1
|
Huang KYA, Huang PN, Huang YC, Yang SL, Tsao KC, Chiu CH, Shih SR, Lin TY. Emergence of genotype C1 Enterovirus A71 and its link with antigenic variation of virus in Taiwan. PLoS Pathog 2020; 16:e1008857. [PMID: 32936838 PMCID: PMC7521691 DOI: 10.1371/journal.ppat.1008857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/28/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
An outbreak of the hand-foot-mouth disease with severe neurological cases, mainly caused by the genotype C1 enterovirus A71 (EV-A71), occurred in Taiwan between 2018 and early 2019. In the recent decade, the most dominant EV-A71 genotypes in Taiwan were B5 and C4 but changed to C1 in 2018. Antibody-mediated immunity plays a key role in limiting the EV-A71 illness in humans. However, the level of neutralizing activities against genotype C1 virus by human polyclonal and monoclonal antibodies (MAbs) remains largely unclear. In the study, we demonstrated that that 39% (9 in 23) of post-infection sera from the genotype B5- or C4-infected patients in 2014–2017 exhibit reduced titers with the 2018–2019 genotype C1 viruses than with the earlier B5 and C4 viruses tested. This finding with polyclonal sera is confirmed with human MAbs derived from genotype B5 virus-infected individuals. The 2018–2019 genotype C1 virus is resistant to the majority of canyon-targeting human MAbs, which may be associated with the residue change near or at the bottom of the canyon region on the viral capsid. The remaining three antibodies (16-2-11B, 16-3-4D, and 17-1-12A), which target VP1 S241 on the 5-fold vertex, VP3 E81 on the 3-fold plateau and VP2 D84 on the 2-fold plateau of genotype C1 viral capsid, respectively, retained neutralizing activities with variable potencies. These neutralizing antibodies were also found to be protective against a lethal challenge of the 2018–2019 genotype C1 virus in an hSCARB2-transgenic mice model. These results indicate that the EV-A71-specific antibody response may consist of a fraction of poorly neutralizing antibodies against 2018–2019 genotype C1 viruses among a subset of previously infected individuals. Epitope mapping of protective antibodies that recognize the emerging genotype C1 virus has implications for anti-EV-A71 MAbs and the vaccine field. EV-A71 is a cause of hand-foot-mouth disease, epidemics of which still regularly occur around the globe. Given that EV-A71 immune protection from the disease correlates with neutralizing antibody responses, but the responses in humans prior to an outbreak are still poorly understood. An outbreak of hand-foot-mouth disease among children emerged in Taiwan from 2018 to 2019, and genotype C1 EV-A71 caused most of the cases. Here, we characterized EV-A71-neutralizing antibody profiles in details at both the serological and monoclonal levels and showed that antibodies generated by humans prior to the emergence of genotype C1 EV-A71 less effectively neutralize C1 compared to the prior circulating genotypes, which implies the presence of antigenic variation in the EV-A71 genotypes. We further identified and mapped critical neutralizing epitopes of 2018–2019 genotype C1 EV-A71 on the top and margin of the viral capsid pentamer and demonstrated the in vivo protective effect of human monoclonal antibodies, which highlight the properties of human antibody-neutralizing sites on EV-A71 and the potential of human antibodies as antiviral agents.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Child
- Child, Preschool
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus A, Human/isolation & purification
- Female
- Genetic Variation
- Genome, Viral
- Genotype
- Hand, Foot and Mouth Disease/epidemiology
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/immunology
- Humans
- Male
- Mice
- Mice, Transgenic
- Taiwan
Collapse
Affiliation(s)
- Kuan-Ying A. Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (KYAH); (TYL)
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (KYAH); (TYL)
| |
Collapse
|
2
|
Si Z, Li Y, Han S, Liu Y, Hu P, Lu S, Ren H, Zhao B, Liang X, Yang Y, Wang F, Zhou Y. Gold nanorods-based multicolor immunosensor for visual detection of enterovirus 71 infection. Mikrochim Acta 2020; 187:556. [PMID: 32910220 DOI: 10.1007/s00604-020-04534-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023]
Abstract
Based on the etching of gold nanorods (GNRs) and enzyme-linked immunosorbent assay (ELISA), a multicolor immunosensor for visual detection of enterovirus 71 infection is proposed. Once the immunocomplex is formed, the horseradish peroxidase bound to the ELISA plate oxidizes 3,3',5,5'-tetramethylbenzidine (TMB) into TMB2+ in the presence of hydrogen peroxide. Subsequently, TMB2+ quantitatively etches GNRs to the short GNRs, leading to a blue shift of longitudinal localized surface plasmon resonance and corresponding color responses. This change is used to develop two types of cut-off standards, which respond to the human anti-enterovirus at a concentration of 71 IgM antibody. The method has been validated with clinical serum samples and showed high sensitivity and specificity . This visual immunosensor has an important application value for point-of-care detection of EV71, especially in areas lacking detection equipment. Graphical abstract.
Collapse
Affiliation(s)
- Zhaozhao Si
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yansong Li
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Shujuan Han
- The Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Yunqing Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Pan Hu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Shiying Lu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Honglin Ren
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Baoling Zhao
- The Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xiongyan Liang
- College of Animal Sciences, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Yuying Yang
- College of Animal Sciences, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Fang Wang
- The Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| | - Yu Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China. .,College of Animal Sciences, Yangtze University, Jingzhou, 434023, People's Republic of China.
| |
Collapse
|
3
|
Shukla S, Cho H, Kwon OJ, Chung SH, Kim M. Prevalence and evaluation strategies for viral contamination in food products: Risk to human health-a review. Crit Rev Food Sci Nutr 2017; 58:405-419. [PMID: 27245816 DOI: 10.1080/10408398.2016.1182891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, viruses of foodborne origin such as norovirus and hepatitis A are considered major causes of foodborne gastrointestinal illness with widespread distribution worldwide. A number of foodborne outbreaks associated with food products of animal and non-animal origins, which often involve multiple cases of variety of food streams, have been reported. Although several viruses, including rotavirus, adenovirus, astrovirus, parvovirus, and other enteroviruses, significantly contribute to incidence of gastrointestinal diseases, systematic information on the role of food in transmitting such viruses is limited. Most of the outbreak cases caused by infected food handlers were the source of 53% of total outbreaks. Therefore, prevention and hygiene measures to reduce the frequency of foodborne virus outbreaks should focus on food workers and production site of food products. Pivotal strategies, such as proper investigation, surveillance, and reports on foodborne viral illnesses, are needed in order to develop more accurate measures to detect the presence and pathogenesis of viral infection with detailed descriptions. Moreover, molecular epidemiology and surveillance of food samples may help analysis of public health hazards associated with exposure to foodborne viruses. In this present review, we discuss different aspects of foodborne viral contamination and its impact on human health. This review also aims to improve understanding of foodborne viral infections as major causes of human illness as well as provide descriptions of their control and prevention strategies and rapid detection by advanced molecular techniques. Further, a brief description of methods available for the detection of viruses in food and related matrices is provided.
Collapse
Affiliation(s)
- Shruti Shukla
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea.,b Department of Energy and Materials Engineering , Dongguk University , Seoul , Republic of Korea
| | - Hyunjeong Cho
- c Experiment and Research Institute, National Agricultural Products Quality Management Service , Gimcheon-si , Gyeongsangbuk-do , Republic of Korea
| | - O Jun Kwon
- d Evaluation Team, Gyeongbuk Institute for Regional Program Evaluation , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea
| | - Soo Hyun Chung
- e Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Myunghee Kim
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea
| |
Collapse
|
4
|
Huang KYA, Lin JJ, Chiu CH, Yang S, Tsao KC, Huang YC, Lin TY. A Potent Virus-Specific Antibody-Secreting Cell Response to Acute Enterovirus 71 Infection in Children. J Infect Dis 2015; 212:808-17. [PMID: 25712974 DOI: 10.1093/infdis/jiv094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) remains a leading pathogen for acute infectious diseases in children, especially in Asia. The cellular basis for establishing a virus-specific antibody response to acute EV71 infections is unclear in children. METHODS We studied the magnitude of virus-specific antibody-secreting B cells (ASCs) and its relationship with serological response, clinical parameters, and virological parameters among children with laboratory-confirmed EV71 infection. RESULTS A potent EV71 genogroup B- and virus-specific ASC response was detected in the first week of illness among genotype B5 EV71-infected children. The cross-reactive EV71-specific ASC response to genogroup C viral antigens composed about 10% of the response. The EV71-specific ASC response in children aged ≥3 years produced immunoglobulin G predominantly, but immunoglobulin M was predominant in younger children. Proliferation marker was expressed by the majority of circulating ASCs in the acute phase of EV71 infection. Virus-specific ASC responses significantly correlated with throat viral load, fever duration, and serological genogroup-specific neutralization titer. CONCLUSIONS The presence of a virus-specific ASC response serves an early cellular marker of an EV71-specific antibody response. Further detailed study of EV71-specific ASCs at the monoclonal level is crucial to delineate the specificity and function of antibody immunity in children.
Collapse
Affiliation(s)
- Kuan-Ying Arthur Huang
- Department of Pediatrics, Chang Gung Children's Hospital Molecular Infectious Disease Research Centre
| | - Jainn-Jim Lin
- Department of Pediatrics, Chang Gung Children's Hospital
| | - Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Children's Hospital Molecular Infectious Disease Research Centre
| | - Shuan Yang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital
| | - Yhu-Chering Huang
- Department of Pediatrics, Chang Gung Children's Hospital College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|