1
|
Wang LN, Peng XL, Xu M, Zheng YB, Jiao YY, Yu JM, Fu YH, Zheng YP, Zhu WY, Dong ZJ, He JS. Evaluation of the Safety and Immune Efficacy of Recombinant Human Respiratory Syncytial Virus Strain Long Live Attenuated Vaccine Candidates. Virol Sin 2021; 36:706-720. [PMID: 33559831 PMCID: PMC8379332 DOI: 10.1007/s12250-021-00345-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Human respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.
Collapse
Affiliation(s)
- Li-Nan Wang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiang-Lei Peng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Min Xu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuan-Bo Zheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yue-Ying Jiao
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Jie-Mei Yu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuan-Hui Fu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yan-Peng Zheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Wu-Yang Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhong-Jun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, 100084, China
| | - Jin-Sheng He
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
2
|
Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol 2020; 86:106717. [PMID: 32585611 PMCID: PMC7301105 DOI: 10.1016/j.intimp.2020.106717] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
The extensive efforts around the globe are being made to develop a suitable vaccine against COVID-19 (Coronavirus Disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2). An effective vaccine should be able to induce high titers of neutralizing antibodies to prevent the virus from attaching to the host cell receptors. However, to elicit the protective levels of antibodies, a vaccine may require multiple doses or assistance from other immunostimulatory molecules. Further, the vaccine should be able to induce protective levels of antibodies rapidly with the least amount of antigen used. This decreases the cost of a vaccine and makes it affordable. As the pandemic has hit most countries across the globe, there will be an overwhelming demand for the vaccine in a quick time. Incorporating a suitable adjuvant in a SARS-CoV-2 vaccine may address these requirements. This review paper will discuss the experimental results of the adjuvanted vaccine studies with similar coronaviruses (CoVs) which might be useful to select an appropriate adjuvant for a vaccine against rapidly emergingSARS-CoV-2. We also discuss the current progress in the development of adjuvanted vaccines against the disease.
Collapse
Affiliation(s)
- Tania Gupta
- Dr GC Negi College of Veterinary and Animal Sciences, Palampur 176062, Himachal Pradesh, India.
| | - Shishir K Gupta
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
3
|
Torrey HL, Kaliaperumal V, Bramhecha Y, Weir GM, Falsey AR, Walsh EE, Langley JM, Schepens B, Saelens X, Stanford MM. Evaluation of the protective potential of antibody and T cell responses elicited by a novel preventative vaccine towards respiratory syncytial virus small hydrophobic protein. Hum Vaccin Immunother 2020; 16:2007-2017. [PMID: 32530723 PMCID: PMC7553696 DOI: 10.1080/21645515.2020.1756671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The small hydrophobic (SH) glycoprotein of human respiratory syncytial virus (RSV) is a transmembrane protein that is poorly accessible by antibodies on the virion but has an ectodomain (SHe) that is accessible and expressed on infected cells. The SHe from RSV strain A has been formulated in DPX, a unique delivery platform containing an adjuvant, and is being evaluated as an RSV vaccine candidate. The proposed mechanism of protection is the immune-mediated clearance of infected cells rather than neutralization of the virion. Our phase I clinical trial data clearly showed that vaccination resulted in robust antibody responses, but it was unclear if these immune responses have any correlation to immune responses to natural infection with RSV. Therefore, we embarked on this study to examine these immune responses in older adults with confirmed RSV infection. We compared vaccine-induced (DPX-RSV(A)) immune responses from participants in a Phase 1 clinical trial to paired acute and convalescent titers from older adults with symptomatic laboratory-confirmed RSV infection. Serum samples were tested for anti-SHe IgG titers and the isotypes determined. T cell responses were evaluated by IFN-γ ELISPOT. Anti-SHe titers were detected in 8 of 42 (19%) in the acute phase and 16 of 42 (38%) of convalescent serum samples. IgG1, IgG3, and IgA were the prevalent isotypes generated by both vaccination and infection. Antigen-specific T cell responses were detected in 9 of 16 (56%) of vaccinated participants. Depletion of CD4+ but not CD8+ T cells abrogated the IFN-γ ELISPOT response supporting the involvement of CD4+ T cells in the immune response to vaccination. The data showed that an immune response like that induced by DPX-RSV(A) could be seen in a subset of participants with confirmed RSV infection. These findings show that older adults with clinically significant infection as well as vaccinated adults generate a humoral response to SHe. The induction of both SHe-specific antibody and cellular responses support further clinical development of the DPX-RSV(A) vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joanne M Langley
- Canadian Center for Vaccinology (IWK Health Centre and Nova Scotia Health Authority and Dalhousie University) , Halifax, NS, Canada.,Dalhousie University , Halifax, NS, Canada
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Ghent University , Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology , Ghent, Belgium.,Ghent University , Ghent, Belgium
| | - Marianne M Stanford
- IMV Inc ., Dartmouth, NS, Canada.,Dalhousie University , Halifax, NS, Canada
| |
Collapse
|
4
|
Cao W, Kim JH, Reber AJ, Hoelscher M, Belser JA, Lu X, Katz JM, Gangappa S, Plante M, Burt DS, Sambhara S. Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice. Vaccine 2017; 35:3318-3325. [PMID: 28499553 PMCID: PMC7115484 DOI: 10.1016/j.vaccine.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022]
Abstract
Protollin-adjuvanted H5N1 vaccine enhanced serum protective antibody responses and mucosal IgA responses. Protollin-adjuvanted H5N1 vaccine increased the early B cell response in the lymph nodes and spleen. Protollin-adjuvanted H5N1 vaccine increased the frequency of Ag-specific antibody secreting cells and T cells. Protollin-adjuvanted H5N1 vaccine conferred enhanced protection against viral challenge.
Sporadic, yet frequent human infections with avian H5N1 influenza A viruses continue to pose a potential pandemic threat. Poor immunogenicity of unadjuvanted H5N1 vaccines warrants developing novel adjuvants and formulations as well as alternate delivery systems to improve their immunogenicity and efficacy. Here, we show that Protollin, a nasal adjuvant composed of Neisseria meningitides outer membrane proteins non-covalently linked to Shigella flexneri 2a lipopolysaccharide, is a potent nasal adjuvant for an inactivated split virion H5N1 clade 1 A/Viet Nam1203/2004 (A/VN/1203/04) vaccine in a mouse model. Protollin-adjuvanted vaccines elicited enhanced serum protective hemagglutination inhibition titers, mucosal IgA responses, and H5N1-specific cell-mediated immunity that resulted in complete protection against a lethal challenge with a homologous virus as well as a heterologous clade 2 virus A/Indonesia/05/2005 (A/IN/05/05). Detailed analysis of adaptive immunity revealed that Protollin increased the frequency of lymphoid- as well as local tissue-resident antibody-secreting cells, local germinal center reaction of B cells, broad-spectrum of CD4 T cell response. Our findings suggest that nasal delivery of H5N1 vaccine with Protollin adjuvant can overcome the poor immunogenicity of H5N1 vaccines, induce both cellular and humoral immune responses, enhance protection against challenge with clade 1 and clade 2 H5N1 viruses and achieve significant antigen dose-sparing.
Collapse
Affiliation(s)
- Weiping Cao
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jin Hyang Kim
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Adrian J Reber
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mary Hoelscher
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica A Belser
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Xiuhua Lu
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jacqueline M Katz
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Shivaprakash Gangappa
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| |
Collapse
|
5
|
Immunogenicity of RSV F DNA Vaccine in BALB/c Mice. Adv Virol 2016; 2016:7971847. [PMID: 27688769 PMCID: PMC5027326 DOI: 10.1155/2016/7971847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F) protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections.
Collapse
|
6
|
Tai CJ, Li CL, Tai CJ, Wang CK, Lin LT. Early Viral Entry Assays for the Identification and Evaluation of Antiviral Compounds. J Vis Exp 2015:e53124. [PMID: 26555014 DOI: 10.3791/53124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cell-based systems are useful for discovering antiviral agents. Dissecting the viral life cycle, particularly the early entry stages, allows a mechanistic approach to identify and evaluate antiviral agents that target specific steps of the viral entry. In this report, the methods of examining viral inactivation, viral attachment, and viral entry/fusion as antiviral assays for such purposes are described, using hepatitis C virus as a model. These assays should be useful for discovering novel antagonists/inhibitors to early viral entry and help expand the scope of candidate antiviral agents for further drug development.
Collapse
Affiliation(s)
- Chen-Jei Tai
- Department of Chinese Medicine, Taipei Medical University Hospital; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University
| | - Chia-Lin Li
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University
| | - Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
| | - Chien-Kai Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University; Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University;
| |
Collapse
|
7
|
Lin LT, Chen TY, Lin SC, Chung CY, Lin TC, Wang GH, Anderson R, Lin CC, Richardson CD. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol 2013; 13:187. [PMID: 23924316 PMCID: PMC3750913 DOI: 10.1186/1471-2180-13-187] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 07/31/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. RESULTS Extensive analysis of the tannins' mechanism of action was performed on a panel of viruses during the attachment and entry steps of infection. Virus-specific binding assays and the analysis of viral spread during treatment with these compounds were also conducted. CHLA and PUG were effective in abrogating infection by human cytomegalovirus (HCMV), hepatitis C virus (HCV), dengue virus (DENV), measles virus (MV), and respiratory syncytial virus (RSV), at μM concentrations and in dose-dependent manners without significant cytotoxicity. Moreover, the natural compounds inhibited viral attachment, penetration, and spread, to different degrees for each virus. Specifically, the tannins blocked all these steps of infection for HCMV, HCV, and MV, but had little effect on the post-fusion spread of DENV and RSV, which could suggest intriguing differences in the roles of GAG-interactions for these viruses. CONCLUSIONS CHLA and PUG may be of value as broad-spectrum antivirals for limiting emerging/recurring viruses known to engage host cell GAGs for entry. Further studies testing the efficacy of these tannins in vivo against certain viruses are justified.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Barik S. Respiratory syncytial virus mechanisms to interfere with type 1 interferons. Curr Top Microbiol Immunol 2013; 372:173-91. [PMID: 24362690 DOI: 10.1007/978-3-642-38919-1_9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) is a member of the Paramyxoviridae family that consists of viruses with nonsegmented negative-strand RNA genome. Infection by these viruses triggers the innate antiviral response of the host, mainly type I interferon (IFN). Essentially all other viruses of this family produce IFN suppressor functions by co-transcriptional RNA editing. In contrast, RSV has evolved two unique nonstructural proteins, NS1 and NS2, to effectively serve this purpose. Together, NS1 and NS2 degrade or sequester multiple signaling proteins that affect both IFN induction and IFN effector functions. While the mechanism of action of NS1 and NS2 is a subject of active research, their effect on adaptive immunity is also being recognized. In this review, we discuss various aspects of NS1 and NS2 function with implications for vaccine design.
Collapse
Affiliation(s)
- Sailen Barik
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA,
| |
Collapse
|
9
|
Zeng R, Cui Y, Hai Y, Liu Y. Pattern recognition receptors for respiratory syncytial virus infection and design of vaccines. Virus Res 2012; 167:138-45. [PMID: 22698878 DOI: 10.1016/j.virusres.2012.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/28/2012] [Accepted: 06/04/2012] [Indexed: 12/25/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants and young children. Host immune response has been implicated in both the protection and immunopathological mechanisms. Pattern recognition receptors (PRRs) expressed on innate immune cells during RSV infection recognize the RSV-associated molecular patterns and activate innate immune cells as well as mediate airway inflammation, protective immune response, and pulmonary immunopathology. The resident and recruited innate immune cells play important roles in the protection and pathogenesis of an RSV disease by expressing these PRRs. Agonist-binding PRRs are the basis of many adjuvants that are essential for most vaccines. In the present review, we highlight recent advances in the innate immune recognition of and responses to RSV through PRRs, including toll-like receptors (TLRs), retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). We also describe the role of PRRs in the design of RSV vaccines.
Collapse
Affiliation(s)
- Ruihong Zeng
- Department of Immunology, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China.
| | | | | | | |
Collapse
|
10
|
Kim S, Joo DH, Lee JB, Shim BS, Cheon IS, Jang JE, Song HH, Kim KH, Song MK, Chang J. Dual role of respiratory syncytial virus glycoprotein fragment as a mucosal immunogen and chemotactic adjuvant. PLoS One 2012; 7:e32226. [PMID: 22384186 PMCID: PMC3288084 DOI: 10.1371/journal.pone.0032226] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 01/25/2012] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine to prevent RSV infection. The G glycoprotein of RSV, a major attachment protein, is a potentially important target for protective antiviral immune responses and has been shown to exhibit chemotactic activity through CX3C mimicry. Here, we show that sublingual or intranasal immunization of a purified G protein fragment of amino acids from 131 to 230, designated Gcf, induces strong serum IgG and mucosal IgA responses. Interestingly, these antibody responses could be elicited by Gcf even in the absence of any adjuvant, indicating a novel self-adjuvanting property of our vaccine candidate. Gcf exhibited potent chemotactic activity in in vitro cell migration assay and cysteine residues are necessary for chemotactic activity and self-adjuvanticity of Gcf in vivo. Mucosal immunization with Gcf also provides protection against RSV challenge without any significant lung eosinophilia or vaccine-induced weight loss. Together, our data demonstrate that mucosal administration of Gcf vaccine elicits beneficial protective immunity and represents a promising vaccine regimen preventing RSV infection.
Collapse
Affiliation(s)
- Sol Kim
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Dong-Hyun Joo
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Jee-Boong Lee
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Byoung-Shik Shim
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - In Su Cheon
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Ji-Eun Jang
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Ho-Hyun Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Kyung-Hyo Kim
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Man Ki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
- * E-mail: (JC); (MKS)
| | - Jun Chang
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- * E-mail: (JC); (MKS)
| |
Collapse
|
11
|
González PA, Bueno SM, Carreño LJ, Riedel CA, Kalergis AM. Respiratory syncytial virus infection and immunity. Rev Med Virol 2012; 22:230-44. [DOI: 10.1002/rmv.1704] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/14/2011] [Accepted: 11/20/2011] [Indexed: 12/23/2022]
|
12
|
Quan FS, Kim Y, Lee S, Yi H, Kang SM, Bozja J, Moore ML, Compans RW. Viruslike particle vaccine induces protection against respiratory syncytial virus infection in mice. J Infect Dis 2011; 204:987-95. [PMID: 21881112 DOI: 10.1093/infdis/jir474] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral death in infants. Despite decades of research with traditional or subunit vaccine approaches, there are no approved RSV vaccines. New approaches are therefore urgently needed to develop effective RSV vaccines. METHODS We developed viruslike particles (VLPs) consisting of an influenza virus matrix (M1) protein core and RSV-F or -G on the surface. We tested the immunogenicity and vaccine efficacy of these VLPs (RSV-F, RSV-G) in a mouse model. RESULTS Intramuscular vaccination with RSV-F or RSV-G VLPs elicited IgG2a dominant RSV-specific immunoglobulin G (IgG) antibody responses against RSV-A2 viruses in both serum and lung extract. Mice immunized with VLPs (RSV-F or RSV-G) showed higher viral neutralizing antibodies in vitro and significantly decreased lung virus loads in vivo after live RSV-A2 challenge. RSV-G VLPs showed better protective efficacy than RSV-F VLPs as determined by the levels of lung virus loads and morbidity postchallenge. CONCLUSIONS This study demonstrates that VLP vaccination provides effective protection against RSV infection. VLPs containing RSV-F and/or RSV-G are potential vaccine candidates against RSV.
Collapse
|
13
|
Anderson R, Huang Y, Langley JM. Prospects for defined epitope vaccines for respiratory syncytial virus. Future Microbiol 2010; 5:585-602. [DOI: 10.2217/fmb.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The history of vaccines for respiratory syncytial virus (RSV) illustrates the complex immunity and immunopathology to this ubiquitous virus, starting from the failed formalin-inactivated vaccine trials performed in the 1960s. An attractive alternative to traditional live or killed virus vaccines is a defined vaccine composed of discrete antigenic epitopes for which immunological activities have been characterized as comprehensively as possible. Here we present cumulative data on murine and human CD4, CD8 and neutralization epitopes identified in RSV proteins along with information regarding their associated immune responses and host-dependent variability. Identification and characterization of RSV epitopes is a rapidly expanding topic of research with potential contributions to the tailored design of improved safe and effective vaccines.
Collapse
Affiliation(s)
- Robert Anderson
- Department of Microbiology & Immunology, Pediatrics and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Yan Huang
- Department of Microbiology & Immunology and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Joanne M Langley
- Department of Pediatrics, Community Health & Epidemiology and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| |
Collapse
|