on clinical signs and postmortem lesions. The different results obtained by OIE-recommended conventional PCR and real-time PCR were further analyzed by the Sanger sequencing method and virus isolation in combination with hemadsorption (HAD) test using porcine alveolar macrophages cells. Results The results showed that when the primer sequence matched perfectly with the sequences of field isolates, a mutation in probe binding region was found, indicating that a single mismatch in the probe binding site may cause a false-negative result by real-time PCR in detecting ASFV in clinical samples in Vietnam. An agreement between conventional PCR, using PPA1/PPA2 primers and two golden standard methods, virus isolation in combination with HAD assay, and sequencing method was observed in this study. Conclusion A single mismatch in the probe binding site caused a failse-negative result by realtime PCR method in field diagnosis of ASFV. The needs consideration when selecting the appropriate molecular diagnostic methods is based on the current databases of ASFV sequences, particularly for epidemiological surveillance of ASF.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duc Viet Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Thi Hao Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Van Tuan Hoang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Thi Chinh Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Thi Nhu Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - The Vinh Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Ngoc Thi Pham
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| |
Collapse
|
30
|
Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak. Int J Infect Dis 2020; 97:225-229. [PMID: 32535302 PMCID: PMC7289722 DOI: 10.1016/j.ijid.2020.06.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Publicly available RT-PCR Panels detect SARS-CoV-2 targeting more than one genomic region. Genetic variability observed until week 21 is predicted to have no effect on panel sensitivity. The QIAstat-Dx SARS-CoV-2 Panel remains highly sensitive despite the nucleotide variations. Combination of multiple assays in RT-PCR SARS-CoV-2 panels mitigate possible sensitivity loss. Genetic variability assessment is critical to monitor sensitivity and specificity of the assays.
Objectives In this study, five SARS-CoV-2 PCR assay panels were evaluated against the accumulated genetic variability of the virus to assess the effect on sensitivity of the individual assays. Design or methods As of week 21, 2020, the complete set of available SARS-CoV-2 genomes from GISAID and GenBank databases were used in this study. SARS-CoV-2 primer sequences from publicly available panels (WHO, CDC, NMDC, and HKU) and QIAstat-Dx were included in the alignment, and accumulated genetic variability affecting any oligonucleotide annealing was annotated. Results A total of 11,627 (34.38%) genomes included single mutations affecting annealing of any PCR assay. Variations in 8,773 (25.94%) genomes were considered as high risk, whereas additional 2,854 (8.43%) genomes presented low frequent single mutations and were predicted to yield no impact on sensitivity. In case of the QIAstat-Dx SARS-CoV-2 Panel, 99.11% of the genomes matched with a 100% coverage all oligonucleotides, and critical variations were tested in vitro corroborating no loss of sensitivity. Conclusions This analysis stresses the importance of targeting more than one region in the viral genome for SARS-CoV-2 detection to mitigate the risk of loss of sensitivity due to the unknown mutation rate during this SARS-CoV-2 outbreak.
Collapse
|
31
|
Khan KA, Cheung P. Presence of mismatches between diagnostic PCR assays and coronavirus SARS-CoV-2 genome. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200636. [PMID: 32742701 PMCID: PMC7353963 DOI: 10.1098/rsos.200636] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 05/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; initially named as 2019-nCoV) is responsible for the recent COVID-19 pandemic and polymerase chain reaction (PCR) is the current standard method for its diagnosis from patient samples. This study conducted a reassessment of published diagnostic PCR assays, including those recommended by the World Health Organization (WHO), through the evaluation of mismatches with publicly available viral sequences. An exhaustive evaluation of the sequence variability within the primer/probe target regions of the viral genome was performed using more than 17 000 viral sequences from around the world. The analysis showed the presence of mutations/mismatches in primer/probe binding regions of 7 assays out of 27 assays studied. A comprehensive bioinformatics approach for in silico inclusivity evaluation of PCR diagnostic assays of SARS-CoV-2 was validated using freely available software programs that can be applied to any diagnostic assay of choice. These findings provide potentially important information for clinicians, laboratory professionals and policy-makers.
Collapse
Affiliation(s)
- Kashif Aziz Khan
- Department of Biology, York University, 4700 Keele Street, Toronto, CanadaM3 J 1P3
| | | |
Collapse
|
32
|
Howson ELA, Orton RJ, Mioulet V, Lembo T, King DP, Fowler VL. GoPrime: Development of an In Silico Framework to Predict the Performance of Real-Time PCR Primers and Probes Using Foot-and-Mouth Disease Virus as a Model. Pathogens 2020; 9:pathogens9040303. [PMID: 32326039 PMCID: PMC7238122 DOI: 10.3390/pathogens9040303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
Real-time PCR (rPCR) is a widely accepted diagnostic tool for the detection and quantification of nucleic acid targets. In order for these assays to achieve high sensitivity and specificity, primer and probe-template complementarity is essential; however, mismatches are often unavoidable and can result in false-negative results and errors in quantifying target sequences. Primer and probe sequences therefore require continual evaluation to ensure they remain fit for purpose. This paper describes the development of a linear model and associated computational tool (GoPrime) designed to predict the performance of rPCR primers and probes across multiple sequence data. Empirical data were generated using DNA oligonucleotides (n = 90) that systematically introduced variation in the primer and probe target regions of a diagnostic assay routinely used to detect foot-and-mouth disease virus (FMDV); an animal virus that exhibits a high degree of sequence variability. These assays revealed consistent impacts of patterns of substitutions in primer and probe-sites on rPCR cycle threshold (CT) and limit of detection (LOD). These data were used to populate GoPrime, which was subsequently used to predict rPCR results for DNA templates (n = 7) representing the natural sequence variability within FMDV. GoPrime was also applicable to other areas of the FMDV genome, with predictions for the likely targets of a FMDV-typing assay consistent with published experimental data. Although further work is required to improve these tools, including assessing the impact of primer-template mismatches in the reverse transcription step and the broader impact of mismatches for other assays, these data support the use of mathematical models for rapidly predicting the performance of rPCR primers and probes in silico.
Collapse
Affiliation(s)
- Emma L A Howson
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (E.LAH.); (V.M.); (V.LF.)
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK; (R.JO.); (T.L.)
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK; (R.JO.); (T.L.)
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | - Valerie Mioulet
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (E.LAH.); (V.M.); (V.LF.)
| | - Tiziana Lembo
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK; (R.JO.); (T.L.)
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (E.LAH.); (V.M.); (V.LF.)
- Correspondence: ; Tel.: +44-(0)1483-232441
| | - Veronica L Fowler
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; (E.LAH.); (V.M.); (V.LF.)
| |
Collapse
|
33
|
Döring M, Kreer C, Lehnen N, Klein F, Pfeifer N. Modeling the Amplification of Immunoglobulins through Machine Learning on Sequence-Specific Features. Sci Rep 2019; 9:10748. [PMID: 31341211 PMCID: PMC6656877 DOI: 10.1038/s41598-019-47173-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/10/2019] [Indexed: 11/09/2022] Open
Abstract
Successful primer design for polymerase chain reaction (PCR) hinges on the ability to identify primers that efficiently amplify template sequences. Here, we generated a novel Taq PCR data set that reports the amplification status for pairs of primers and templates from a reference set of 47 immunoglobulin heavy chain variable sequences and 20 primers. Using logistic regression, we developed TMM, a model for predicting whether a primer amplifies a template given their nucleotide sequences. The model suggests that the free energy of annealing, ΔG, is the key driver of amplification (p = 7.35e-12) and that 3' mismatches should be considered in dependence on ΔG and the mismatch closest to the 3' terminus (p = 1.67e-05). We validated TMM by comparing its estimates with those from the thermodynamic model of DECIPHER (DE) and a model based solely on the free energy of annealing (FE). TMM outperformed the other approaches in terms of the area under the receiver operating characteristic curve (TMM: 0.953, FE: 0.941, DE: 0.896). TMM can improve primer design and is freely available via openPrimeR ( http://openPrimeR.mpi-inf.mpg.de ).
Collapse
Affiliation(s)
- Matthias Döring
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123, Saarbrücken, Germany
| | - Christoph Kreer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Nathalie Lehnen
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
- German Center for Infection Research, Cologne-Bonn Partner Site, Cologne, Germany
| | - Florian Klein
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
- German Center for Infection Research, Cologne-Bonn Partner Site, Cologne, Germany
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123, Saarbrücken, Germany.
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany.
- Medical Faculty, Geissweg 5, University of Tübingen, 72076, Tübingen, Germany.
- German Center for Infection Research, Tübingen Partner Site, Tübingen, Germany.
| |
Collapse
|
34
|
Duplex real-time RT-PCR assay for detection and subgroup-specific identification of human respiratory syncytial virus. J Virol Methods 2019; 271:113676. [PMID: 31181218 PMCID: PMC7172218 DOI: 10.1016/j.jviromet.2019.113676] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of acute respiratory illness in young children worldwide. Reliable detection and identification of HRSV subgroup A and B infections are essential for accurate disease burden estimates in anticipation of licensure of novel HRSV vaccines and immunotherapies. To ensure continued reliability, molecular assays must remain current with evolving virus strains. We have developed a HRSV subgroup-specific real-time RT-PCR (rRT-PCR) assay for detection and subgroup identification using primers and subgroup-specific probes targeting a conserved region of the nucleoprotein gene combined in a single duplex reaction using all genome sequence data currently available in GenBank. The assay was validated for analytical sensitivity, specificity, reproducibility, and clinical performance with a geographically diverse collection of viral isolates and respiratory specimens in direct comparison with an established pan-HRSV rRT-PCR reference test. The assay was sensitive, reproducibly detecting as few as 5-10 copies/reaction of target RNA. The assay was specific, showing no amplification with a panel of 16 other common respiratory pathogens or predicted by in silico primer/probe analysis. The duplex rRT-PCR assay based on the most current available genome sequence data permits rapid, sensitive and specific detection and subgroup identification of HRSV.
Collapse
|
35
|
Rossmassler K, Snow CD, Taggart D, Brown C, De Long SK. Advancing biomarkers for anaerobic o-xylene biodegradation via metagenomic analysis of a methanogenic consortium. Appl Microbiol Biotechnol 2019; 103:4177-4192. [PMID: 30968165 DOI: 10.1007/s00253-019-09762-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
Quantifying functional biomarker genes and their transcripts provides critical lines of evidence for contaminant biodegradation; however, accurate quantification depends on qPCR primers that contain no, or minimal, mismatches with the target gene. Developing accurate assays has been particularly challenging for genes encoding fumarate-adding enzymes (FAE) due to the high level of genetic diversity in this gene family. In this study, metagenomics applied to a field-derived, o-xylene-degrading methanogenic consortium revealed genes encoding FAE that would not be accurately quantifiable by any previously available PCR assays. Sequencing indicated that a gene similar to the napthylmethylsuccinate synthase gene (nmsA) was most abundant, although benzylsuccinate synthase genes (bssA) also were present along with genes encoding alkylsuccinate synthase (assA). Upregulation of the nmsA-like gene was observed during o-xylene degradation. Protein homology modeling indicated that mutations in the active site, relative to a BssA that acts on toluene, increase binding site volume and accessibility, potentially to accommodate the relatively larger o-xylene. The new nmsA-like gene was also detected at substantial concentrations at field sites with a history of xylene contamination.
Collapse
Affiliation(s)
- Karen Rossmassler
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Casey Brown
- Microbial Insights, Inc., Knoxville, TN, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
36
|
Vanneste K, Garlant L, Broeders S, Van Gucht S, Roosens NH. Application of whole genome data for in silico evaluation of primers and probes routinely employed for the detection of viral species by RT-qPCR using dengue virus as a case study. BMC Bioinformatics 2018; 19:312. [PMID: 30180800 PMCID: PMC6123964 DOI: 10.1186/s12859-018-2313-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Background Viral infection by dengue virus is a major public health problem in tropical countries. Early diagnosis and detection are increasingly based on quantitative reverse transcriptase real-time polymerase chain reaction (RT-qPCR) directed against genomic regions conserved between different isolates. Genetic variation can however result in mismatches of primers and probes with their targeted nucleic acid regions. Whole genome sequencing allows to characterize and track such changes, which in turn enables to evaluate, optimize, and (re-)design novel and existing RT-qPCR methods. The immense amount of available sequence data renders this however a labour-intensive and complex task. Results We present a bioinformatics approach that enables in silico evaluation of primers and probes intended for routinely employed RT-qPCR methods. This approach is based on analysing large amounts of publically available whole genome data, by first employing BLASTN to mine the genomic regions targeted by the RT-qPCR method(s), and afterwards using BLASTN-SHORT to evaluate whether primers and probes will anneal based on a set of simple in silico criteria. Using dengue virus as a case study, we evaluated 18 published RT-qPCR methods using more than 3000 publically available genomes in the NCBI Virus Variation Resource, and provide a systematic overview of method performance based on in silico sensitivity and specificity. Conclusions We provide a comprehensive overview of dengue virus RT-qPCR method performance that will aid appropriate method selection allowing to take specific measures that aim to contain and prevent viral spread in afflicted regions. Notably, we find that primer-template mismatches at their 3′ end may represent a general issue for dengue virus RT-qPCR detection methods that merits more attention in their development process. Our approach is also available as a public tool, and demonstrates how utilizing genomic data can provide meaningful insights in an applied public health setting such as the detection of viral species in human diagnostics. Electronic supplementary material The online version of this article (10.1186/s12859-018-2313-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin Vanneste
- Transversal activities in applied genomics, Sciensano, (1050), Brussels, Belgium.
| | - Linda Garlant
- Transversal activities in applied genomics, Sciensano, (1050), Brussels, Belgium
| | - Sylvia Broeders
- Transversal activities in applied genomics, Sciensano, (1050), Brussels, Belgium.,Present address: Quality of Laboratories, Sciensano, (1050), Brussels, Belgium
| | | | - Nancy H Roosens
- Transversal activities in applied genomics, Sciensano, (1050), Brussels, Belgium.
| |
Collapse
|
37
|
Bosman KJ, Wensing AMJ, Pijning AE, van Snippenberg WJ, van Ham PM, de Jong DMC, Hoepelman AIM, Nijhuis M. Development of sensitive ddPCR assays to reliably quantify the proviral DNA reservoir in all common circulating HIV subtypes and recombinant forms. J Int AIDS Soc 2018; 21:e25185. [PMID: 30375818 PMCID: PMC6138437 DOI: 10.1002/jia2.25185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The latent reservoir is the main barrier on the road to HIV cure, and clinical approaches towards eradication are often evaluated by their effect on proviral DNA. To ensure inclusiveness and representativeness in HIV cure studies, proviral DNA quantification assays that are able to detect all common circulating HIV clades are urgently needed. Here, three HIV DNA assays targeting three different genomic regions were evaluated for their sensitivity and subtype-tolerance using digital PCR. METHODS A subtype-B-specific assay targeting gag (GAG) and two assays targeting conserved sequences in ltr and pol (LTR and JO) were assessed for their sensitivity and subtype-tolerance in digital PCR (Bio-Rad QX200), using a panel of serially diluted subtype reference plasmids as well as a panel of clinical isolates. Both panels represent subtypes A, B, C, D, F, G and circulating recombinant forms (CRFs) AE and AG, which together are responsible for 94% of HIV infections worldwide. RESULTS HIV subtype was observed to greatly affect HIV DNA quantification results. Robust regression analysis of the serially diluted plasmid panel showed that the GAG assay was only able to linearly quantify subtype B, D and G isolates (4/13 reference plasmids, average R2 = 0.99), whereas LTR and JO were able to quantify all tested isolates (13/13 reference plasmids, respective average R2 = 0.99 and 0.98). In the clinical isolates panel, isolates were considered detectable if all replicates produced a positive result. The GAG assay could detect HIV DNA in four out of five subtype B and one out of two subtype D isolates, whereas the LTR and JO assays detected HIV DNA in all twenty-nine tested isolates. LTR and JO results were found to be equally precise but more precise than GAG. CONCLUSIONS The results demonstrate the need for a careful validation of proviral reservoir quantification assays prior to investigations into non-B subtype reservoirs. The LTR and JO assays can sensitively and reliably quantify HIV DNA in a panel that represents the worldwide most prevalent subtypes and CRFs (A, B, C, D, AE, F, G and AG), justifying their application in future trials aimed at global HIV cure.
Collapse
Affiliation(s)
- Kobus J Bosman
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Annemarie MJ Wensing
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Aster E Pijning
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Petra M van Ham
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Dorien MC de Jong
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Andy IM Hoepelman
- Department of Internal Medicine and Infectious DiseasesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Monique Nijhuis
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
38
|
El Houmami N, Durand GA, Bzdrenga J, Darmon A, Minodier P, Seligmann H, Raoult D, Fournier PE. A New Highly Sensitive and Specific Real-Time PCR Assay Targeting the Malate Dehydrogenase Gene of Kingella kingae and Application to 201 Pediatric Clinical Specimens. J Clin Microbiol 2018; 56:e00505-18. [PMID: 29875189 PMCID: PMC6062779 DOI: 10.1128/jcm.00505-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Kingella kingae is a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium using culture and broad-range 16S rRNA gene PCR assays from clinical specimens have proven unsatisfactory; therefore, by the late 2000s, these were gradually phased out to explore the benefits of specific real-time PCR tests targeting the groEL gene and the RTX locus of K. kingae However, recent studies showed that real-time PCR (RT-PCR) assays targeting the Kingella sp. RTX locus that are currently available for the diagnosis of K. kingae infection lack specificity because they could not distinguish between K. kingae and the recently described Kingella negevensis species. Furthermore, in silico analysis of the groEL gene from a large collection of 45 K. kingae strains showed that primers and probes from K. kingaegroEL-based RT-PCR assays display a few mismatches with K. kingae groEL variations that may result in decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative to groEL- and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, a K. kingae-specific RT-PCR assay targeting the malate dehydrogenase (mdh) gene was developed for predicting no mismatch between primers and probe and 18 variants of the K. kingae mdh gene from 20 distinct sequence types of K. kingae This novel K. kingae-specific RT-PCR assay demonstrated high specificity and sensitivity and was successfully used to diagnose K. kingae infections and carriage in 104 clinical specimens from children between 7 months and 7 years old.
Collapse
Affiliation(s)
- Nawal El Houmami
- UMR VITROME, Aix-Marseille Université, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Guillaume André Durand
- UMR VITROME, Aix-Marseille Université, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Janek Bzdrenga
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Anne Darmon
- UMR VITROME, Aix-Marseille Université, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Philippe Minodier
- Department of Pediatric Emergency Medicine, North Hospital, Marseille, France
| | - Hervé Seligmann
- UMR VITROME, Aix-Marseille Université, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- UMR VITROME, Aix-Marseille Université, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, Aix-Marseille Université, IRD, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
39
|
van den Berge M, Sijen T. Extended specificity studies of mRNA assays used to infer human organ tissues and body fluids. Electrophoresis 2017; 38:3155-3160. [DOI: 10.1002/elps.201700241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Margreet van den Berge
- Department of Biological Traces; Netherlands Forensic Institute; The Hague The Netherlands
| | - Titia Sijen
- Department of Biological Traces; Netherlands Forensic Institute; The Hague The Netherlands
| |
Collapse
|
40
|
de Knegt VE, Kristiansen GQ, Schønning K. Evaluation of dual target-specific real-time PCR for the detection of Kingella kingae in a Danish paediatric population. Infect Dis (Lond) 2017; 50:200-206. [PMID: 28914110 DOI: 10.1080/23744235.2017.1376254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND We aimed to evaluate the relevance of dual target real-time polymerase chain (PCR) assays targeting the rtxA and cpn60 genes of the paediatric pathogen Kingella kingae. We also studied for the first time the clinical and epidemiological features of K. kingae infections in a Danish population. METHOD Children with K. kingae-positive cultures were identified from 11,477 children and 86 children younger than 16 years old from whom blood cultures and joint fluid cultures were obtained between January 2010 and November 2016. Results were then compared to microbiological results obtained from 29 joint fluids (28 children) tested by dual target K. kingae real-time PCR from September 2014 to November 2016. Epidemiological data of all children with microbiologically confirmed K. kingae infections were collected. RESULTS From 2010 to 2016, we diagnosed 17 children with microbiological-proven K. kingae infections. During this period, blood cultures from five children and joint fluid cultures from a single child yielded K. kingae. Dual target K. kingae real-time PCR allowed us to increase the diagnostic yield of K. kingae infections by detecting the organism in 12 of 29 (41.4%) specimens. Notably, the 12 real-time PCR-positive specimens were rtxA-positive whereas only 10 (83.3%) were cpn60-positive. PCR-positive children were significantly younger than PCR-negative children (p-value: .01). A significant seasonal variation was found for patients with proven K. kingae infection (p-value: <.001), with a peak in autumn. CONCLUSION Dual target-specific real-time PCR markedly improved the detection of K. kingae in clinical specimens when compared to culture methods.
Collapse
Affiliation(s)
| | - Gitte Qvist Kristiansen
- a Department of Clinical Microbiology , Copenhagen University Hospital Hvidovre , Hvidovre , Denmark
| | - Kristian Schønning
- a Department of Clinical Microbiology , Copenhagen University Hospital Hvidovre , Hvidovre , Denmark.,b Department of Clinical Medicine , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
41
|
Dunaeva M, Derksen M, Pruijn GJM. LINE-1 Hypermethylation in Serum Cell-Free DNA of Relapsing Remitting Multiple Sclerosis Patients. Mol Neurobiol 2017; 55:4681-4688. [PMID: 28707075 PMCID: PMC5948235 DOI: 10.1007/s12035-017-0679-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/29/2017] [Indexed: 10/31/2022]
Abstract
Concentrations of cell-free DNA (cfDNA) circulating in blood and its epigenetic variation, such as DNA methylation, may provide useful diagnostic or prognostic information. Long interspersed nuclear element-1 (LINE-1) constitutes approximately 20% of the human genome and its 5'UTR region is CpG rich. Due to its wide distribution, the methylation level of the 5'UTR of LINE-1 can serve as a surrogate marker of global genomic DNA methylation. The aim of the current study was to investigate whether the methylation status of LINE-1 elements in serum cell-free DNA differs between relapsing remitting multiple sclerosis (RRMS) patients and healthy control subjects (CTR). Serum DNA samples of 6 patients and 6 controls were subjected to bisulfite sequencing. The results showed that the methylation level varies among distinct CpG sites in the 5'UTR of LINE-1 repeats and revealed differences in the methylation state of specific sites in this element between patients and controls. The latter differences were largely due to CpG sites in the L1PA2 subfamily, which were more frequently methylated in the RRMS patients than in the CTR group, whereas such differences were not observed in the L1HS subfamily. These data were verified by quantitative PCR using material from 18 patients and 18 control subjects. The results confirmed that the methylation level of a subset of the CpG sites within the LINE-1 promoter is elevated in DNA from RRMS patients in comparison with CTR. The present data suggest that the methylation status of CpG sites of LINE repeats could be a basis for development of diagnostic or prognostic tests.
Collapse
Affiliation(s)
- Marina Dunaeva
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| | - Merel Derksen
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus. Front Microbiol 2017; 8:1219. [PMID: 28713347 PMCID: PMC5491605 DOI: 10.3389/fmicb.2017.01219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 01/01/2023] Open
Abstract
The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods.
Collapse
Affiliation(s)
- Wycliff M. Kinoti
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
- AgriBio, School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| | - Fiona E. Constable
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Narelle Nancarrow
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Kim M. Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
| | - Brendan Rodoni
- Biosciences Research Division, AgriBio, La Trobe UniversityMelbourne, VIC, Australia
- AgriBio, School of Applied Systems Biology, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
43
|
Gniadek TJ, Forman MT, Martin I, Arav-Boger R, Valsamakis A. The effect of a genetic variant on quantitative real-time PCR in a case of disseminated adenovirus infection. Diagn Microbiol Infect Dis 2017. [PMID: 28629877 DOI: 10.1016/j.diagmicrobio.2017.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A patient developed disseminated adenovirus infection following bone marrow transplant. TaqMan real-time PCR showed reduced maximum fluorescence in the amplification curve from all plasma samples. Sequencing revealed three single nucleotide mismatches between the TaqMan probe and probe binding region. Real-time PCR with probe matching the isolate sequence showed normal amplification and a higher copy number result.
Collapse
Affiliation(s)
- Thomas J Gniadek
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Michael T Forman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Isabella Martin
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ravit Arav-Boger
- Pediatric Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD
| | | |
Collapse
|
44
|
Demkin VV, Koshechkin SI, Slesarev A. A novel real-time PCR assay for highly specific detection and quantification of vaginal lactobacilli. Mol Cell Probes 2016; 32:33-39. [PMID: 27890610 DOI: 10.1016/j.mcp.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
Abstract
PCR detection and quantification of vaginal lactobacilli remains problematic because of the high level of genetic heterogeneity and taxonomic complexity within the genus Lactobacillus. The aim of the present study was to identify conserved sequences among the genomes of major species of vaginal lactobacilli that could be used for the development of a PCR-based method for quantitative determination of vaginal microbiota-specific lactobacilli. Comparative analysis of the genomes of several species of vaginal lactobacilli allowed us to identify conserved regions in the rplK gene, which encodes ribosomal protein L11, and to design group-specific PCR primers and a probe for selected species from the L. acidophilus complex, including major vaginal lactobacilli Lactobacillus crispatus, L. gasseri, L. iners and L. jensenii as well as other species that are less common in vaginal microbiota. The applicability of the new assay in routine diagnostic testing was evaluated using a set of clinical samples. The assay was able to detect and quantify vagina-associated lactobacilli within a wide range of initial DNA template concentrations, indicating promising potential for clinical applications.
Collapse
Affiliation(s)
- Vladimir V Demkin
- Laboratory of Molecular Diagnostics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Stanislav I Koshechkin
- Laboratory of Molecular Diagnostics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei Slesarev
- Zylacta Corporation, 7965 Cessna Avenue, Gaithersburg, MD 20879, USA; Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
Huang G, Krocker JD, Kirk JL, Merwat SN, Ju H, Soloway RD, Wieck LR, Li A, Okorodudu AO, Petersen JR, Abdulla NE, Duchini A, Cicalese L, Rastellini C, Hu PC, Dong J. Evaluation of INK4A promoter methylation using pyrosequencing and circulating cell-free DNA from patients with hepatocellular carcinoma. Clin Chem Lab Med 2014; 52:899-909. [PMID: 24406287 DOI: 10.1515/cclm-2013-0885] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hyper-methylation of CpG dinucleotides in the promoter region of inhibitor of cyclin-dependent kinase 4A (INK4A) has been reported in 60%-80% of hepatocellular carcinoma (HCC). As INK4A promoter hypermethylation event occurs early in HCC progression, the quantification of INK4A promoter methylation in blood sample may represent a useful biomarker for non-invasive diagnosis and prediction of response to therapy. METHODS We examined INK4A promoter methylation using circulating cell-free DNA (ccfDNA) in a total of 109 serum specimens, including 66 HCC and 43 benign chronic liver diseases. Methylation of the individual seven CpG sites was examined using pyrosequencing. RESULTS Our results showed that there were significantly higher levels of methylated INK4A in HCC specimens than controls and that the seven CpG sites had different levels of methylation and might exist in different PCR amplicons. The area under receiver operating characteristic (ROC) curve was 0.82, with 65.3% sensitivity and 87.2% specificity at 5% (LOD), 39.0% sensitivity and 96.5% specificity at 7% LOD, and 20.3% sensitivity and 98.8% specificity at 10% LOD, respectively. CONCLUSIONS Our results support additional studies incorporating INK4A methylation testing of ccfDNA to further validate the diagnostic, predictive, and prognostic characteristics of this biomarker in HCC patients. The knowledge of the existence of epi-alleles should help improve assay design to maximize detection.
Collapse
Affiliation(s)
- Gengming Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph D Krocker
- Molecular Genetic Technology Program, School of Health Sciences, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jason L Kirk
- Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Shehzad N Merwat
- Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Hyunsu Ju
- Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Roger D Soloway
- Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Lucas R Wieck
- Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anthony O Okorodudu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - John R Petersen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nihal E Abdulla
- Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrea Duchini
- Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Luca Cicalese
- Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Peter C Hu
- Molecular Genetic Technology Program, School of Health Sciences, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jianli Dong
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0743, USA
| |
Collapse
|
46
|
Alsaleh AN, Grimwood K, Sloots TP, Whiley DM. A retrospective performance evaluation of an adenovirus real-time PCR assay. J Med Virol 2013; 86:795-801. [DOI: 10.1002/jmv.23844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Asma N. Alsaleh
- Queensland Children's Medical Research Institute, Royal Children's Hospital; The University of Queensland; Brisbane Queensland Australia
- Queensland Paediatric Infectious Disease Laboratory; Royal Children's Hospital; Brisbane Queensland Australia
- Department of Microbiology; College of Science, King Saud University; Riyadh Saudi Arabia
| | - Keith Grimwood
- Queensland Children's Medical Research Institute, Royal Children's Hospital; The University of Queensland; Brisbane Queensland Australia
- Queensland Paediatric Infectious Disease Laboratory; Royal Children's Hospital; Brisbane Queensland Australia
| | - Theo P. Sloots
- Queensland Children's Medical Research Institute, Royal Children's Hospital; The University of Queensland; Brisbane Queensland Australia
- Queensland Paediatric Infectious Disease Laboratory; Royal Children's Hospital; Brisbane Queensland Australia
- Microbiology Division; Pathology Queensland Central Laboratory; Herston Queensland Australia
| | - David M. Whiley
- Queensland Children's Medical Research Institute, Royal Children's Hospital; The University of Queensland; Brisbane Queensland Australia
- Queensland Paediatric Infectious Disease Laboratory; Royal Children's Hospital; Brisbane Queensland Australia
| |
Collapse
|
47
|
Lefever S, Pattyn F, Hellemans J, Vandesompele J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin Chem 2013; 59:1470-80. [PMID: 24014836 DOI: 10.1373/clinchem.2013.203653] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Genome-sequencing studies have led to an immense increase in the number of known single-nucleotide polymorphisms (SNPs). Designing primers that anneal to regions devoid of SNPs has therefore become challenging. We studied the impact of one or more mismatches in primer-annealing sites on different quantitative PCR (qPCR)-related parameters, such as quantitative cycle (Cq), amplification efficiency, and reproducibility. METHODS We used synthetic templates and primers to assess the effect of mismatches at primer-annealing sites on qPCR assay performance. Reactions were performed with 5 commercially available master mixes. We studied the effects of the number, type, and position of priming mismatches on Cq value, PCR efficiency, reproducibility, and yield. RESULTS The impact of mismatches was most pronounced for the number of mismatched nucleotides and for their distance from the 3' end of the primer. In addition, having ≥4 mismatches in a single primer or having 3 mismatches in one primer and 2 in the other was required to block a reaction completely. Finally, the degree of the mismatch effect was concentration independent for single mismatches, whereas concentration independence failed at higher template concentrations as the number of mismatches increased. CONCLUSIONS Single mismatches located >5 bp from the 3' end have a moderate effect on qPCR amplification and can be tolerated. This finding, together with the concentration independence for single mismatches and the complete blocking of the PCR reaction for ≥4 mismatches, can help to chart mismatch behavior in qPCR reactions and increase the rate of successful primer design for sequences with a high SNP density or for homologous regions of sequence.
Collapse
Affiliation(s)
- Steve Lefever
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
48
|
Ledeker BM, De Long SK. The effect of multiple primer-template mismatches on quantitative PCR accuracy and development of a multi-primer set assay for accurate quantification of pcrA gene sequence variants. J Microbiol Methods 2013; 94:224-31. [PMID: 23806694 DOI: 10.1016/j.mimet.2013.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 11/19/2022]
Abstract
Quantitative PCR (qPCR) is a critical tool for quantifying the abundance of specific organisms and the level or expression of target genes in medically and environmentally relevant systems. However, often the power of this tool has been limited because primer-template mismatches, due to sequence variations of targeted genes, can lead to inaccuracies in measured gene quantities, detection failures, and spurious conclusions. Currently available primer design guidelines for qPCR were developed for pure culture applications, and available primer design strategies for mixed cultures were developed for detection rather than accurate quantification. Furthermore, past studies examining the impact of mismatches have focused only on single mismatches while instances of multiple mismatches are common. There are currently no appropriate solutions to overcome the challenges posed by sequence variations. Here, we report results that provide a comprehensive, quantitative understanding of the impact of multiple primer-template mismatches on qPCR accuracy and demonstrate a multi-primer set approach to accurately quantify a model gene pcrA (encoding perchlorate reductase) that has substantial sequence variation. Results showed that for multiple mismatches (up to 3 mismatches) in primer regions where mismatches were previously considered tolerable (middle and 5' end), quantification accuracies could be as low as ~0.1%. Furthermore, tests were run using a published pcrA primer set with mixtures of genomic DNA from strains known to harbor the target gene, and for some mixtures quantification accuracy was as low as ~0.8% or was non-detect. To overcome these limitations, a multiple primer set assay including minimal degeneracies was developed for pcrA genes. This assay resulted in nearly 100% accurate detection for all mixed microbial communities tested. The multi-primer set approach demonstrated herein can be broadly applied to other genes with known sequences.
Collapse
Affiliation(s)
- Brett M Ledeker
- Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
49
|
Wilcox TM, McKelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK. Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS One 2013; 8:e59520. [PMID: 23555689 PMCID: PMC3608683 DOI: 10.1371/journal.pone.0059520] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 11/18/2022] Open
Abstract
Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method’s sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design.
Collapse
Affiliation(s)
- Taylor M Wilcox
- United States Department of Agriculture Forest Service, Rocky Mountain Research Station, Missoula, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
50
|
Longo AV, Rodriguez D, da Silva Leite D, Toledo LF, Mendoza Almeralla C, Burrowes PA, Zamudio KR. ITS1 copy number varies among Batrachochytrium dendrobatidis strains: implications for qPCR estimates of infection intensity from field-collected amphibian skin swabs. PLoS One 2013; 8:e59499. [PMID: 23555682 PMCID: PMC3605245 DOI: 10.1371/journal.pone.0059499] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/14/2013] [Indexed: 12/02/2022] Open
Abstract
Genomic studies of the amphibian-killing fungus (Batrachochytrium dendrobatidis, [Bd]) identified three highly divergent genetic lineages, only one of which has a global distribution. Bd strains within these linages show variable genomic content due to differential loss of heterozygosity and recombination. The current quantitative polymerase chain reaction (qPCR) protocol to detect the fungus from amphibian skin swabs targets the intergenic transcribed spacer 1 (ITS1) region using a TaqMan fluorescent probe specific to Bd. We investigated the consequences of genomic differences in the quantification of ITS1 from eight distinct Bd strains, including representatives from North America, South America, the Caribbean, and Australia. To test for potential differences in amplification, we compared qPCR standards made from Bd zoospore counts for each strain, and showed that they differ significantly in amplification rates. To test potential mechanisms leading to strain differences in qPCR reaction parameters (slope and y-intercept), we: a) compared standard curves from the same strains made from extracted Bd genomic DNA in equimolar solutions, b) quantified the number of ITS1 copies per zoospore using a standard curve made from PCR-amplicons of the ITS1 region, and c) cloned and sequenced PCR-amplified ITS1 regions from these same strains to verify the presence of the probe site in all haplotypes. We found high strain variability in ITS1 copy number, ranging from 10 to 144 copies per single zoospore. Our results indicate that genome size might explain strain differences in ITS1 copy number, but not ITS1 sequence variation because the probe-binding site and primers were conserved across all haplotypes. For standards constructed from uncharacterized Bd strains, we recommend the use of single ITS1 PCR-amplicons as the absolute standard in conjunction with current quantitative assays to inform on copy number variation and provide universal estimates of pathogen zoospore loads from field-caught amphibians.
Collapse
Affiliation(s)
- Ana V Longo
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|