1
|
Pourkarim MR. Navigating Evolving Challenges in Blood Safety. Viruses 2024; 16:123. [PMID: 38257823 PMCID: PMC10821029 DOI: 10.3390/v16010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Blood safety remains a paramount public health concern, and health authorities maintain a high level of vigilance to prevent transfusion-transmitted infections (TTIs) [...].
Collapse
Affiliation(s)
- Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion, Tehran 14665-1157, Iran
| |
Collapse
|
2
|
Stout MJ, Brar AK, Herter BN, Rankin A, Wylie KM. The plasma virome in longitudinal samples from pregnant patients. Front Cell Infect Microbiol 2023; 13:1061230. [PMID: 36844406 PMCID: PMC9949529 DOI: 10.3389/fcimb.2023.1061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Nucleic acid from viruses is common in peripheral blood, even in asymptomatic individuals. How physiologic changes of pregnancy impact host-virus dynamics for acute, chronic, and latent viral infections is not well described. Previously we found higher viral diversity in the vagina during pregnancy associated with preterm birth (PTB) and Black race. We hypothesized that higher diversity and viral copy numbers in the plasma would show similar trends. Methods To test this hypothesis, we evaluated longitudinally collected plasma samples from 23 pregnant patients (11 term and 12 preterm) using metagenomic sequencing with ViroCap enrichment to enhance virus detection. Sequence data were analyzed with the ViroMatch pipeline. Results We detected nucleic acid from at least 1 virus in at least 1 sample from 87% (20/23) of the maternal subjects. The viruses represented 5 families: Herpesviridae, Poxviridae, Papillomaviridae, Anelloviridae, and Flaviviridae. We analyzed cord plasma from 18 of the babies from those patients and found nucleic acid from viruses in 33% of the samples (6/18) from 3 families: Herpesviridae, Papillomaviridae, and Anelloviridae. Some viral genomes were found in both maternal plasma and cord plasma from maternal-fetal pairs (e.g. cytomegalovirus, anellovirus). We found that Black race associated with higher viral richness (number of different viruses detected) in the maternal blood samples (P=0.003), consistent with our previous observations in vaginal samples. We did not detect associations between viral richness and PTB or the trimester of sampling. We then examined anelloviruses, a group of viruses that is ubiquitous and whose viral copy numbers fluctuate with immunological state. We tested anellovirus copy numbers in plasma from 63 pregnant patients sampled longitudinally using qPCR. Black race associated with higher anellovirus positivity (P<0.001) but not copy numbers (P=0.1). Anellovirus positivity and copy numbers were higher in the PTB group compared to the term group (P<0.01, P=0.003, respectively). Interestingly, these features did not occur at the time of delivery but appeared earlier in pregnancy, suggesting that although anelloviruses were biomarkers for PTB they were not triggering parturition. Discussion These results emphasize the importance of longitudinal sampling and diverse cohorts in studies of virome dynamics during pregnancy.
Collapse
Affiliation(s)
- Molly J. Stout
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Anoop K. Brar
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Brandi N. Herter
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Ananda Rankin
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Kristine M. Wylie
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Sahmi-Bounsiar D, Rolland C, Aherfi S, Boudjemaa H, Levasseur A, La Scola B, Colson P. Marseilleviruses: An Update in 2021. Front Microbiol 2021; 12:648731. [PMID: 34149639 PMCID: PMC8208085 DOI: 10.3389/fmicb.2021.648731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023] Open
Abstract
The family Marseilleviridae was the second family of giant viruses that was described in 2013, after the family Mimiviridae. Marseillevirus marseillevirus, isolated in 2007 by coculture on Acanthamoeba polyphaga, is the prototype member of this family. Afterward, the worldwide distribution of marseilleviruses was revealed through their isolation from samples of various types and sources. Thus, 62 were isolated from environmental water, one from soil, one from a dipteran, one from mussels, and two from asymptomatic humans, which led to the description of 67 marseillevirus isolates, including 21 by the IHU Méditerranée Infection in France. Recently, five marseillevirus genomes were assembled from deep sea sediment in Norway. Isolated marseilleviruses have ≈250 nm long icosahedral capsids and 348–404 kilobase long mosaic genomes that encode 386–545 predicted proteins. Comparative genomic analyses indicate that the family Marseilleviridae includes five lineages and possesses a pangenome composed of 3,082 clusters of genes. The detection of marseilleviruses in both symptomatic and asymptomatic humans in stool, blood, and lymph nodes, and an up-to-30-day persistence of marseillevirus in rats and mice, raise questions concerning their possible clinical significance that are still under investigation.
Collapse
Affiliation(s)
- Dehia Sahmi-Bounsiar
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Hadjer Boudjemaa
- IHU Méditerranée Infection, Marseille, France.,Department of Biology, Faculty of Natural Science and Life, Hassiba Benbouali University of Chlef, Chlef, Algeria
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, Marseille, France.,Institut de Recherche pour le Développement (IRD), Assistance Publique- Hôpitaux de Marseille (AP-HM), MEPHI, Aix-Marseille Université, Marseille, France
| |
Collapse
|
4
|
Valença IN, Santos RBD, Peronni KC, Sauvage V, Vandenbogaert M, Caro V, Silva Junior WAD, Covas DT, Silva-Pinto AC, Laperche S, Kashima S, Slavov SN. Deep sequencing applied to the analysis of viromes in patients with beta-thalassemia. Rev Inst Med Trop Sao Paulo 2021; 63:e40. [PMID: 34037156 PMCID: PMC8149102 DOI: 10.1590/s1678-9946202163040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022] Open
Abstract
To date, blood banks apply routine diagnosis to a specific spectrum of
transfusion-transmitted viruses. Even though this measure is considered highly
efficient to control their transmission, the threat imposed by emerging viruses
is increasing globally, which can impact transfusion safety, especially in the
light of the accelerated viral discovery by novel sequencing technologies. One
of the most important groups of patients, who may indicate the presence of
emerging viruses in the field of blood transfusion, is the group of individuals
who receive multiple transfusions due to hereditary hemoglobinopathies. It is
possible that they harbor unknown or unsuspected parenterally-transmitted
viruses. In order to elucidate this, nucleic acids from 30 patients with
beta-thalassemia were analyzed by Illumina next-generation sequencing and
bioinformatics analysis. Three major viral families:
Anelloviridae, Flaviviridae and
Hepadnaviridae were identified. Among
them, anelloviruses were the most representative, being detected with high
number of reads in all tested samples. Human Pegivirus 1 (HPgV-1, or GBV-C),
Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) were also identified. HBV
and HCV detection was expected due to the high seroprevalence in patients with
beta thalassemia. Our results do not confirm the presence of emerging or
unsuspected viruses threatening the transfusion safety at present, but can be
used to actively search for viruses that threaten blood transfusion safety. We
believe that the application of viral metagenomics in multiple-transfused
patients is highly useful to monitor possible viral transfusion threats and for
the annotation of their virome composition.
Collapse
Affiliation(s)
- Ian Nunes Valença
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Programa de Mestrado em Oncologia Clínica, Células-Tronco e Terapia Celular, Ribeirão Preto, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Bezerra Dos Santos
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Programa de Mestrado em Oncologia Clínica, Células-Tronco e Terapia Celular, Ribeirão Preto, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Kamila Chagas Peronni
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Virginie Sauvage
- Centre National de Référence Risques Infectieux Transfusionnels, Institut National de la Transfusion Département d'études des Agents Transmissibles par le Sang, Paris, France
| | - Mathias Vandenbogaert
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence, Paris, France
| | - Valérie Caro
- Institut Pasteur, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence, Paris, France
| | - Wilson Araújo da Silva Junior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, São Paulo, Brazil
| | - Ana Cristina Silva-Pinto
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Syria Laperche
- Centre National de Référence Risques Infectieux Transfusionnels, Institut National de la Transfusion Département d'études des Agents Transmissibles par le Sang, Paris, France
| | - Simone Kashima
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Abstract
Since the discovery of mimivirus, numerous giant viruses associated with free-living amoebae have been described. The genome of giant viruses can be more than 2.5 megabases, and virus particles can exceed the size of many bacteria. The unexpected characteristics of these viruses have made them intriguing research targets and, as a result, studies focusing on their interactions with their amoeba host have gained increased attention. Studies have shown that giant viruses can establish host-pathogen interactions, which have not been previously demonstrated, including the unprecedented interaction with a new group of small viruses, called virophages, that parasitize their viral factories. In this brief review, we present recent advances in virophage-giant virus-host interactions and highlight selected studies involving interactions between giant viruses and amoebae. These unprecedented interactions involve the giant viruses mimivirus, marseillevirus, tupanviruses and faustovirus, all of which modulate the amoeba environment, affecting both their replication and their spread to new hosts.
Collapse
|
6
|
Macera L, Spezia PG, Focosi D, Mazzetti P, Antonelli G, Pistello M, Maggi F. Lack of Marseillevirus DNA in immunocompetent and immunocompromised Italian patients. J Med Virol 2019; 92:187-190. [PMID: 31498443 DOI: 10.1002/jmv.25592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023]
Abstract
Marseilleviridae is a family of viruses which have only been propagated in acanthamoeba. Marseillevirus sequences have been recently detected in different human matrices by viral metagenomics. Single-center studies worldwide have estimated a low prevalence of marseillevirus both in symptomatic patients and in healthy donors but, to date, no informations are available on the prevalence of this giant virus in Italy. By a polymerase chain reaction targeting the ORF152 viral sequence, we tested sera from 197 immunosuppressed patients and 285 healthy donors, and 63 and 30 respiratory and cerebrospinal fluid samples, respectively, of patients with various clinical conditions and referring the Virology Division for diagnostic purposes. We observed no evidence of Marseillevirus DNA in all 575 samples tested. Marseillevirus probably does not cause infection in human.
Collapse
Affiliation(s)
- Lisa Macera
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| | - Pietro Giorgio Spezia
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Paola Mazzetti
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology and Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
7
|
Protozoal giant viruses: agents potentially infectious to humans and animals. Virus Genes 2019; 55:574-591. [PMID: 31290063 PMCID: PMC6746690 DOI: 10.1007/s11262-019-01684-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
The discovery of giant viruses has revolutionised the knowledge on viruses and transformed the idea of three domains of life. Here, we discuss the known protozoal giant viruses and their potential to infect also humans and animals.
Collapse
|
8
|
Rolland C, Andreani J, Louazani AC, Aherfi S, Francis R, Rodrigues R, Silva LS, Sahmi D, Mougari S, Chelkha N, Bekliz M, Silva L, Assis F, Dornas F, Khalil JYB, Pagnier I, Desnues C, Levasseur A, Colson P, Abrahão J, La Scola B. Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere. Viruses 2019; 11:E312. [PMID: 30935049 PMCID: PMC6520786 DOI: 10.3390/v11040312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The history of giant viruses began in 2003 with the identification of Acanthamoeba polyphaga mimivirus. Since then, giant viruses of amoeba enlightened an unknown part of the viral world, and every discovery and characterization of a new giant virus modifies our perception of the virosphere. This notably includes their exceptional virion sizes from 200 nm to 2 µm and their genomic complexity with length, number of genes, and functions such as translational components never seen before. Even more surprising, Mimivirus possesses a unique mobilome composed of virophages, transpovirons, and a defense system against virophages named Mimivirus virophage resistance element (MIMIVIRE). From the discovery and isolation of new giant viruses to their possible roles in humans, this review shows the active contribution of the University Hospital Institute (IHU) Mediterranee Infection to the growing knowledge of the giant viruses' field.
Collapse
Affiliation(s)
- Clara Rolland
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Amina Cherif Louazani
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Sarah Aherfi
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Rania Francis
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Rodrigo Rodrigues
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Ludmila Santos Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Dehia Sahmi
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Said Mougari
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Nisrine Chelkha
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Meriem Bekliz
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Lorena Silva
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Felipe Assis
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Fábio Dornas
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | | | - Isabelle Pagnier
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Christelle Desnues
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Anthony Levasseur
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Philippe Colson
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| | - Jônatas Abrahão
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- Laboratório de Vírus, Instituto de Ciêncas Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille Univ, Department of Medicine, IHU-Méditerranée Infection, 13005 Marseille, France.
- IHU IHU-Méditerranée Infection, 13005 Marseille, France.
| |
Collapse
|
9
|
Waldvogel-Abramowski S, Taleb S, Alessandrini M, Preynat-Seauve O. Viral Metagenomics of Blood Donors and Blood-Derived Products Using Next-Generation Sequencing. Transfus Med Hemother 2019; 46:87-93. [PMID: 31191194 DOI: 10.1159/000499088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Transfusion-transmitted infections remain a permanent threat in medicine. It keeps the burden of the past, marked by serious infections transmitted by transfusion, and is constantly threatened by emerging viruses. The global rise of immunosuppression among patients undergoing frequent transfusions exacerbates this problem. Over the past decade, criteria for donor selection have become increasingly more stringent. Although routine nucleic acid testing (NAT) for virus-specific detection has become more sensitive, these safety measures are only valuable for a limited number of select viruses. The scientific approach to this is however changing, with the goal of trying to identify infectious agents in donor units as early as possible to mitigate the risk of a clinically relevant infection. To this end, and in addition to an epidemiological surveillance of the general population, researchers are adopting new methods to discover emerging infectious agents, while simultaneously screening for an extended number of viruses in donors. Next-generation sequencing (NGS) offers the opportunity to explore the entire viral landscape in blood donors, the so-called metagenomics, to investigate severe transfusion reactions of unknown etiology. In the not too distant future, one could imagine this platform being used for routine testing of donated blood products.
Collapse
Affiliation(s)
- Sophie Waldvogel-Abramowski
- Laboratory of Immunohematology, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Blood Transfusion Center, Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Sofiane Taleb
- Laboratory of Clinical Biology, Foch University Hospitals, Suresnes, France
| | - Marco Alessandrini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Laboratory of Therapy and Stem Cells, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland.,Department of Medical Specialties of internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Parras-Moltó M, Rodríguez-Galet A, Suárez-Rodríguez P, López-Bueno A. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. MICROBIOME 2018; 6:119. [PMID: 29954453 PMCID: PMC6022446 DOI: 10.1186/s40168-018-0507-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Viruses are key players regulating microbial ecosystems. Exploration of viral assemblages is now possible thanks to the development of metagenomics, the most powerful tool available for studying viral ecology and discovering new viruses. Unfortunately, several sources of bias lead to the misrepresentation of certain viruses within metagenomics workflows, hindering the shift from merely descriptive studies towards quantitative comparisons of communities. Therefore, benchmark studies on virus enrichment and random amplification protocols are required to better understand the sources of bias. RESULTS We assessed the bias introduced by viral enrichment on mock assemblages composed of seven DNA viruses, and the bias from random amplification methods on human saliva DNA viromes, using qPCR and deep sequencing, respectively. While iodixanol cushions and 0.45 μm filtration preserved the original composition of nuclease-protected viral genomes, low-force centrifugation and 0.22 μm filtration removed large viruses. Comparison of unamplified and randomly amplified saliva viromes revealed that multiple displacement amplification (MDA) induced stochastic bias from picograms of DNA template. However, the type of bias shifted to systematic using 1 ng, with only a marginal influence by amplification time. Systematic bias consisted of over-amplification of small circular genomes, and under-amplification of those with extreme GC content, a negative bias that was shared with the PCR-based sequence-independent, single-primer amplification (SISPA) method. MDA based on random priming provided by a DNA primase activity slightly outperformed those based on random hexamers and SISPA, which may reflect differences in ability to handle sequences with extreme GC content. SISPA viromes showed uneven coverage profiles, with high coverage peaks in regions with low linguistic sequence complexity. Despite misrepresentation of certain viruses after random amplification, ordination plots based on dissimilarities among contig profiles showed perfect overlapping of related amplified and unamplified saliva viromes and strong separation from unrelated saliva viromes. This result suggests that random amplification bias has a minor impact on beta diversity studies. CONCLUSIONS Benchmark analyses of mock and natural communities of viruses improve understanding and mitigate bias in metagenomics surveys. Bias induced by random amplification methods has only a minor impact on beta diversity studies of human saliva viromes.
Collapse
Affiliation(s)
- Marcos Parras-Moltó
- Centro de Biología Molecular Severo Ochoa (Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Ana Rodríguez-Galet
- Centro de Biología Molecular Severo Ochoa (Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Patricia Suárez-Rodríguez
- Centro de Biología Molecular Severo Ochoa (Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa (Universidad Autónoma de Madrid/Consejo Superior de Investigaciones Científicas), Madrid, Spain.
| |
Collapse
|
11
|
Lagier JC, Drancourt M, Charrel R, Bittar F, La Scola B, Ranque S, Raoult D. Many More Microbes in Humans: Enlarging the Microbiome Repertoire. Clin Infect Dis 2018; 65:S20-S29. [PMID: 28859350 DOI: 10.1093/cid/cix404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proportion of cultured microorganisms is dramatically lower than those predicted to be involved in colonization, acute, or chronic infections. We report our laboratory's contribution to promoting culture methods. As a result of using culturomics in our clinical microbiology laboratories (including amoeba co-culture and shell-vial culture) and through the use of matrix-assisted laser desorption/ionization-time-of-flight and the 16S rRNA gene for identification, we cultured 329 new bacterial species. This is also the first time that 327 of species have been isolated from humans, increasing the known human bacterial repertoire by 29%. We isolated 4 archaeal species for the first time from human, including 2 new species. Of the 100 isolates of giant viruses, we demonstrated the human pathogenicity of Mimivirus in pneumonia and Marseillevirus in diverse clinical situations. From sand flies, we isolated most of the known Phlebovirus strains that potentially cause human infections. Increasing the repertoire of human-associated microorganisms through culture will allow us to test pathogenicity models with viable microorganisms.
Collapse
Affiliation(s)
| | | | - Rémi Charrel
- UMR Emergence des Pathologies Virales, IRD 190, Inserm 1207, EHESP, France Fondation, IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM) Public Hospitals of Marseille
| | | | | | - Stéphane Ranque
- Université Montpellier 1, IRBA, IP-TPT, Aix Marseille Université.,Parasitologie and Mycologie, IHU Méditerranée Infection, Hôpital de la Timone, AP-HM, Marseille, France
| | | |
Collapse
|
12
|
Aherfi S, Nappez C, Lepidi H, Bedotto M, Barassi L, Jardot P, Colson P, La Scola B, Raoult D, Bregeon F. Experimental Inoculation in Rats and Mice by the Giant Marseillevirus Leads to Long-Term Detection of Virus. Front Microbiol 2018; 9:463. [PMID: 29619012 PMCID: PMC5871663 DOI: 10.3389/fmicb.2018.00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
The presence of the giant virus of amoeba Marseillevirus has been identified at many different sites on the human body, including in the bloodstream of asymptomatic subjects, in the lymph nodes of a child with adenitis, in one adult with Hodgkin's disease, and in the pharynx of an adult. A high seroprevalence of the Marseillevirus has been recorded in the general population. Whether Marseillevirus can disseminate and persist within a mammal after entry remains unproven. We aimed to assess the ability of the virus to disseminate and persist into healthy organisms, especially in the lymphoid organs. Parenteral inoculations were performed by intraperitoneal injection (in rats and mice) or intravenous injection (in rats). Airway inoculation was performed by aerosolization (in mice). Dissemination and persistence were assessed by using PCR and amebal co-culture. Serologies were performed by immunofluorescent assay. Pathological examination was conducted after standard and immunohistochemistry staining. After intraperitoneal inoculation in mice and rats, Marseillevirus was detected in the bloodstream during the first 24 h. Persistence was noted until the end of the experiment, i.e., at 14 days in rats. After intravenous inoculation in rats, the virus was first detected in the blood until 48 h and then in deep organs with infectious virus detected until 14 and 21 days in the liver and the spleen, respectively. Its DNA was detected for up to 30 days in the liver and the spleen. After aerosolization in mice, infectious Marseillevirus was present in the lungs and nasal associated lymphoid tissue until 30 days post inoculation but less frequently and at a lower viral load in the lung than in the nasal associated lymphoid tissue. No other site of dissemination was found after aerosol exposure. Despite no evidence of disease being observed, the 30-day long persistence of Marseillevirus in rats and mice, regardless of the route of inoculation, supports the hypothesis of an infective potential of the virus in certain conditions. Its constant and long-term detection in nasal associated lymphoid tissue in mice after an aerosol exposure suggests the involvement of naso-pharyngeal associated lymphoid tissues in protecting the host against environmental Marseillevirus.
Collapse
Affiliation(s)
- Sarah Aherfi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Claude Nappez
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Hubert Lepidi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France.,Laboratoire d'Anatomopathologie, Centre Hospitalo Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Marielle Bedotto
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Lina Barassi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Priscilla Jardot
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Philippe Colson
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Bernard La Scola
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Didier Raoult
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Fabienne Bregeon
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France.,Service des Explorations Fonctionnelles Respiratoires Centre Hospitalo Universitaire Nord, Pôle Cardio-Vasculaire et thoracique, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
13
|
Elimination of Viral Hepatitis and an Update on Blood Safety Technology. HEPATITIS MONTHLY 2018. [DOI: 10.5812/hepatmon.66577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
14
|
Aherfi S, Colson P, Raoult D. Marseillevirus in the Pharynx of a Patient with Neurologic Disorders. Emerg Infect Dis 2018; 22:2008-2010. [PMID: 27767918 PMCID: PMC5088024 DOI: 10.3201/eid2211.160189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Andrade ACDSP, Arantes TS, Rodrigues RAL, Machado TB, Dornas FP, Landell MF, Furst C, Borges LGA, Dutra LAL, Almeida G, Trindade GDS, Bergier I, Abrahão W, Borges IA, Cortines JR, de Oliveira DB, Kroon EG, Abrahão JS. Ubiquitous giants: a plethora of giant viruses found in Brazil and Antarctica. Virol J 2018; 15:22. [PMID: 29368617 PMCID: PMC5784613 DOI: 10.1186/s12985-018-0930-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Since the discovery of giant viruses infecting amoebae in 2003, many dogmas of virology have been revised and the search for these viruses has been intensified. Over the last few years, several new groups of these viruses have been discovered in various types of samples and environments.In this work, we describe the isolation of 68 giant viruses of amoeba obtained from environmental samples from Brazil and Antarctica. METHODS Isolated viruses were identified by hemacolor staining, PCR assays and electron microscopy (scanning and/or transmission). RESULTS A total of 64 viruses belonging to the Mimiviridae family were isolated (26 from lineage A, 13 from lineage B, 2 from lineage C and 23 from unidentified lineages) from different types of samples, including marine water from Antarctica, thus being the first mimiviruses isolated in this extreme environment to date. Furthermore, a marseillevirus was isolated from sewage samples along with two pandoraviruses and a cedratvirus (the third to be isolated in the world so far). CONCLUSIONS Considering the different type of samples, we found a higher number of viral groups in sewage samples. Our results reinforce the importance of prospective studies in different environmental samples, therefore improving our comprehension about the circulation anddiversity of these viruses in nature.
Collapse
Affiliation(s)
- Ana Cláudia Dos S P Andrade
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thalita S Arantes
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo A L Rodrigues
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Talita B Machado
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fábio P Dornas
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Melissa F Landell
- Laboratório de Diversidade Molecular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Universidade Federal do Espírito Santo, Maruípe, Brazil
| | - Luiz G A Borges
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Instituto do Petróleo e dos Recursos Naturais (IPR), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lara A L Dutra
- Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Gabriel Almeida
- Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Giliane de S Trindade
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Iara A Borges
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana R Cortines
- Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo B de Oliveira
- Faculdade de Medicina, Universidade Federal do dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Erna G Kroon
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jônatas S Abrahão
- Laboratorio de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
16
|
Colson P, Aherfi S, La Scola B. Evidence of giant viruses of amoebae in the human gut. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Chinchar V, Waltzek TB, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere. Virology 2017. [DOI: 10.1016/j.virol.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Colson P, La Scola B, Raoult D. Giant Viruses of Amoebae: A Journey Through Innovative Research and Paradigm Changes. Annu Rev Virol 2017; 4:61-85. [PMID: 28759330 DOI: 10.1146/annurev-virology-101416-041816] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Giant viruses of amoebae were discovered serendipitously in 2003; they are visible via optical microscopy, making them bona fide microbes. Their lifestyle, structure, and genomes break the mold of classical viruses. Giant viruses of amoebae are complex microorganisms. Their genomes harbor between 444 and 2,544 genes, including many that are unique to viruses, and encode translation components; their virions contain >100 proteins as well as mRNAs. Mimiviruses have a specific mobilome, including virophages, provirophages, and transpovirons, and can resist virophages through a system known as MIMIVIRE (mimivirus virophage resistance element). Giant viruses of amoebae bring upheaval to the definition of viruses and tend to separate the current virosphere into two categories: very simple viruses and viruses with complexity similar to that of other microbes. This new paradigm is propitious for enhanced detection and characterization of giant viruses of amoebae, and a particular focus on their role in humans is warranted.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| |
Collapse
|
19
|
Sauvage V, Gomez J, Boizeau L, Laperche S. The potential of viral metagenomics in blood transfusion safety. Transfus Clin Biol 2017; 24:218-222. [PMID: 28694025 DOI: 10.1016/j.tracli.2017.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
Thanks to the significant advent of high throughput sequencing in the last ten years, it is now possible via metagenomics to define the spectrum of the microbial sequences present in human blood samples. Therefore, metagenomics sequencing appears as a promising approach for the identification and global surveillance of new, emerging and/or unexpected viruses that could impair blood transfusion safety. However, despite considerable advantages compared to the traditional methods of pathogen identification, this non-targeted approach presents several drawbacks including a lack of sensitivity and sequence contaminant issues. With further improvements, especially to increase sensitivity, metagenomics sequencing should become in a near future an additional diagnostic tool in infectious disease field and especially in blood transfusion safety.
Collapse
Affiliation(s)
- V Sauvage
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France.
| | - J Gomez
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France
| | - L Boizeau
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France
| | - S Laperche
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France
| |
Collapse
|
20
|
Noumeavirus replication relies on a transient remote control of the host nucleus. Nat Commun 2017; 8:15087. [PMID: 28429720 PMCID: PMC5413956 DOI: 10.1038/ncomms15087] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Acanthamoeba are infected by a remarkable diversity of large dsDNA viruses, the infectious cycles of which have been characterized using genomics, transcriptomics and electron microscopy. Given their gene content and the persistence of the host nucleus throughout their infectious cycle, the Marseilleviridae were initially assumed to fully replicate in the cytoplasm. Unexpectedly, we find that their virions do not incorporate the virus-encoded transcription machinery, making their replication nucleus-dependent. However, instead of delivering their DNA to the nucleus, the Marseilleviridae initiate their replication by transiently recruiting the nuclear transcription machinery to their cytoplasmic viral factory. The nucleus recovers its integrity after becoming leaky at an early stage. This work highlights the importance of virion proteomic analyses to complement genome sequencing in the elucidation of the replication scheme and evolution of large dsDNA viruses. Large dsDNA viruses either replicate in or disrupt the nucleus to gain access to host RNA polymerases, or they rely on virus-encoded, packaged RNA polymerases. Here, the authors show that Noumeavirus replicates in the cytoplasm and relies on a transient recruitment of nuclear proteins to initiate replication.
Collapse
|
21
|
Aherfi S, Colson P, Audoly G, Nappez C, Xerri L, Valensi A, Million M, Lepidi H, Costello R, Raoult D. Marseillevirus in lymphoma: a giant in the lymph node. THE LANCET. INFECTIOUS DISEASES 2016; 16:e225-e234. [PMID: 27502174 DOI: 10.1016/s1473-3099(16)30051-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/18/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022]
Abstract
The family Marseilleviridae is a new clade of giant viruses whose original member, marseillevirus, was described in 2009. These viruses were isolated using Acanthamoeba spp primarily from the environment. Subsequently, a close relative of marseillevirus was isolated from the faeces of a healthy young man, and others were detected in blood samples of blood donors and recipients and in a child with lymph node adenitis. In this Grand Round we describe the detection of marseillevirus by PCR, fluorescence in-situ hybridisation, direct immunofluorescence, and immunohistochemistry in the lymph node of a 30-year-old woman diagnosed with Hodgkin's lymphoma, together with IgG antibodies to marseillevirus. A link with viruses and bacteria has been reported for many lymphomas. We review the literature describing these associations, the criteria used to consider a causal association, and the underlying mechanisms of lymphomagenesis. Our observations suggest that consideration should be given to marseillevirus infections as an additional viral cause or consequence of Hodgkin's lymphoma, and that this hypothesis should be tested further.
Collapse
Affiliation(s)
- Sarah Aherfi
- Research Unit on Emerging Infectious and Tropical Diseases (URMITE), CNRS UMR 7278, IRD 198, Inserm U1095, Aix-Marseille Université, Marseille, France; Méditerranée Infection Foundation (IHU), Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Colson
- Research Unit on Emerging Infectious and Tropical Diseases (URMITE), CNRS UMR 7278, IRD 198, Inserm U1095, Aix-Marseille Université, Marseille, France; Méditerranée Infection Foundation (IHU), Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Gilles Audoly
- Research Unit on Emerging Infectious and Tropical Diseases (URMITE), CNRS UMR 7278, IRD 198, Inserm U1095, Aix-Marseille Université, Marseille, France
| | - Claude Nappez
- Research Unit on Emerging Infectious and Tropical Diseases (URMITE), CNRS UMR 7278, IRD 198, Inserm U1095, Aix-Marseille Université, Marseille, France
| | - Luc Xerri
- Département de Bio-Pathologie, Oncologie moléculaire, Hématologie et Immunologie des tumeurs, Aix-Marseille Université, Marseille, France; Institut Paoli-Calmettes, Marseille, France
| | - Audrey Valensi
- Research Unit on Emerging Infectious and Tropical Diseases (URMITE), CNRS UMR 7278, IRD 198, Inserm U1095, Aix-Marseille Université, Marseille, France
| | - Matthieu Million
- Research Unit on Emerging Infectious and Tropical Diseases (URMITE), CNRS UMR 7278, IRD 198, Inserm U1095, Aix-Marseille Université, Marseille, France; Méditerranée Infection Foundation (IHU), Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Hubert Lepidi
- Research Unit on Emerging Infectious and Tropical Diseases (URMITE), CNRS UMR 7278, IRD 198, Inserm U1095, Aix-Marseille Université, Marseille, France; Méditerranée Infection Foundation (IHU), Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Regis Costello
- Technological Advances for Genomics and Clinics (TAGC), Inserm UMR 1090, Aix-Marseille Université, Marseille, France
| | - Didier Raoult
- Research Unit on Emerging Infectious and Tropical Diseases (URMITE), CNRS UMR 7278, IRD 198, Inserm U1095, Aix-Marseille Université, Marseille, France; Méditerranée Infection Foundation (IHU), Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
22
|
Zou S, Caler L, Colombini-Hatch S, Glynn S, Srinivas P. Research on the human virome: where are we and what is next. MICROBIOME 2016; 4:32. [PMID: 27341799 PMCID: PMC4919837 DOI: 10.1186/s40168-016-0177-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
The National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health convened a Working Group on the Microbiome in Cardiovascular, Pulmonary and Hematologic Health and Diseases from June 25, 2014, to June 26, 2014. The Working Group's central goal was to define what major microbiome research areas warranted additional study in the context of heart, lung, and blood (HLB) diseases. The Working Group identified studies of the human virome a key priority.
Collapse
Affiliation(s)
- Shimian Zou
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| | - Lis Caler
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| | - Sandra Colombini-Hatch
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| | - Simone Glynn
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| | - Pothur Srinivas
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6701, Rockledge Drive, Room 9144, Bethesda, MD 20892-7950 USA
| |
Collapse
|
23
|
Colson P, Aherfi S, La Scola B, Raoult D. The role of giant viruses of amoebas in humans. Curr Opin Microbiol 2016; 31:199-208. [PMID: 27131020 DOI: 10.1016/j.mib.2016.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
Since 2003, dozens of giant viruses that infect amoebas (GVA), including mimiviruses and marseilleviruses, have been discovered. These giants appear to be common in our biosphere. From the onset, their presence and possible pathogenic role in humans have been serendipitously observed or investigated using a broad range of technological approaches, including culture, electron microscopy, serology and various techniques based on molecular biology. The link between amoebal mimiviruses and pneumonia has been the most documented, with findings that fulfill several of the criteria considered as proof of viral disease causation. Regarding marseilleviruses, they have been mostly described in asymptomatic persons, and in a lymph node adenitis. The presence and impact of GVA in humans undoubtedly deserve further investigation in medicine.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 264 rue Saint-Pierre, 13385 Marseille Cedex 05, France; Aix-Marseille Univ., URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 264 rue Saint-Pierre, 13385 Marseille Cedex 05, France; Aix-Marseille Univ., URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 264 rue Saint-Pierre, 13385 Marseille Cedex 05, France; Aix-Marseille Univ., URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Didier Raoult
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 264 rue Saint-Pierre, 13385 Marseille Cedex 05, France; Aix-Marseille Univ., URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France.
| |
Collapse
|
24
|
Aherfi S, Colson P, La Scola B, Raoult D. Giant Viruses of Amoebas: An Update. Front Microbiol 2016; 7:349. [PMID: 27047465 PMCID: PMC4801854 DOI: 10.3389/fmicb.2016.00349] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/04/2016] [Indexed: 11/16/2022] Open
Abstract
During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea, and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreover, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages.
Collapse
Affiliation(s)
- Sarah Aherfi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre National de la Recherche Scientifique 7278 Institut de Recherche pour le Développement 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre National de la Recherche Scientifique 7278 Institut de Recherche pour le Développement 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre National de la Recherche Scientifique 7278 Institut de Recherche pour le Développement 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre National de la Recherche Scientifique 7278 Institut de Recherche pour le Développement 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| |
Collapse
|
25
|
Viral metagenomics applied to blood donors and recipients at high risk for blood-borne infections. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:400-7. [PMID: 27136432 DOI: 10.2450/2016.0160-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/18/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Characterisation of human-associated viral communities is essential for epidemiological surveillance and to be able to anticipate new potential threats for blood transfusion safety. In high-resource countries, the risk of blood-borne agent transmission of well-known viruses (HBV, HCV, HIV and HTLV) is currently considered to be under control. However, other unknown or unsuspected viruses may be transmitted to recipients by blood-derived products. To investigate this, the virome of plasma from individuals at high risk for parenterally and sexually transmitted infections was analysed by high throughput sequencing (HTS). MATERIALS AND METHODS Purified nucleic acids from two pools of 50 samples from recipients of multiple transfusions, and three pools containing seven plasma samples from either HBV-, HCV- or HIV-infected blood donors, were submitted to HTS. RESULTS Sequences from resident anelloviruses and HPgV were evidenced in all pools. HBV and HCV sequences were detected in pools containing 3.8×10(3) IU/mL of HBV-DNA and 1.7×10(5) IU/mL of HCV-RNA, respectively, whereas no HIV sequence was found in a pool of 150 copies/mL of HIV-RNA. This suggests a lack of sensitivity in HTS performance in detecting low levels of virus. In addition, this study identified other issues, including laboratory contaminants and the uncertainty of taxonomic assignment of short sequence. No sequence suggestive of a new viral species was identified. DISCUSSION This study did not identify any new blood-borne virus in high-risk individuals. However, rare and/or viruses present at very low titre could have escaped our protocol. Our results demonstrate the positive contribution of HTS in the detection of viral sequences in blood donations.
Collapse
|
26
|
Abstract
Viral safety remains a major concern in transfusion of blood products. Over years, the control measures applied to blood products were made more and more sophisticated; however, the number of infectious agents, and notably of viruses, that can be transmitted by transfusion is increasing continuously. The aim of this review paper is to actualize that published in the same journal by the same authors in 2011 with more details on some of actual vs virtual viral threats that were identified recently in the field of blood transfusion. The main subjects that are covered successively concern the transmission via transfusion of hepatitis E virus, the frequency of transfusion transmitted arboviruses, transfusion at the time of the Ebola epidemics in West Africa, the debated role of Marseillevirus (giant viruses infecting amoebae and suspected to infect human blood latently), and, finally, the recent report of the identification in blood donors of a new member of the Flaviviridae family. The addition of these new viral risks to those already identified-partially controlled or not-pleads for the urgent need to move forward to considering inactivation of infectious agents in blood products.
Collapse
Affiliation(s)
- B Pozzetto
- EA3064, Groupe immunité des muqueuses et agents pathogènes (GIMAP), faculté de médecine de Saint-Étienne, université de Lyon, 42023 Saint-Étienne, France; Laboratoire des agents infectieux et d'hygiène, hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne, France.
| | - O Garraud
- EA3064, Groupe immunité des muqueuses et agents pathogènes (GIMAP), faculté de médecine de Saint-Étienne, université de Lyon, 42023 Saint-Étienne, France; Institut national de la transfusion sanguine (INTS), 75015 Paris, France
| |
Collapse
|
27
|
Abstract
The characterization of the human blood-associated viral community (also called blood virome) is essential for epidemiological surveillance and to anticipate new potential threats for blood transfusion safety. Currently, the risk of blood-borne agent transmission of well-known viruses (HBV, HCV, HIV and HTLV) can be considered as under control in high-resource countries. However, other viruses unknown or unsuspected may be transmitted to recipients by blood-derived products. This is particularly relevant considering that a significant proportion of transfused patients are immunocompromised and more frequently subjected to fatal outcomes. Several measures to prevent transfusion transmission of unknown viruses have been implemented including the exclusion of at-risk donors, leukocyte reduction of donor blood, and physicochemical treatment of the different blood components. However, up to now there is no universal method for pathogen inactivation, which would be applicable for all types of blood components and, equally effective for all viral families. In addition, among available inactivation procedures of viral genomes, some of them are recognized to be less effective on non-enveloped viruses, and inadequate to inactivate higher viral titers in plasma pools or derivatives. Given this, there is the need to implement new methodologies for the discovery of unknown viruses that may affect blood transfusion. Viral metagenomics combined with High Throughput Sequencing appears as a promising approach for the identification and global surveillance of new and/or unexpected viruses that could impair blood transfusion safety.
Collapse
Affiliation(s)
- V Sauvage
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence des hépatites virales B et C et du VIH en transfusion, 75015 Paris, France.
| | - M Eloit
- PathoQuest, bâtiment François-Jacob, 25, rue du Dr-Roux, 75015 Paris, France; Inserm U1117, Biology of Infection Unit, Laboratory of Pathogen Discovery, Institut Pasteur, 28, rue du Docteur-Roux, 75724 Paris, France
| |
Collapse
|
28
|
Di Minno G, Perno CF, Tiede A, Navarro D, Canaro M, Güertler L, Ironside JW. Current concepts in the prevention of pathogen transmission via blood/plasma-derived products for bleeding disorders. Blood Rev 2016; 30:35-48. [PMID: 26381318 PMCID: PMC7115716 DOI: 10.1016/j.blre.2015.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
The pathogen safety of blood/plasma-derived products has historically been a subject of significant concern to the medical community. Measures such as donor selection and blood screening have contributed to increase the safety of these products, but pathogen transmission does still occur. Reasons for this include lack of sensitivity/specificity of current screening methods, lack of reliable screening tests for some pathogens (e.g. prions) and the fact that many potentially harmful infectious agents are not routinely screened for. Methods for the purification/inactivation of blood/plasma-derived products have been developed in order to further reduce the residual risk, but low concentrations of pathogens do not necessarily imply a low level of risk for the patient and so the overall challenge of minimising risk remains. This review aims to discuss the variable level of pathogenic risk and describes the current screening methods used to prevent/detect the presence of pathogens in blood/plasma-derived products.
Collapse
Affiliation(s)
- Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Regional Reference Centre for Coagulation Disorders, Federico II University, Via S. Pansini 5, 80131 Naples, Italy.
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - David Navarro
- Department of Microbiology, Microbiology Service, Hospital Clínico Universitario, School of Medicine, University of Valencia, Av Blasco Ibáñez 17, 46010 Valencia, Spain
| | - Mariana Canaro
- Department of Hemostasis and Thrombosis, Son Espases University Hospital, Carretera de Valdemossa, 79, 07120 Palma de Mallorca, Spain
| | - Lutz Güertler
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, University of München, Pettenkofer Str 9A, 80336 Munich, Germany
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
29
|
Saba ES, Gueyffier L, Danjoy ML, Vanhems P, Pozzetto B, Sobh M, Pottel H, Michallet M, Zrein MA. Trypanosoma-Cruzi Cross-Reactive Antibodies Longitudinal Follow-Up: A Prospective Observational Study in Hematopoietic Stem Cell Transplantation. PLoS One 2015; 10:e0137240. [PMID: 26351849 PMCID: PMC4564178 DOI: 10.1371/journal.pone.0137240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Antibodies named TcCRA "Trypanosoma cruzi Cross Reactive Antibodies" were detected in 47% of blood donors from French population unexposed to the parasite. In order to evaluate the passive or active transmissibility of TcCRA and further characterize its role and etiology, we have conducted a study in a cohort of 47 patients who underwent allogeneic Hematopoietic Stem Cell Transplantations (allo-HSCT). Donors and recipients were tested for TcCRA prior to transplantation. Recipients were further tested during follow-up after transplantation. Demographical, clinical and biological data were collected. Our primary end-point was to assess the risk of TcCRA acquisition after transplantation. During this initial analysis, we observed no seroconversion in patients receiving cells from TcCRA negative donors (n = 23) but detected seroconversion in 4 out of 24 patients who received hematopoietic stem cells from positive donors. Here, we are discussing possible scenarios to explain TcCRA-immune status in recipient after transplantation.
Collapse
Affiliation(s)
- Esber S. Saba
- INFYNITY-Biomarkers, Lyon, France
- Laboratories of Bacteriology-Virology, GIMAP EA3064, Faculty of Medicine Jacques Lisfranc, Saint-Etienne, France
| | | | | | | | - Bruno Pozzetto
- Laboratories of Bacteriology-Virology, GIMAP EA3064, Faculty of Medicine Jacques Lisfranc, Saint-Etienne, France
| | | | - Hans Pottel
- Interdisciplinary Research Center, Catholic University Leuven, Kortrijk, Belgium
| | | | - Maan A. Zrein
- INFYNITY-Biomarkers, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
30
|
Abstract
ABSTRACT In the past decade knowledge about Megaviruses, also denoted as nucleocytoplasmic large DNA viruses (NCLDVs) has been growing quickly. In the current paper, we present a general description of NCLDVs including their genome size, gene functions and homologies to other forms of life and viruses. Evolution of giant viruses from the fourth domain of life (now extinct) and a genomic complexification from smaller DNA viruses are described. Undeniable is the fact that Megaviruses in terms of their size and genomic capacity belong in between cellular and viral worlds breaking several ‘viral dogmas.’ The host range of NCLDVs goes far beyond unicellular organisms and a major challenge in the future is to establish their pathogenicity in human population.
Collapse
|
31
|
Furuta RA, Sakamoto H, Kuroishi A, Yasiui K, Matsukura H, Hirayama F. Metagenomic profiling of the viromes of plasma collected from blood donors with elevated serum alanine aminotransferase levels. Transfusion 2015; 55:1889-99. [DOI: 10.1111/trf.13057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/10/2014] [Accepted: 01/17/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Rika A. Furuta
- Japanese Red Cross Kinki Block Blood Center; Osaka Japan
| | | | - Ayumu Kuroishi
- Japanese Red Cross Kinki Block Blood Center; Osaka Japan
| | - Kazuta Yasiui
- Japanese Red Cross Kinki Block Blood Center; Osaka Japan
| | | | | |
Collapse
|
32
|
Phan TG, Desnues C, Switzer WM, Djoko CF, Schneider BS, Deng X, Delwart E. Absence of giant blood Marseille-like virus DNA detection by polymerase chain reaction in plasma from healthy US blood donors and serum from multiply transfused patients from Cameroon. Transfusion 2015; 55:1256-62. [PMID: 25645088 DOI: 10.1111/trf.12997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/10/2014] [Accepted: 11/28/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND A new Marseilleviridae virus family member, giant blood Marseille-like (GBM) virus, was recently reported in persons from France in the serum of an infant with adenitis, in the blood of 4% of healthy blood donors, and in 9% of multiply transfused thalassemia patients. These results suggested the presence of a nucleocytoplasmic large DNA virus potentially transmissible by blood product transfusion. STUDY DESIGN AND METHODS To investigate this possibility we tested the plasma from 113 US blood donors and 74 multiply transfused Cameroon patients for GBM viral DNA using highly sensitive polymerase chain reaction (PCR) assays. RESULTS GBM DNA was not detected by nested PCR in any of these 187 human specimens. CONCLUSIONS Further testing is required to confirm the occurrence of human GBM virus infections.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Christelle Desnues
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Xutao Deng
- Blood Systems Research Institute.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Eric Delwart
- Blood Systems Research Institute.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| |
Collapse
|
33
|
Affiliation(s)
- Christelle Desnues
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, France
| |
Collapse
|
34
|
Sauvage V, Livartowski A, Boizeau L, Servant-Delmas A, Lionnet F, Lefrere JJ, Laperche S. No Evidence of Marseillevirus-like Virus Presence in Blood Donors and Recipients of Multiple Blood Transfusions. J Infect Dis 2014; 210:2017-8. [DOI: 10.1093/infdis/jiu443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
La Scola B. Looking at protists as a source of pathogenic viruses. Microb Pathog 2014; 77:131-5. [PMID: 25218687 DOI: 10.1016/j.micpath.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances.
Collapse
Affiliation(s)
- Bernard La Scola
- Aix-Marseille University, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, Facultés de Médecine et de Pharmacie, Marseille, France; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique, Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
36
|
Kutikhin AG, Yuzhalin AE, Brusina EB. Mimiviridae, Marseilleviridae, and virophages as emerging human pathogens causing healthcare-associated infections. GMS HYGIENE AND INFECTION CONTROL 2014; 9:Doc16. [PMID: 25152861 PMCID: PMC4141632 DOI: 10.3205/dgkh000236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM During the last decade it became obvious that viruses belonging to Mimiviridae and Marseilleviridae families (order Megavirales), may be potential causative agents of pneumonia. Thus, we have performed a review of the association of Mimiviridae, Marseilleviridae, and virophages with pneumonia, particularly healthcare-associated pneumonia, and other infections of the respiratory tract. RESULTS AND DISCUSSION According to the analysis of the published articles, viruses belonging to Mimiviridae family can be potential agents of both community-acquired and healthcare-associated pneumonia. In particular, these viruses may be associated with poor outcome in patients of intensive care units. The exact mechanism of their pathogenicity, however, still remains unclear. The discrepancies between the results obtained by serological and genomic methods could be explained by the high polymorphism of nucleotide sequences of Mimiviridae family representatives. Further investigations on the Mimiviridae pathogenicity and on the determination of Mimiviridae-caused pneumonia risk groups are required. However, the pathogenicity of the viruses belonging to Marseilleviridae family and virophages is unclear up to now.
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Department of Epidemiology, Kemerovo State Medical Academy, Kemerovo, Russian Federation
- Central Research Laboratory, Kemerovo State Medical Academy, Kemerovo, Russian Federation
- Research Institute for Complex Issues of Cardiovascular Diseases under the Siberian Branch of the Russian Academy of Medical Sciences, Kemerovo, Russian Federation
| | - Arseniy E. Yuzhalin
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Elena B. Brusina
- Department of Epidemiology, Kemerovo State Medical Academy, Kemerovo, Russian Federation
- Research Institute for Complex Issues of Cardiovascular Diseases under the Siberian Branch of the Russian Academy of Medical Sciences, Kemerovo, Russian Federation
| |
Collapse
|
37
|
Aherfi S, La Scola B, Pagnier I, Raoult D, Colson P. The expanding family Marseilleviridae. Virology 2014; 466-467:27-37. [PMID: 25104553 DOI: 10.1016/j.virol.2014.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
The family Marseilleviridae encompasses giant viruses that replicate in free-living Acanthamoeba amoebae. Since the discovery of the founding member Marseillevirus in 2007, 7 new marseilleviruses have been observed, including 3 from environmental freshwater, one from a dipteran, and two from symptom-free humans. Marseilleviruses have ≈250-nm-large icosahedral capsids and 346-386-kb-long mosaic genomes that encode 444-497 predicted proteins. They share a small set of core genes with Mimivirus and other large and giant DNA viruses that compose a monophyletic group, first described in 2001. Comparative genomics analyses indicate that the family Marseilleviridae currently includes three lineages and a pan-genome composed of ≈600 genes. Antibodies against marseilleviruses and viral DNA have been observed in a significant proportion of asymptomatic individuals and in the blood and lymph nodes of a child with adenitis; these observations suggest that these giant viruses may be blood borne and question if they may be pathogenic in humans.
Collapse
Affiliation(s)
- Sarah Aherfi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, 13385 Marseille Cedex 05, France; Fondation Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, 13385 Marseille Cedex 05, France; Fondation Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Isabelle Pagnier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, 13385 Marseille Cedex 05, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, 13385 Marseille Cedex 05, France; Fondation Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 27 boulevard Jean Moulin, Faculté de Médecine, 13385 Marseille Cedex 05, France; Fondation Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
38
|
Angelakis E, Raoult D. Methods for the discovery of emerging pathogens. Microb Pathog 2014; 77:114-8. [PMID: 25014736 PMCID: PMC7127287 DOI: 10.1016/j.micpath.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/23/2014] [Indexed: 01/18/2023]
Abstract
Recently, there has been a steady increase in the number of recognized pathogenic microorganisms, specifically bacteria. The development of genetic technologies, MALDI-TOF mass spectrometry and new culturing techniques has significantly widened the repertoire of known microorganisms and therefore pathogenic microorganisms. The repertoire of infectious agents has been studied in various environments including water, soil, pets, livestock, wildlife and arthropods. Using different methods, many known pathogens can be identified in these samples; therefore, the impact of emergent pathogens on humans can be examined and novel pathogens can be identified. In this special issue, we discuss the identification of emerging pathogens in the environment and animals.
Collapse
Affiliation(s)
- Emmanouil Angelakis
- URMITE CNRS-IRD 198 UMR 6236, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France.
| | - Didier Raoult
- URMITE CNRS-IRD 198 UMR 6236, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|