1
|
Ge L, Luo Y, Li X, Hu Y, Sun L, Bu F, Shan D, Liu J. Global, regional, and national prevalence of HIV-1 drug resistance in treatment-naive and treatment-experienced children and adolescents: a systematic review and meta-analysis. EClinicalMedicine 2024; 77:102859. [PMID: 39430612 PMCID: PMC11490817 DOI: 10.1016/j.eclinm.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Background Despite significant reductions in mother-to-child HIV-1 transmission risks due to the advancements and scale-up of antiretroviral therapy (ART), the global burden of HIV-1 drug resistance (HIVDR) in treatment-naive and treatment-experienced children and adolescents remains poorly understood. In this study, we conducted a systematic review and meta-analysis to estimate the prevalence of HIVDR in these populations globally, regionally, and at the country level. Methods We systematically searched PubMed, Embase, and Web of Science for studies reporting HIVDR in treatment-naive and treatment-experienced children and adolescents from inception to June 28, 2024. Eligible studies reported at least ten successfully genotyped cases. We excluded studies where drug resistance was not reported separately for children and adults or for treatment-naive and treatment-experienced populations. The methodological quality of eligible studies was assessed, and random-effect models were used for meta-analysis to determine the pooled overall and regimen-specific prevalence of one or more HIVDR mutations in these populations globally, regionally, or at the country level. This study is registered with PROSPERO under the number CRD42023424483. Findings Of 2282 records identified, 136 studies (28,539 HIV-1-infected children from 52 countries) were included for analysis. The overall prevalence of HIVDR is 26.31% (95% CI, 20.76-32.25) among treatment-naive children and 74.16% (95% CI, 67.74-80.13) among treatment-experienced children (p < 0.0001). HIVDR varied widely across subregion with the highest prevalence in Southern Africa (37.80% [95% CI, 26.24-50.08]) and lowest in South America (11.79% [95% CI, 4.91-20.84]) for treatment-naive children while highest in Asia (80.85% [95% CI, 63.76-93.55]) and lowest in Europe (54.39% [95% CI, 28.61-79.03]) for treatment-experienced children. The proportion of viral failure (VF) presented positive correlation with DR prevalence for treatment-experienced children, which increased from 61.23% (95% CI, 47.98-73.72) in proportion of VF <50%-81.17% (95% CI, 71.57-89.28) in proportion of 100%. Meta-regression analysis for both groups showed that only age (naive: p = 0.0005; treated: p < 0.0001) was the sources of heterogeneity. Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistances were the most seen mutations among the treatment-naive group, with the HIVDR prevalence more than 10% in Southern Africa, Western and Central Africa, Eastern Africa, Asia, and North America. Both nucleoside reverse transcriptase inhibitor (NRTI) and NNRTI resistances were commonly seen among the treatment-experienced group, varying from 36.33% (95% CI, 11.96-64.93) in North America to 77.54% (95% CI, 62.70-89.58) in South America for NRTI and from 39.98% (95% CI, 13.47-69.97) in Europe to 68.86 (95% CI, 43.91-89.17) in Asia for NNRTI, respectively. Interpretation This study underscores the significant burden of HIVDR among children and adolescents worldwide, particularly pronounced in sub-Saharan Africa and low-income countries. It emphasizes the critical importance of surveillance in all HIV-1-infected children and advocates for the adoption of dolutegravir (DTG) or other optimal formulations as first-line ART in settings where NNRTI resistance exceeds the WHO's 10% threshold. DTG's high resistance barrier, potent antiviral efficacy, and favorable safety profile makes it a superior choice for managing drug-resistant HIV-1, surpassing traditional antiretroviral therapies. Funding This work was supported by the Science and Technology Innovation Committee of Shenzhen Municipality (No. JCYJ20220531102202005) and the Natural Science Foundation of Guangdong Province (No. 2024A1515012118).
Collapse
Affiliation(s)
- Lingyun Ge
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| | - Yinsong Luo
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| | - Xiaorui Li
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| | - Yiyao Hu
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| | - Liqin Sun
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Fan Bu
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, China
| | - Duo Shan
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiaye Liu
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
2
|
Appiah P, Gbassana G, Adusei-Poku M, Obeng BM, Duedu KO, Sagoe KWC. Genetic landscape for majority and minority HIV-1 drug resistance mutations in antiretroviral therapy naive patients in Accra, Ghana. Heliyon 2024; 10:e33180. [PMID: 39022058 PMCID: PMC11253264 DOI: 10.1016/j.heliyon.2024.e33180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background The successful detection of drug-resistance mutations (DRMs) in HIV-1 infected patients has improved the management of HIV infection. Next-generation sequencing (NGS) to detect low-frequency mutations is predicted to be useful for efficiently testing minority drug resistance mutations, which could contribute to virological failure. This study employed Sanger sequencing and NGS to detect and compare minority and majority drug resistance mutations in HIV-1 strains in treatment-naive patients from Ghana. Method From a previous study, 20 antiretroviral therapy (ART)-naive participants were selected for a cross-sectional study. Sanger sequencing and NGS techniques were used to detect the majority and minority HIV drug resistance (HIVDR) mutations, respectively, in the protease (PR) and partial reverse transcriptase (RT) genes. NGS detected mutations at 1 % and 5 % frequencies and Sanger sequencing at ≥20 % frequencies. The sequences obtained from NGS and Sanger sequencing platforms were submitted to the Stanford HIV drug resistance database for subtyping, mutation identification, and interpretations. Results Sequences from the twenty participants where the CRF02_AG was the predominant strain (16, 80 %) were analyzed. NGS detected 25 mutations in the RT and PR genes, compared to 21 mutations by Sanger sequencing. Minority DRMs were detected at the prevalence of 55.0 % with NGS against 35 % DRMs by Sanger sequencing. One of the patients had eight different HIVDR variants, with two minority variants. These mutations were directed against PI (K20I and D30DN), NNRTI (Y181C, M23LM and V108I) and NRTI (K65R, M184I, and D67N). Conclusion The study affirms the usefulness of genomic sequencing for drug resistance testing in HIV. It further shows that Sanger sequencing alone may not be adequate to detect mutations and that NGS capacity should be developed and deployed in the Ghanaian clinical settings for patients living with HIV.
Collapse
Affiliation(s)
- Pious Appiah
- Department of Medical Microbiology, Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Gaspah Gbassana
- Department of Laboratory Medicine, A. M. Dogliotti School of Medicine, University of Liberia, Monrovia, Liberia
| | - Mildred Adusei-Poku
- Department of Medical Microbiology, Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Billal Musah Obeng
- Department of Medical Microbiology, Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- Immunovirology & Pathogenesis Program, Kirby Institute, University of New South Wales, Australia
| | - Kwabena Obeng Duedu
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- College of Life Sciences, Birmingham City University, City South Campus, Birmingham, B15 3TN, United Kingdom
| | | |
Collapse
|
3
|
Doughan A, Adingo W, Salifu SP. RNA-seq research landscape in Africa: systematic review reveals disparities and opportunities. Eur J Med Res 2023; 28:244. [PMID: 37480073 PMCID: PMC10362609 DOI: 10.1186/s40001-023-01206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
RNA sequencing has emerged as the standard method for transcriptome profiling of several human diseases. We performed a systematic review detailing the state of RNA-seq analyses in Africa from its inception till February 2022. Our goal was to provide an update on the state of RNA-seq analyses in Africa, including research gaps, funding information, participants information, authorship and collaborations. Following the PRISMA guidelines, we performed an exhaustive literature search for RNA-seq studies conducted in Africa, using PubMed, Scopus and Academic Search Complete (EBSCOhost). The output was exported to Endnote X9 for analyses. The initial literature search yielded 10,369 articles spread across PubMed (4916), Scopus (4847) and EBSCOhost (580). By applying our exclusion criteria, 28 full-text articles remained and were thoroughly analyzed. Overall, 17 human diseases were studied, including cancers (10/28), infectious disease (4/28), parasitic disease (4/28), autoimmune disorders (2/28) and neglected tropical diseases (2/28). Majority of the articles were published in PLoS Pathogens, BioMed Central and Nature. The National Institutes of Health (42.4%), the Bill & Melinda Gates Foundation (7.5%) and the Wellcome Trust (7.5%) were the top funders of the research studies. Eleven African countries contributed to the participant group, with 57% located in Eastern Africa, 23.1% from Western and 16.7% from Southern Africa. The extremely low number of RNA-seq research studies in Africa is worrying and calls for an immediate investment in research by the African governments. The funding agencies and institutional review boards should also ensure that African collaborators are treated equitably in the course of the research projects.
Collapse
Affiliation(s)
- Albert Doughan
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Wisdom Adingo
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samson Pandam Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.
| |
Collapse
|
4
|
Cancela F, Marandino A, Panzera Y, Betancour G, Mirazo S, Arbiza J, Ramos N. A combined approach of rolling-circle amplification-single site restriction endonuclease digestion followed by next generation sequencing to characterize the whole genome and intra-host variants of human Torque teno virus. Virus Res 2023; 323:198974. [PMID: 36272542 PMCID: PMC10194382 DOI: 10.1016/j.virusres.2022.198974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Torque Teno Virus (TTV) was initially associated with post-transfusion hepatitis, but growing evidence of its ubiquity in humans is compatible to no apparent clinical significance. TTV is a small non-enveloped virus with a circular single-negative-stranded DNA genome, belonging to the Anelloviridae family. Currently, TTVs are divided in seven phylogenetic groups and are further classified into 21 species. Studies about diversity of TTV in different conditions are receiving increasing interest and in this sense, sequencing of whole genomes for better genetic characterization becomes even more important. Since its discovery in 1997, few TTV complete genomes have been reported worldwide. This is probably due, among other reasons, to the great genetic heterogeneity among TTV strains that prevents its amplification and sequencing by conventional PCR and cloning methods. In addition, although metagenomics approach is useful in these cases, it remains a challenging tool for viromic analysis. With the aim of contributing to the expansion of the TTV whole genomes dataset and to study intra-host variants, we employed a methodology that combined a rolling-circle amplification approach followed by EcoRI digestion, generating a DNA fragment of ∼4Kb consistent with TTV genome length which was sequenced by Illumina next generation sequencing. A genogroup 3 full-length consensus TTV genome was obtained and co-infection with other species (at least those with a single EcoRI cleavage site) was not identified. Additionally, bioinformatics analysis allowed to identify the spectrum of TTV intra-host variants which provides evidence of a complex evolution dynamics of these DNA circular viruses, similarly to what occurs with RNA viruses.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Gabriela Betancour
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Juan Arbiza
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
5
|
Novitsky V, Nyandiko W, Vreeman R, DeLong AK, Manne A, Scanlon M, Ngeresa A, Aluoch J, Sang F, Ashimosi C, Jepkemboi E, Orido M, Hogan JW, Kantor R. Added Value of Next Generation over Sanger Sequencing in Kenyan Youth with Extensive HIV-1 Drug Resistance. Microbiol Spectr 2022; 10:e0345422. [PMID: 36445146 PMCID: PMC9769539 DOI: 10.1128/spectrum.03454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
HIV-1 drug resistance testing in children and adolescents in low-resource settings is both important and challenging. New (more sensitive) drug resistance testing technologies may improve clinical care, but evaluation of their added value is limited. We assessed the potential added value of using next-generation sequencing (NGS) over Sanger sequencing for detecting nucleoside reverse transcriptase inhibitor (NRTI) and nonnucleoside reverse transcriptase inhibitor (NNRTI) drug resistance mutations (DRMs). Participants included 132 treatment-experienced Kenyan children and adolescents with diverse HIV-1 subtypes and with already high levels of drug resistance detected by Sanger sequencing. We examined overall and DRM-specific resistance and its predicted impact on antiretroviral therapy and evaluated the discrepancy between Sanger sequencing and six NGS thresholds (1%, 2%, 5%, 10%, 15%, and 20%). Depending on the NGS threshold, agreement between the two technologies was 62% to 88% for any DRM, 83% to 92% for NRTI DRMs, and 73% to 94% for NNRTI DRMs, with more DRMs detected at low NGS thresholds. NGS identified 96% to 100% of DRMs detected by Sanger sequencing, while Sanger identified 83% to 99% of DRMs detected by NGS. Higher discrepancy between technologies was associated with higher DRM prevalence. Even in this resistance-saturated cohort, 12% of participants had higher, potentially clinically relevant predicted resistance detected only by NGS. These findings, in a young, vulnerable Kenyan population with diverse HIV-1 subtypes and already high resistance levels, suggest potential benefits of more sensitive NGS over existing technology. Good agreement between technologies at high NGS thresholds supports their interchangeable use; however, the significance of DRMs identified at lower thresholds to patient care should be explored further. IMPORTANCE HIV-1 drug resistance in children and adolescents remains a significant problem in countries facing the highest burden of the HIV epidemic. Surveillance of HIV-1 drug resistance in children and adolescents is an important public health strategy, particularly in resource-limited settings, and yet, it is limited due mostly to cost and infrastructure constraints. Whether newer and more sensitive next-generation sequencing (NGS) adds substantial value beyond traditional Sanger sequencing in detecting HIV-1 drug resistance in real life settings remains an open and debatable question. In this paper, we attempt to address this issue by performing a comprehensive comparison of drug resistance identified by Sanger sequencing and six NGS thresholds. We conducted this study in a well-characterized, vulnerable cohort of children and adolescents living with diverse HIV-1 subtypes in Kenya and, importantly, failing antiretroviral therapy (ART) with already extensive drug resistance. Our findings suggest a potential added value of NGS over Sanger even in this unique cohort.
Collapse
Affiliation(s)
- V. Novitsky
- Brown University, Providence, Rhode Island, USA
| | - W. Nyandiko
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Moi University, Eldoret, Kenya
| | - R. Vreeman
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Arnhold Institute for Global Health, New York, New York, USA
| | | | - A. Manne
- Brown University, Providence, Rhode Island, USA
| | - M. Scanlon
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Arnhold Institute for Global Health, New York, New York, USA
| | - A. Ngeresa
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - J. Aluoch
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - F. Sang
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - C. Ashimosi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - E. Jepkemboi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - M. Orido
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
| | - J. W. Hogan
- Brown University, Providence, Rhode Island, USA
| | - R. Kantor
- Brown University, Providence, Rhode Island, USA
| | - for the RESistance in a PEdiatric CohorT (RESPECT) Study
- Brown University, Providence, Rhode Island, USA
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Moi University, Eldoret, Kenya
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Arnhold Institute for Global Health, New York, New York, USA
| |
Collapse
|
6
|
Ayitewala A, Ssewanyana I, Kiyaga C. Next generation sequencing based in-house HIV genotyping method: validation report. AIDS Res Ther 2021; 18:64. [PMID: 34600538 PMCID: PMC8487565 DOI: 10.1186/s12981-021-00390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background HIV genotyping has had a significant impact on the care and treatment of HIV/AIDS. At a clinical level, the test guides physicians on the choice of treatment regimens. At the surveillance level, it informs policy on consolidated treatment guidelines and microbial resistance control strategies. Until recently, the conventional test has utilized the Sanger sequencing (SS) method. Unlike Next Generation Sequencing (NGS), SS is limited by low data throughput and the inability of detecting low abundant drug-resistant variants. NGS can improve sensitivity and quantitatively identify low-abundance variants; in addition, it has the potential to improve efficiency as well as lowering costs when samples are batched. Despite the NGS benefits, its utilization in clinical drug resistance profiling is faced with mixed reactions. These are largely based on a lack of a consensus regarding the quality control strategy. Nonetheless, transitional views suggest validating the method against the gold-standard SS. Therefore, we present a validation report of an NGS-based in-house HIV genotyping method against the SS method in Uganda. Results Since there were no established proficiency test panels for NGS-based HIV genotyping, 15 clinical plasma samples for routine care were utilized. The use of clinical samples allowed for accuracy and precision studies. The workflow involved four main steps; viral RNA extraction, targeted amplicon generation, amplicon sequencing and data analysis. Accuracy of 98% with an average percentage error of 3% was reported for the NGS based assay against the SS platform demonstrating similar performance. The coefficient of variation (CV) findings for both the inter-run and inter-personnel precision showed no variability (CV ≤ 0%) at the relative abundance of ≥ 20%. For both inter-run and inter-personnel, a variation that affected the precision was observed at 1% frequency. Overall, for all the frequencies, CV registered a small range of (0–2%). Conclusion The NGS-based in-house HIV genotyping method fulfilled the minimum requirements that support its utilization for drug resistance profiling in a clinical setting of a low-income country. For more inclusive quality control studies, well-characterized wet panels need to be established. Supplementary Information The online version contains supplementary material available at 10.1186/s12981-021-00390-8.
Collapse
|
7
|
Zhang Y, Ma L. Application of high-throughput sequencing technology in HIV drug resistance detection. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Application of next generation sequencing in HIV drug resistance studies in Africa, 2005–2019: A systematic review. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Knyazev S, Hughes L, Skums P, Zelikovsky A. Epidemiological data analysis of viral quasispecies in the next-generation sequencing era. Brief Bioinform 2021; 22:96-108. [PMID: 32568371 PMCID: PMC8485218 DOI: 10.1093/bib/bbaa101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023] Open
Abstract
The unprecedented coverage offered by next-generation sequencing (NGS) technology has facilitated the assessment of the population complexity of intra-host RNA viral populations at an unprecedented level of detail. Consequently, analysis of NGS datasets could be used to extract and infer crucial epidemiological and biomedical information on the levels of both infected individuals and susceptible populations, thus enabling the development of more effective prevention strategies and antiviral therapeutics. Such information includes drug resistance, infection stage, transmission clusters and structures of transmission networks. However, NGS data require sophisticated analysis dealing with millions of error-prone short reads per patient. Prior to the NGS era, epidemiological and phylogenetic analyses were geared toward Sanger sequencing technology; now, they must be redesigned to handle the large-scale NGS datasets and properly model the evolution of heterogeneous rapidly mutating viral populations. Additionally, dedicated epidemiological surveillance systems require big data analytics to handle millions of reads obtained from thousands of patients for rapid outbreak investigation and management. We survey bioinformatics tools analyzing NGS data for (i) characterization of intra-host viral population complexity including single nucleotide variant and haplotype calling; (ii) downstream epidemiological analysis and inference of drug-resistant mutations, age of infection and linkage between patients; and (iii) data collection and analytics in surveillance systems for fast response and control of outbreaks.
Collapse
|
10
|
Noguera-Julian M, Lee ER, Shafer RW, Kantor R, Ji H. Dry Panels Supporting External Quality Assessment Programs for Next Generation Sequencing-Based HIV Drug Resistance Testing. Viruses 2020; 12:v12060666. [PMID: 32575676 PMCID: PMC7354622 DOI: 10.3390/v12060666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
External quality assessment (EQA) is a keystone element in the validation and implementation of next generation sequencing (NGS)-based HIV drug resistance testing (DRT). Software validation and evaluation is a critical element in NGS EQA programs. While the development, sharing, and adoption of wet lab protocols is coupled with the increasing access to NGS technology worldwide, rendering it easy to produce NGS data for HIV-DRT, bioinformatic data analysis remains a bottleneck for most of the diagnostic laboratories. Several computational tools have been made available, via free or commercial sources, to automate the conversion of raw NGS data into an actionable clinical report. Although different software platforms yield equivalent results when identical raw NGS datasets are analyzed for variations at higher abundance, discrepancies arise when variations at lower frequencies are considered. This implies that validation and performance assessment of the bioinformatics tools applied in NGS HIV-DRT is critical, and the origins of the observed discrepancies should be determined. Well-characterized reference NGS datasets with ground truth on the genotype composition at all examined loci and the exact frequencies of HIV variations they may harbor, so-called dry panels, would be essential in such cases. The strategic design and construction of such panels are challenging but imperative tasks in support of EQA programs for NGS-based HIV-DRT and the validation of relevant bioinformatics tools. Here, we present criteria that can guide the design of such dry panels, which were discussed in the Second International Winnipeg Symposium themed for EQA strategies for NGS HIVDR assays.
Collapse
Affiliation(s)
- Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, s/n, Catalonia, 08196 Badalona, Spain
- Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic, Central University of Catalonia, Can Baumann. Ctra. de Roda, 70, 08500 Vic, Spain
- Correspondence:
| | - Emma R. Lee
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (E.R.L.); (H.J.)
| | | | - Rami Kantor
- Division of Infectious Diseases, Brown University Alpert Medical School, Providence, RI 02903, USA;
| | - Hezhao Ji
- National HIV and Retrovirology Laboratories, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (E.R.L.); (H.J.)
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
11
|
Howison M, Coetzer M, Kantor R. Measurement error and variant-calling in deep Illumina sequencing of HIV. Bioinformatics 2020; 35:2029-2035. [PMID: 30407489 DOI: 10.1093/bioinformatics/bty919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION Next-generation deep sequencing of viral genomes, particularly on the Illumina platform, is increasingly applied in HIV research. Yet, there is no standard protocol or method used by the research community to account for measurement errors that arise during sample preparation and sequencing. Correctly calling high and low-frequency variants while controlling for erroneous variants is an important precursor to downstream interpretation, such as studying the emergence of HIV drug-resistance mutations, which in turn has clinical applications and can improve patient care. RESULTS We developed a new variant-calling pipeline, hivmmer, for Illumina sequences from HIV viral genomes. First, we validated hivmmer by comparing it to other variant-calling pipelines on real HIV plasmid datasets. We found that hivmmer achieves a lower rate of erroneous variants, and that all methods agree on the frequency of correctly called variants. Next, we compared the methods on an HIV plasmid dataset that was sequenced using Primer ID, an amplicon-tagging protocol, which is designed to reduce errors and amplification bias during library preparation. We show that the Primer ID consensus exhibits fewer erroneous variants compared to the variant-calling pipelines, and that hivmmer more closely approaches this low error rate compared to the other pipelines. The frequency estimates from the Primer ID consensus do not differ significantly from those of the variant-calling pipelines. AVAILABILITY AND IMPLEMENTATION hivmmer is freely available for non-commercial use from https://github.com/kantorlab/hivmmer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mark Howison
- Watson Institute for International and Public Affairs
| | - Mia Coetzer
- Division of Infectious Diseases, The Alpert Medical School, Brown University, Providence, RI, USA
| | - Rami Kantor
- Division of Infectious Diseases, The Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
MiDRM pol: A High-Throughput Multiplexed Amplicon Sequencing Workflow to Quantify HIV-1 Drug Resistance Mutations against Protease, Reverse Transcriptase, and Integrase Inhibitors. Viruses 2019; 11:v11090806. [PMID: 31480341 PMCID: PMC6784143 DOI: 10.3390/v11090806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 01/01/2023] Open
Abstract
The detection of drug resistance mutations (DRMs) in minor viral populations is of potential clinical importance. However, sophisticated computational infrastructure and competence for analysis of high-throughput sequencing (HTS) data lack at most diagnostic laboratories. Thus, we have proposed a new pipeline, MiDRMpol, to quantify DRM from the HIV-1 pol region. The gag-vpu region of 87 plasma samples from HIV-infected individuals from three cohorts was amplified and sequenced by Illumina HiSeq2500. The sequence reads were adapter-trimmed, followed by analysis using in-house scripts. Samples from Swedish and Ethiopian cohorts were also sequenced by Sanger sequencing. The pipeline was validated against the online tool PASeq (Polymorphism Analysis by Sequencing). Based on an error rate of <1%, a value of >1% was set as reliable to consider a minor variant. Both pipelines detected the mutations in the dominant viral populations, while discrepancies were observed in minor viral populations. In five HIV-1 subtype C samples, minor mutations were detected at the <5% level by MiDRMpol but not by PASeq. MiDRMpol is a computationally as well as labor efficient bioinformatics pipeline for the detection of DRM from HTS data. It identifies minor viral populations (<20%) of DRMs. Our method can be incorporated into large-scale surveillance of HIV-1 DRM.
Collapse
|
13
|
Hani L, Chaillon A, Nere ML, Ruffin N, Alameddine J, Salmona M, Lopez Zaragoza JL, Smith DM, Schwartz O, Lelièvre JD, Delaugerre C, Lévy Y, Seddiki N. Proliferative memory SAMHD1low CD4+ T cells harbour high levels of HIV-1 with compartmentalized viral populations. PLoS Pathog 2019; 15:e1007868. [PMID: 31220191 PMCID: PMC6605680 DOI: 10.1371/journal.ppat.1007868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/02/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022] Open
Abstract
We previously reported the presence of memory CD4+ T cells that express low levels of SAMHD1 (SAMHD1low) in peripheral blood and lymph nodes from both HIV-1 infected and uninfected individuals. These cells are enriched in Th17 and Tfh subsets, two populations known to be preferentially targeted by HIV-1. Here we investigated whether SAMHD1low CD4+ T-cells harbour replication-competent virus and compartimentalized HIV-1 genomes. We sorted memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected patients on anti-retroviral therapy (c-ART) and performed HIV-1 DNA quantification, ultra-deep-sequencing of partial env (C2/V3) sequences and phenotypic characterization of the cells. We show that SAMHD1low cells include novel Th17 CCR6+ subsets that lack CXCR3 and CCR4 (CCR6+DN). There is a decrease of the % of Th17 in SAMHD1low compartment in infected compared to uninfected individuals (41% vs 55%, p<0.05), whereas the % of CCR6+DN increases (7.95% vs 3.8%, p<0.05). Moreover, in HIV-1 infected patients, memory SAMHD1low cells harbour high levels of HIV-1 DNA compared to memory SAMHD1+ cells (4.5 vs 3.8 log/106cells, respectively, p<0.001), while naïve SAMHD1+ showed significantly lower levels (3.1 log/106cells, p<0.0001). Importantly, we show that SAMHD1low cells contain p24-producing cells. Moreover, phylogenetic analyses revealed well-segregated HIV-1 DNA populations with compartmentalization between SAMHD1low and SAMHD1+ memory cells, and limited viral exchange. As expected, the % of Ki67+ cells was significantly higher in SAMHD1low compared to SAMHD1+ cells. There was positive association between levels of HIV-1 DNA and Ki67+ in memory SAMHD1low cells, but not in memory and naïve SAMHD1+ CD4+ T-cells. Altogether, these data suggest that proliferative memory SAMHD1low cells contribute to viral persistence. In our previous results we reported that memory CD4+ T cells expressing low levels of SAMHD1 (SAMHD1low) are present in peripheral blood and lymph nodes from HIV-1 infected and uninfected individuals. These cells were enriched in Th17 and Tfh, two populations targeted by HIV-1. Here we used purified memory CD4+CD45RO+SAMHD1low, CD4+CD45RO+SAMHD1+ and naive CD4+CD45RO-SAMHD1+ cells from HIV-1-infected and treated patients to perform cell-associated HIV-1 DNA quantification, p24-producing cells detection, ultra-deep-sequencing of partial env (C2/V3) HIV-1 DNA and further phenotypic characterization. Our results demonstrate that (i) Th17 and CCR6+DN-expressing transcriptional signature of early Th17, two major populations that are susceptible to HIV-1 infection, are present in SAMHD1low cells, and while the former decreased significantly in c-ART HIV-1 infected compared to uninfected individuals, the latter significantly increased; (ii) memory SAMHD1low cells from c-ART patients carry high levels of HIV-1 DNA compared to SAMHD1+ cells, and these levels positively and significantly correlated with Ki67 expression; (iii) memory SAMHD1low cells from patients harbour p24-producing cells; (iv) phylogenetic analyses revealed well-segregated HIV-1 DNA populations with significant compartmentalization between SAMHD1low and SAMHD1+ cells and limited viral exchange. Our data demonstrate that memory SAMHD1low cells contribute to HIV-1 persistence.
Collapse
Affiliation(s)
- Lylia Hani
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Antoine Chaillon
- Vaccine Research Institute (VRI), Créteil, France
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Marie-Laure Nere
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Nicolas Ruffin
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Joudy Alameddine
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
| | - Maud Salmona
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - José-Luiz Lopez Zaragoza
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, CA, United States of America
| | - Olivier Schwartz
- Vaccine Research Institute (VRI), Créteil, France
- Unité Virus et Immunité, Département de Virologie, Institut Pasteur, Paris, France
| | - Jean-Daniel Lelièvre
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Constance Delaugerre
- Vaccine Research Institute (VRI), Créteil, France
- Hôpital Saint Louis, INSERM U944, Université de Paris, Paris, France
| | - Yves Lévy
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- AP-HP, Hôpital H. Mondor—A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Nabila Seddiki
- Inserm, U955 Equipe 16, Créteil, France
- Université Paris Est, Faculté de médecine, Créteil, France
- Vaccine Research Institute (VRI), Créteil, France
- * E-mail:
| |
Collapse
|
14
|
de Almeida SM, Oliveira MF, Chaillon A, Rotta I, Ribeiro CE, de Pereira AP, Smith D, Letendre S, Ellis RJ. Transient and asymptomatic meningitis in human immunodeficiency virus-1 subtype C: a case study of genetic compartmentalization and biomarker dynamics. J Neurovirol 2018; 24:786-796. [PMID: 30194587 PMCID: PMC6279585 DOI: 10.1007/s13365-018-0672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) genetic compartmentalization is defined as genetic differences in HIV in different tissue compartments or subcompartments that characterize viral quasispecies. This descriptive, longitudinal study assessed the dynamics of inflammation, humoral immune response, blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier, as well as neuronal injury biomarkers in serially obtained CSF and serum samples from an antiretroviral (ARV) therapy-naïve patient with HIV-1 subtype C with CSF HIV genetic compartmentalization that resolved spontaneously without ARV treatment. The first CSF sample showed an increase in white blood cell (WBC) count (382 cells/mm3) and a marked increase in the levels of inflammatory cytokines and chemokines, including tumor necrosis factor (TNF)α, interleukin (IL)-10, IP-10, and regulated on activation, normal T cell expressed and secreted (RANTES), which raise the suspicion of dual infection. Serum sample analysis showed all cytokine levels to be normal, with only IP-10 slightly increased. These results corroborate the hypothesis that the CNS immunologic response in a patient with HIV infection was independent of the systemic immunologic response. The patient also had persistently elevated levels of sCD14, neopterin, and β2M, which were strongly suggestive of persistent CNS immunologic stimulation. This report describes a patient with HIV subtype C who developed a transient episode of asymptomatic HIV meningitis with compartmentalization of HIV in the CSF that resolved independently of ARV therapy. Extensive CSF studies were performed as part of an ongoing longitudinal study, which revealed CNS immune abnormalities. This case presents evidence of HIV-1 subtype C neurotropism and compartmentalization.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
- Hospital de Clínicas, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, UFPR, 280, Curitiba, PR, 80060-240, Brazil.
| | | | | | - Indianara Rotta
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Clea E Ribeiro
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Davey Smith
- University of California, San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
15
|
Silver N, Paynter M, McAllister G, Atchley M, Sayir C, Short J, Winner D, Alouani DJ, Sharkey FH, Bergefall K, Templeton K, Carrington D, Quiñones-Mateu ME. Characterization of minority HIV-1 drug resistant variants in the United Kingdom following the verification of a deep sequencing-based HIV-1 genotyping and tropism assay. AIDS Res Ther 2018; 15:18. [PMID: 30409215 PMCID: PMC6223033 DOI: 10.1186/s12981-018-0206-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The widespread global access to antiretroviral drugs has led to considerable reductions in morbidity and mortality but, unfortunately, the risk of virologic failure increases with the emergence, and potential transmission, of drug resistant viruses. Detecting and quantifying HIV-1 drug resistance has therefore become the standard of care when designing new antiretroviral regimens. The sensitivity of Sanger sequencing-based HIV-1 genotypic assays is limited by its inability to identify minority members of the quasispecies, i.e., it only detects variants present above ~ 20% of the viral population, thus, failing to detect minority variants below this threshold. It is clear that deep sequencing-based HIV-1 genotyping assays are an important step change towards accurately monitoring HIV-infected individuals. METHODS We implemented and verified a clinically validated HIV-1 genotyping assay based on deep sequencing (DEEPGEN™) in two clinical laboratories in the United Kingdom: St. George's University Hospitals Healthcare NHS Foundation Trust (London) and at NHS Lothian (Edinburgh), to characterize minority HIV-1 variants in 109 plasma samples from ART-naïve or -experienced individuals. RESULTS Although subtype B HIV-1 strains were highly prevalent (44%, 48/109), most individuals were infected with non-B subtype viruses (i.e., A1, A2, C, D, F1, G, CRF02_AG, and CRF01_AE). DEEPGEN™ was able to accurately detect drug resistance-associated mutations not identified using standard Sanger sequencing-based tests, which correlated significantly with patient's antiretroviral treatment histories. A higher proportion of minority PI-, NRTI-, and NNRTI-resistance mutations was detected in NHS Lothian patients compared to individuals from St. George's, mainly M46I/L and I50 V (associated with PIs), D67 N, K65R, L74I, M184 V/I, and K219Q (NRTIs), and L100I (NNRTIs). Interestingly, we observed an inverse correlation between intra-patient HIV-1 diversity and CD4+ T cell counts in the NHS Lothian patients. CONCLUSIONS This is the first study evaluating the transition, training, and implementation of DEEPGEN™ between three clinical laboratories in two different countries. More importantly, we were able to characterize the HIV-1 drug resistance profile (including minority variants), coreceptor tropism, subtyping, and intra-patient viral diversity in patients from the United Kingdom, providing a rigorous foundation for basing clinical decisions on highly sensitive and cost-effective deep sequencing-based HIV-1 genotyping assays in the country.
Collapse
|
16
|
Xiao P, Han J, Zhang Y, Li C, Guo X, Wen S, Tian M, Li Y, Wang M, Liu H, Ren J, Zhou H, Lu H, Jin N. Metagenomic Analysis of Flaviviridae in Mosquito Viromes Isolated From Yunnan Province in China Reveals Genes From Dengue and Zika Viruses. Front Cell Infect Microbiol 2018; 8:359. [PMID: 30406038 PMCID: PMC6207848 DOI: 10.3389/fcimb.2018.00359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
More than 6,000 mosquitoes of six species from six sites were collected and tested for their virome using metagenomics sequencing and bioinformatic analysis. The identified viral sequences belonged to more than 50 viral families. The results were verified by PCR of selected viruses in all mosquitoes, followed by phylogenetic analysis. In the present study, we identified the partial dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) sequences in mosquitoes. Metagenomic analysis and the PCR amplification revealed three DENV sequences, one of which encodes a partial envelope protein. Two ZIKV sequences both encoding partial nonstructural protein 3 and one JEV sequence encoding the complete envelope protein were identified. There was variability in the viral titers of the newly isolated virus JEV-China/YN2016-1 of different passage viruses. The newly identified Zika virus gene from ZIKV-China/YN2016-1 was an Asian genotype and shared the highest nucleotide sequence identity (97.1%) with a ZIKV sequence from Thailand isolated in 2004. Phylogenetic analysis of ZIKV-China/YN2016-1 and ZIKV-China/YN2016-2 with known Flavivirus genes indicated that ZIKV has propagated in Yunnan province, China.
Collapse
Affiliation(s)
- Pengpeng Xiao
- Yanbian University Medical College, Yanji, China.,Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Jicheng Han
- Yanbian University Medical College, Yanji, China.,Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Chenghui Li
- Yanbian University Medical College, Yanji, China.,Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Xiaofang Guo
- Yunnan Institute of Parasitic Diseases, Simao, China
| | - Shubo Wen
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Mingyao Tian
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiquan Li
- Yanbian University Medical College, Yanji, China.,Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Maopeng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Institute of Virology, Wenzhou University, Wenzhou, China
| | - Hao Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jingqiang Ren
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Division of Economic Animal Epidemic, Institute of Special Economic Animal and Plant Sciences, Changchun, China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Simao, China
| | - Huijun Lu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ningyi Jin
- Yanbian University Medical College, Yanji, China.,Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
17
|
Xiao P, Li C, Zhang Y, Han J, Guo X, Xie L, Tian M, Li Y, Wang M, Liu H, Ren J, Zhou H, Lu H, Jin N. Metagenomic Sequencing From Mosquitoes in China Reveals a Variety of Insect and Human Viruses. Front Cell Infect Microbiol 2018; 8:364. [PMID: 30406041 PMCID: PMC6202873 DOI: 10.3389/fcimb.2018.00364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
We collected 8,700 mosquitoes in three sites in China, which belonged to seven species. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The abundant viral sequences were detected and annotated belonging to more than 50 viral taxonomic families. The results were verified by PCR, followed by phylogenetic analysis. In the present study, we identified partial viral genes of dengue virus (DENV), a novel circovirus (CCV), densovirus (DNV), Japanese encephalitis virus (JEV), and Wuhan mosquito virus (WMV) in mosquitoes. Metagenomic analysis and PCR amplification revealed three DENV sequences, which were as homologous to the NS3 gene of DENV from Singapore isolated in 2005, with at least 91% nucleotide (nt) identity. Seven fragments of JEV encoding structural proteins were identified belonging to genotype I. They all shared high homology with structural protein genes of JEV isolated from Laos in 2009. The production of infectious virus particles of the newly isolated virus YunnanJEV2017-4 increased after passage from the BHK-21 cell line to the Vero cell line. Novel circovirus-related genes were identified and as being related to an unnamed gene of a mosquito circovirus (MCCV) sequence from the USA isolated in 2011, with at least 41% nt identity: this distant relationship suggests that the parent virus might belong to a novel circovirus genus. Additionally, numerous known viruses and some unknown viruses were also detected in mosquitoes from Yunnan province, China, which will be tested for propagation.
Collapse
Affiliation(s)
- Pengpeng Xiao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Yanbian University Medical College, Yanji, China.,Institute of Virology, Wenzhou University, Wenzhou, China
| | - Chenghui Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Yanbian University Medical College, Yanji, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Jicheng Han
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Yanbian University Medical College, Yanji, China
| | - Xiaofang Guo
- Yunnan Institute of Parasitic Diseases, Simao, China
| | - Lv Xie
- Yunnan Institute of Parasitic Diseases, Simao, China
| | - Mingyao Tian
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiquan Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Yanbian University Medical College, Yanji, China
| | - Maopeng Wang
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Hao Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jingqiang Ren
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Division of Economic Animal Epidemic, Institute of Special Economic Animal and Plant Sciences, Changchun, China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Simao, China
| | - Huijun Lu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ningyi Jin
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Yanbian University Medical College, Yanji, China
| |
Collapse
|
18
|
Evaluating the accuracy and sensitivity of detecting minority HIV-1 populations by Illumina next-generation sequencing. J Virol Methods 2018; 261:40-45. [PMID: 30086382 DOI: 10.1016/j.jviromet.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/25/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
Abstract
The accuracy and sensitivity of deep sequencing were assessed using viral standards (pNL4-3 and pLAI.2) of both DNA and RNA. The sequencing accuracy did not depend on the type of nucleic acid, but critically depended on the number of reads and threshold of sensitivity to minor viral populations. With coverage of more than 236 reads, the accuracy of viral RNA sequencing was equal to or exceeded 99.9%, with a sensitivity threshold to minor nucleotides of 20%. When the sensitivity threshold was below 1%, reduced accuracy dynamics were clearly visible even when the coverage was massive (more than 9.000 reads). It was found that the floating sensitivity threshold allowed the sequencing accuracy to be maintained at an acceptable level in cases of low coverage (less than 1.500-2.000) of reads. These results indicate the quality that can be expected with a specific number of reads and sensitivity threshold. Deep sequencing is a very powerful tool that can significantly improve the value of study results, but despite its superior performance, it should be used with caution regarding its sensitivity to minor populations below 1%.
Collapse
|
19
|
Fokam J, Bellocchi MC, Armenia D, Nanfack AJ, Carioti L, Continenza F, Takou D, Temgoua ES, Tangimpundu C, Torimiro JN, Koki PN, Fokunang CN, Cappelli G, Ndjolo A, Colizzi V, Ceccherini-Silberstein F, Perno CF, Santoro MM. Next-generation sequencing provides an added value in determining drug resistance and viral tropism in Cameroonian HIV-1 vertically infected children. Medicine (Baltimore) 2018; 97:e0176. [PMID: 29595649 PMCID: PMC5895385 DOI: 10.1097/md.0000000000010176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
With limited and low-genetic barrier drugs used for the prevention of mother-to-child transmission (PMTCT) of HIV in sub-Saharan Africa, vertically transmitted HIV-1 drug-resistance (HIVDR) is concerning and might prompt optimal pediatric strategies.The aim of this study was to ascertain HIVDR and viral-tropism in majority and minority populations among Cameroonian vertically infected children.A comparative analysis among 18 HIV-infected children (7 from PMTCT-exposed mothers and 11 from mothers without PMTCT-exposure) was performed. HIVDR and HIV-1 co-receptor usage was evaluated by analyzing sequences obtained by both Sanger sequencing and ultra-deep 454-pyrosequencing (UDPS), set at 1% threshold.Overall, median (interquartile range) age, viremia, and CD4 count were 6 (4-10) years, 5.5 (4.9-6.0) log10 copies/mL, and 526 (282-645) cells/mm, respectively. All children had wild-type viruses through both Sanger sequencing and UDPS, except for 1 PMTCT-exposed infant harboring minority K103N (8.31%), born to a mother exposed to AZT+3TC+NVP. X4-tropic viruses were found in 5 of 15 (33.3%) children (including 2 cases detected only by UDPS). Rate of X4-tropic viruses was 0% (0/6) below 5 years (also as minority species), and became relatively high above 5 years (55.6% [5/9], P = .040. X4-tropic viruses were higher with CD4 ≤15% (4/9 [44.4%]) versus CD4 >15% (1/6 [16.7%], P = .580); similarly for CD4 ≤200 (3/4 [75%]) versus CD4 >200 (2/11 [18.2%] cells/mm, P = .077.NGS has the ability of excluding NRTI- and NNRTI-mutations as minority species in all but 1 children, thus supporting the safe use of these drug-classes in those without such mutations, henceforth sparing ritonavir-boosted protease inhibitors or integrase inhibitors for the few remaining cases. In children under five years, X4-tropic variants would be rare, suggesting vertical-transmission with CCR5-tropic viruses and possible maraviroc usage at younger ages.
Collapse
Affiliation(s)
- Joseph Fokam
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
- University of Rome Tor Vergata, Rome, Italy
- University of Yaounde I
- National HIV Drug Resistance Prevention and Surveillance Working Group, Yaounde, Cameroon
| | | | | | - Aubin J. Nanfack
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
- New York University School of Medicine, New York, NY
| | | | - Fabio Continenza
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Desire Takou
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | - Edith S. Temgoua
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | - Charlotte Tangimpundu
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | - Judith N. Torimiro
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
- University of Yaounde I
- National HIV Drug Resistance Prevention and Surveillance Working Group, Yaounde, Cameroon
| | - Paul N. Koki
- University of Yaounde I
- Mother-Child Center, Chantal BIYA Foundation, Yaounde
| | | | | | - Alexis Ndjolo
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
- University of Yaounde I
| | - Vittorio Colizzi
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
- University of Rome Tor Vergata, Rome, Italy
- UNESCO Board of Multidisciplinary Biotechnology, Rome, Italy
| | | | - Carlo-Federico Perno
- Chantal Biya International Reference Centre for research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
- University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
20
|
Size, Composition, and Evolution of HIV DNA Populations during Early Antiretroviral Therapy and Intensification with Maraviroc. J Virol 2018; 92:JVI.01589-17. [PMID: 29142136 DOI: 10.1128/jvi.01589-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
Residual viremia is common during antiretroviral therapy (ART) and could be caused by ongoing low-level virus replication or by release of viral particles from infected cells. ART intensification should impact ongoing viral propagation but not virion release. Eighteen acutely infected men were enrolled in a randomized controlled trial and monitored for a median of 107 weeks. Participants started ART with (n = 9) or without (n = 9) intensification with maraviroc (MVC) within 90 days of infection. Levels of HIV DNA and cell-free RNA were quantified by droplet digital PCR. Deep sequencing of C2-V3 env, gag, and pol (454 Roche) was performed on longitudinally collected plasma and peripheral blood mononuclear cell (PBMC) samples while on ART. Sequence data were analyzed for evidence of evolution by (i) molecular diversity analysis, (ii) nonparametric test for panmixia, and (iii) tip date randomization within a Bayesian framework. There was a longitudinal decay of HIV DNA after initiation of ART with no difference between MVC intensification groups (-0.08 ± 0.01 versus -0.09 ± 0.01 log10 copies/week in MVC+ versus MVC- groups; P = 0.62). All participants had low-level residual viremia (median, 2.8 RNA copies/ml). Across participants, medians of 56 (interquartile range [IQR], 36 to 74), 29 (IQR, 25 to 35), and 40 (IQR, 31 to 54) haplotypes were generated for env, gag, and pol regions, respectively. There was no clear evidence of viral evolution during ART and no difference in viral diversity or population structure from individuals with or without MVC intensification. Further efforts focusing on elucidating the mechanism(s) of viral persistence in various compartments using recent sequencing technologies are still needed, and potential low-level viral replication should always be considered in cure strategies.IMPORTANCE Residual viremia is common among HIV-infected people on ART. It remains controversial if this viremia is a consequence of propagating infection. We hypothesized that molecular evolution would be detectable during viral propagation and that therapy intensified with the entry inhibitor maraviroc would demonstrate less evolution. We performed a randomized double-blinded treatment trial with 18 acutely infected men (standard ART versus standard ART plus maraviroc). From longitudinally collected blood plasma and cells, levels of HIV DNA and cell-free HIV RNA were quantified by droplet digital PCR, and HIV DNA (env, gag, and pol coding regions) was deep sequenced (454 Roche). Investigating people who started ART during the earliest stages of their HIV infection, when viral diversity is low, provides an opportunity to detect evidence of viral evolution. Despite using a battery of analytical techniques, no clear and consistent evidence of viral propagation for over 90 weeks of observation could be discerned.
Collapse
|
21
|
No Substantial Evidence for Sexual Transmission of Minority HIV Drug Resistance Mutations in Men Who Have Sex with Men. J Virol 2017; 91:JVI.00769-17. [PMID: 28794047 DOI: 10.1128/jvi.00769-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
Abstract
During primary HIV infection, the presence of minority drug resistance mutations (DRM) may be a consequence of sexual transmission, de novo mutations, or technical errors in identification. Baseline blood samples were collected from 24 HIV-infected antiretroviral-naive, genetically and epidemiologically linked source and recipient partners shortly after the recipient's estimated date of infection. An additional 32 longitudinal samples were available from 11 recipients. Deep sequencing of HIV reverse transcriptase (RT) was performed (Roche/454), and the sequences were screened for nucleoside and nonnucleoside RT inhibitor DRM. The likelihood of sexual transmission and persistence of DRM was assessed using Bayesian-based statistical modeling. While the majority of DRM (>20%) were consistently transmitted from source to recipient, the probability of detecting a minority DRM in the recipient was not increased when the same minority DRM was detected in the source (Bayes factor [BF] = 6.37). Longitudinal analyses revealed an exponential decay of DRM (BF = 0.05) while genetic diversity increased. Our analysis revealed no substantial evidence for sexual transmission of minority DRM (BF = 0.02). The presence of minority DRM during early infection, followed by a rapid decay, is consistent with the "mutation-selection balance" hypothesis, in which deleterious mutations are more efficiently purged later during HIV infection when the larger effective population size allows more efficient selection. Future studies using more recent sequencing technologies that are less prone to single-base errors should confirm these results by applying a similar Bayesian framework in other clinical settings.IMPORTANCE The advent of sensitive sequencing platforms has led to an increased identification of minority drug resistance mutations (DRM), including among antiretroviral therapy-naive HIV-infected individuals. While transmission of DRM may impact future therapy options for newly infected individuals, the clinical significance of the detection of minority DRM remains controversial. In the present study, we applied deep-sequencing techniques within a Bayesian hierarchical framework to a cohort of 24 transmission pairs to investigate whether minority DRM detected shortly after transmission were the consequence of (i) sexual transmission from the source, (ii) de novo emergence shortly after infection followed by viral selection and evolution, or (iii) technical errors/limitations of deep-sequencing methods. We found no clear evidence to support the sexual transmission of minority resistant variants, and our results suggested that minor resistant variants may emerge de novo shortly after transmission, when the small effective population size limits efficient purge by natural selection.
Collapse
|
22
|
Machnowska P, Hauser A, Meixenberger K, Altmann B, Bannert N, Rempis E, Schnack A, Decker S, Braun V, Busingye P, Rubaihayo J, Harms G, Theuring S. Decreased emergence of HIV-1 drug resistance mutations in a cohort of Ugandan women initiating option B+ for PMTCT. PLoS One 2017; 12:e0178297. [PMID: 28562612 PMCID: PMC5451067 DOI: 10.1371/journal.pone.0178297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Since 2012, WHO guidelines for the prevention of mother-to-child transmission (PMTCT) of HIV-1 in resource-limited settings recommend the initiation of lifelong antiretroviral combination therapy (cART) for all pregnant HIV-1 positive women independent of CD4 count and WHO clinical stage (Option B+). However, long-term outcomes regarding development of drug resistance are lacking until now. Therefore, we analysed the emergence of drug resistance mutations (DRMs) in women initiating Option B+ in Fort Portal, Uganda, at 12 and 18 months postpartum (ppm). METHODS AND FINDINGS 124 HIV-1 positive pregnant women were enrolled within antenatal care services in Fort Portal, Uganda. Blood samples were collected at the first visit prior starting Option B+ and postpartum at week six, month six, 12 and 18. Viral load was determined by real-time RT-PCR. An RT-PCR covering resistance associated positions in the protease and reverse transcriptase HIV-1 genomic region was performed. PCR-positive samples at 12/18 ppm and respective baseline samples were analysed by next generation sequencing regarding HIV-1 drug resistant variants including low-frequency variants. Furthermore, vertical transmission of HIV-1 was analysed. 49/124 (39.5%) women were included into the DRM analysis. Virological failure, defined as >1000 copies HIV-1 RNA/ml, was observed in three and seven women at 12 and 18 ppm, respectively. Sequences were obtained for three and six of these. In total, DRMs were detected in 3/49 (6.1%) women. Two women displayed dual-class resistance against all recommended first-line regimen drugs. Of 49 mother-infant-pairs no infant was HIV-1 positive at 12 or 18 ppm. CONCLUSION Our findings suggest that the WHO-recommended Option B+ for PMTCT is effective in a cohort of Ugandan HIV-1 positive pregnant women with regard to the low selection rate of DRMs and vertical transmission. Therefore, these results are encouraging for other countries considering the implementation of lifelong cART for all pregnant HIV-1 positive women.
Collapse
Affiliation(s)
- Patrycja Machnowska
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Division of HIV and Other Retroviruses, Robert Koch-Institute, Berlin, Germany
| | - Andrea Hauser
- Division of HIV and Other Retroviruses, Robert Koch-Institute, Berlin, Germany
| | | | - Britta Altmann
- Division of HIV and Other Retroviruses, Robert Koch-Institute, Berlin, Germany
| | - Norbert Bannert
- Division of HIV and Other Retroviruses, Robert Koch-Institute, Berlin, Germany
| | - Eva Rempis
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Alexandra Schnack
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Decker
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Vera Braun
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - John Rubaihayo
- Department of Public Health, Mountains of the Moon University, Fort Portal, Uganda
| | - Gundel Harms
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Theuring
- Institute of Tropical Medicine and International Health, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Host-adaptive mechanism of H5N1 avian influenza virus hemagglutininn. Uirusu 2017; 65:187-198. [PMID: 27760917 DOI: 10.2222/jsv.65.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The H5N1 subtype is a highly pathogenic avian influenza virus currently circulating in birds in parts of Asia and northeast Africa, which has caused fatal human infections since 1997. Continuous circulation of the virus in endemic areas has allowed genetically diverse viruses to emerge, increasing the risk of H5N1 human infection. Although human infections with H5N1 have to date been limited, experimental evidence of the aerosol transmission of mutated viruses in a mammalian infection model has revealed the pandemic potential of H5N1 virus. One of the most important viral factors for host-adaptation of influenza virus is hemagglutinin (HA), which is the principal antigen on the viral surface and is responsible for viral binding to host receptors as well as endosomal membrane fusion. Our recent reports suggest that a fine balance of the HA properties, including receptor binding specificity and pH stability, is crucial for replication in human respiratory epithelia. This review provides an overview of current knowledge on the host-adaptive mechanism of H5N1 virus HA.
Collapse
|
24
|
Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study. J Neurovirol 2017; 23:460-473. [PMID: 28247269 DOI: 10.1007/s13365-017-0518-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.
Collapse
|
25
|
Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC, Ellis RJ, Morris S, Little SJ, Smith DM, Gianella S. Early Antiretroviral Therapy Is Associated with Lower HIV DNA Molecular Diversity and Lower Inflammation in Cerebrospinal Fluid but Does Not Prevent the Establishment of Compartmentalized HIV DNA Populations. PLoS Pathog 2017; 13:e1006112. [PMID: 28046096 PMCID: PMC5266327 DOI: 10.1371/journal.ppat.1006112] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 01/25/2017] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
Even when antiretroviral therapy (ART) is started early after infection, HIV DNA might persist in the central nervous system (CNS), possibly contributing to inflammation, brain damage and neurocognitive impairment. Paired blood and cerebrospinal fluid (CSF) were collected from 16 HIV-infected individuals on suppressive ART: 9 participants started ART <4 months of the estimated date of infection (EDI) ("early ART"), and 7 participants started ART >14 months after EDI ("late ART"). For each participant, neurocognitive functioning was measured by Global Deficit Score (GDS). HIV DNA levels were measured in peripheral blood mononuclear cells (PBMCs) and CSF cell pellets by droplet digital (dd)PCR. Soluble markers of inflammation (sCD163, IL-6, MCP-1, TNF-α) and neuronal damage (neurofilament light [NFL]) were measured in blood and CSF supernatant by immunoassays. HIV-1 partial C2V3 env deep sequencing data (Roche 454) were obtained for 8 paired PBMC and CSF specimens and used for phylogenetic and compartmentalization analysis. Median exposure to ART at the time of sampling was 2.6 years (IQR: 2.2-3.7) and did not differ between groups. We observed that early ART was significantly associated with lower molecular diversity of HIV DNA in CSF (p<0.05), and lower IL-6 levels in CSF (p = 0.02), but no difference for GDS, NFL, or HIV DNA detectability compared to late ART. Compartmentalization of HIV DNA populations between CSF and blood was detected in 6 out of 8 participants with available paired HIV DNA sequences (2 from early and 4 from late ART group). Phylogenetic analysis confirmed the presence of monophyletic HIV DNA populations within the CSF in 7 participants, and the same population was repeatedly sampled over a 5 months period in one participant with longitudinal sampling. Such compartmentalized provirus in the CNS needs to be considered for the design of future eradication strategies and might contribute to the neuropathogenesis of HIV.
Collapse
Affiliation(s)
- Michelli F. Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Masato Nakazawa
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Milenka Vargas
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Scott L. Letendre
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Center, San Diego, California, United States of America
| | - Matthew C. Strain
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ronald J. Ellis
- HIV Neurobehavioral Research Center, San Diego, California, United States of America
- Departments of Neurosciences and Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Sheldon Morris
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Susan J. Little
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
26
|
Rapid Detection of Common HIV-1 Drug Resistance Mutations by Use of High-Resolution Melting Analysis and Unlabeled Probes. J Clin Microbiol 2016; 55:122-133. [PMID: 27795333 DOI: 10.1128/jcm.01291-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023] Open
Abstract
HIV rapidly accumulates resistance mutations following exposure to subtherapeutic concentrations of antiretroviral drugs that reduces treatment efficacy. High-resolution melting analysis (HRMA) has been used to successfully identify single nucleotide polymorphisms (SNPs) and to genotype viral and bacterial species. Here, we tested the ability of HRMA incorporating short unlabeled probes to accurately assign drug susceptibilities at the 103, 181, and 184 codons of the HIV-1 reverse transcriptase gene. The analytical sensitivities of the HRMA assays were 5% of mixed species for K103N and Y181C and 20% for M184V. When applied to 153 HIV-1 patient specimens previously genotyped by Sanger population sequencing, HRMA correctly assigned drug sensitivity or resistance profiles to 80% of the samples at codon 103 (K103K/N) (Cohen's kappa coefficient [κ] > 0.6; P < 0.05), 90% at 181 (Y181Y/C) (κ > 0.74, P < 0.05), and 80% at 184 (M184M/V) (κ > 0.62; P < 0.05). The frequency of incorrect genotypes was very low (≤1 to 2%) for each assay, which in most cases was due to the higher sensitivity of the HRMA assay. Specimens for which drug resistance profiles could not be assigned (9 to 20%) often had polymorphisms in probe binding regions. Thus, HRMA is a rapid, inexpensive, and sensitive method for the determination of drug sensitivities caused by major HIV-1 drug resistance mutations and, after further development to minimize the melting effects of nontargeted polymorphisms, may be suitable for surveillance purposes.
Collapse
|
27
|
Ngo-Giang-Huong N, Wittkop L, Judd A, Reiss P, Goetghebuer T, Duiculescu D, Noguera-Julian A, Marczynska M, Giacquinto C, Ene L, Ramos JT, Cellerai C, Klimkait T, Brichard B, Valerius N, Sabin C, Teira R, Obel N, Stephan C, de Wit S, Thorne C, Gibb D, Schwimmer C, Campbell MA, Pillay D, Lallemant M. Prevalence and effect of pre-treatment drug resistance on the virological response to antiretroviral treatment initiated in HIV-infected children - a EuroCoord-CHAIN-EPPICC joint project. BMC Infect Dis 2016; 16:654. [PMID: 27825316 PMCID: PMC5101717 DOI: 10.1186/s12879-016-1968-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022] Open
Abstract
Background Few studies have evaluated the impact of pre-treatment drug resistance (PDR) on response to combination antiretroviral treatment (cART) in children. The objective of this joint EuroCoord-CHAIN-EPPICC/PENTA project was to assess the prevalence of PDR mutations and their association with virological outcome in the first year of cART in children. Methods HIV-infected children <18 years initiating cART between 1998 and 2008 were included if having at least one genotypic resistance test prior to cART initiation. We used the World Health Organization 2009 resistance mutation list and Stanford algorithm to infer resistance to prescribed drugs. Time to virological failure (VF) was defined as the first of two consecutive HIV-RNA > 500 copies/mL after 6 months cART and was assessed by Cox proportional hazards models. All models were adjusted for baseline demographic, clinical, immunology and virology characteristics and calendar period of cART start and initial cART regimen. Results Of 476 children, 88 % were vertically infected. At cART initiation, median (interquartile range) age was 6.6 years (2.1–10.1), CD4 cell count 297 cells/mm3 (98–639), and HIV-RNA 5.2 log10copies/mL (4.7–5.7). Of 37 children (7.8 %, 95 % confidence interval (CI), 5.5–10.6) harboring a virus with ≥1 PDR mutations, 30 children had a virus resistant to ≥1 of the prescribed drugs. Overall, the cumulative Kaplan-Meier estimate for virological failure was 19.8 % (95 %CI, 16.4–23.9). Cumulative risk for VF tended to be higher among children harboring a virus with PDR and resistant to ≥1 drug prescribed than among those receiving fully active cART: 32.1 % (17.2–54.8) versus 19.4 % (15.9–23.6) (P = 0.095). In multivariable analysis, age was associated with a higher risk of VF with a 12 % reduced risk per additional year (HR 0.88; 95 %CI, 0.82–0.95; P < 0.001). Conclusions PDR was not significantly associated with a higher risk of VF in children in the first year of cART. The risk of VF decreased by 12 % per additional year at treatment initiation which may be due to fading of PDR mutations over time. Lack of appropriate formulations, in particular for the younger age group, may be an important determinant of virological failure. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1968-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Ngo-Giang-Huong
- IRD UMI 174 - PHPT-Faculty of Associated Medical Sciences, Chiang Mai University, 110, Intrawarorot Road, Sripoom, Muang, Chiang Mai, 50200, Thailand. .,Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Linda Wittkop
- Univ. Bordeaux, ISPED; INSERM, Centre INSERM U1219; CHU de Bordeaux, Pole de Sante Publique, F-33000, Bordeaux, France
| | - Ali Judd
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Peter Reiss
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Dan Duiculescu
- "Dr. Victor Babes" Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | | | | | | | - Luminita Ene
- "Dr. Victor Babes" Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | | | | | | | | | - Niels Valerius
- Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Niels Obel
- Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Claire Thorne
- University College London, Institute of Child Health, London, UK
| | - Diana Gibb
- Medical Research Council Clinical Trials Unit, London, UK
| | | | | | | | - Marc Lallemant
- IRD UMI 174 - PHPT-Faculty of Associated Medical Sciences, Chiang Mai University, 110, Intrawarorot Road, Sripoom, Muang, Chiang Mai, 50200, Thailand
| | | |
Collapse
|
28
|
Willmann M, Peter S. Translational metagenomics and the human resistome: confronting the menace of the new millennium. J Mol Med (Berl) 2016; 95:41-51. [PMID: 27766372 PMCID: PMC5225160 DOI: 10.1007/s00109-016-1478-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
Abstract
The increasing threat of antimicrobial resistance poses one of the greatest challenges to modern medicine. The collection of all antimicrobial resistance genes carried by various microorganisms in the human body is called the human resistome and represents the source of resistance in pathogens that can eventually cause life-threatening and untreatable infections. A deep understanding of the human resistome and its multilateral interaction with various environments is necessary for developing proper measures that can efficiently reduce the spread of resistance. However, the human resistome and its evolution still remain, for the most part, a mystery to researchers. Metagenomics, particularly in combination with next-generation-sequencing technology, provides a powerful methodological approach for studying the human microbiome as well as the pathogenome, the virolume and especially the resistome. We summarize below current knowledge on how the human resistome is shaped and discuss how metagenomics can be employed to improve our understanding of these complex processes, particularly as regards a rapid translation of new findings into clinical diagnostics, infection control and public health.
Collapse
Affiliation(s)
- Matthias Willmann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tuebingen, Germany. .,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany.
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
King DJ, Freimanis GL, Orton RJ, Waters RA, Haydon DT, King DP. Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 44:286-292. [PMID: 27421209 PMCID: PMC5036933 DOI: 10.1016/j.meegid.2016.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/23/2022]
Abstract
Due to the poor-fidelity of the enzymes involved in RNA genome replication, foot-and-mouth disease (FMD) virus samples comprise of unique polymorphic populations. In this study, deep sequencing was utilised to characterise the diversity of FMD virus (FMDV) populations in 6 infected cattle present on a single farm during the series of outbreaks in the UK in 2007. A novel RT-PCR method was developed to amplify a 7.6kb nucleotide fragment encompassing the polyprotein coding region of the FMDV genome. Illumina sequencing of each sample identified the fine polymorphic structures at each nucleotide position, from consensus level changes to variants present at a 0.24% frequency. These data were used to investigate population dynamics of FMDV at both herd and host levels, evaluate the impact of host on the viral swarm structure and to identify transmission links with viruses recovered from other farms in the same series of outbreaks. In 7 samples, from 6 different animals, a total of 5 consensus level variants were identified, in addition to 104 sub-consensus variants of which 22 were shared between 2 or more animals. Further analysis revealed differences in swarm structures from samples derived from the same animal suggesting the presence of distinct viral populations evolving independently at different lesion sites within the same infected animal.
Collapse
Affiliation(s)
- David J King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Graham L Freimanis
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, 464 Bearsden Road, G61 1QH, UK
| | - Ryan A Waters
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
30
|
Gianella S, Kosakovsky Pond SL, Oliveira MF, Scheffler K, Strain MC, De la Torre A, Letendre S, Smith DM, Ellis RJ. Compartmentalized HIV rebound in the central nervous system after interruption of antiretroviral therapy. Virus Evol 2016; 2:vew020. [PMID: 27774305 PMCID: PMC5072458 DOI: 10.1093/ve/vew020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To design effective eradication strategies, it may be necessary to target HIV reservoirs in anatomic compartments other than blood. This study examined HIV RNA rebound following interruption of antiretroviral therapy (ART) in blood and cerebrospinal fluid (CSF) to determine whether the central nervous system (CNS) might serve as an independent source of resurgent viral replication. Paired blood and CSF samples were collected longitudinally from 14 chronically HIV-infected individuals undergoing ART interruption. HIV env (C2-V3), gag (p24) and pol (reverse transcriptase) were sequenced from cell-free HIV RNA and cell-associated HIV DNA in blood and CSF using the Roche 454 FLX Titanium platform. Comprehensive sequence and phylogenetic analyses were performed to search for evidence of unique or differentially represented viral subpopulations emerging in CSF supernatant as compared with blood plasma. Using a conservative definition of compartmentalization based on four distinct statistical tests, nine participants presented a compartmentalized HIV RNA rebound within the CSF after interruption of ART, even when sampled within 2 weeks from viral rebound. The degree and duration of viral compartmentalization varied considerably between subjects and between time-points within a subject. In 10 cases, we identified viral populations within the CSF supernatant at the first sampled time-point after ART interruption, which were phylogenetically distinct from those present in the paired blood plasma and mostly persisted over time (when longitudinal time-points were available). Our data suggest that an independent source of HIV RNA contributes to viral rebound within the CSF after treatment interruption. The most likely source of compartmentalized HIV RNA is a CNS reservoir that would need to be targeted to achieve complete HIV eradication.
Collapse
Affiliation(s)
- Sara Gianella
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Michelli F Oliveira
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Konrad Scheffler
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Matt C Strain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Antonio De la Torre
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Ronald J Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Low-Frequency Drug Resistance in HIV-Infected Ugandans on Antiretroviral Treatment Is Associated with Regimen Failure. Antimicrob Agents Chemother 2016; 60:3380-97. [PMID: 27001818 DOI: 10.1128/aac.00038-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/11/2016] [Indexed: 12/27/2022] Open
Abstract
Most patients failing antiretroviral treatment in Uganda continue to fail their treatment regimen even if a dominant drug-resistant HIV-1 genotype is not detected. In a recent retrospective study, we observed that approximately 30% of HIV-infected individuals in the Joint Clinical Research Centre (Kampala, Uganda) experienced virologic failure with a susceptible HIV-1 genotype based on standard Sanger sequencing. Selection of minority drug-resistant HIV-1 variants (not detectable by Sanger sequencing) under antiretroviral therapy pressure can lead to a shift in the viral quasispecies distribution, becoming dominant members of the virus population and eventually causing treatment failure. Here, we used a novel HIV-1 genotyping assay based on deep sequencing (DeepGen) to quantify low-level drug-resistant HIV-1 variants in 33 patients failing a first-line antiretroviral treatment regimen in the absence of drug-resistant mutations, as screened by standard population-based Sanger sequencing. Using this sensitive assay, we observed that 64% (21/33) of these individuals had low-frequency (or minority) drug-resistant variants in the intrapatient HIV-1 population, which correlated with treatment failure. Moreover, the presence of these minority HIV-1 variants was associated with higher intrapatient HIV-1 diversity, suggesting a dynamic selection or fading of drug-resistant HIV-1 variants from the viral quasispecies in the presence or absence of drug pressure, respectively. This study identified low-frequency HIV drug resistance mutations by deep sequencing in Ugandan patients failing antiretroviral treatment but lacking dominant drug resistance mutations as determined by Sanger sequencing methods. We showed that these low-abundance drug-resistant viruses could have significant consequences for clinical outcomes, especially if treatment is not modified based on a susceptible HIV-1 genotype by Sanger sequencing. Therefore, we propose to make clinical decisions using more sensitive methods to detect minority HIV-1 variants.
Collapse
|
32
|
A Pan-HIV Strategy for Complete Genome Sequencing. J Clin Microbiol 2015; 54:868-82. [PMID: 26699702 DOI: 10.1128/jcm.02479-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023] Open
Abstract
Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e.,switchingmechanismat 5' end ofRNAtranscript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance.
Collapse
|
33
|
Adetokunboh O, Atibioke O, Balogun T, Oluwasanu M. Antiretroviral Treatment and Resistance Patterns in HIV-Infected Children. Curr Infect Dis Rep 2015; 17:502. [DOI: 10.1007/s11908-015-0502-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Davies MA. Research gaps in neonatal HIV-related care. South Afr J HIV Med 2015; 16:375. [PMID: 29568592 PMCID: PMC5843028 DOI: 10.4102/sajhivmed.v16i1.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/16/2015] [Indexed: 12/19/2022] Open
Abstract
The South African prevention of mother to child transmission programme has made excellent progress in reducing vertical HIV transmission, and paediatric antiretroviral therapy programmes have demonstrated good outcomes with increasing treatment initiation in younger children and infants. However, both in South Africa and across sub-Saharan African, lack of boosted peri-partum prophylaxis for high-risk vertical transmission, loss to follow-up, and failure to initiate HIV-infected infants on antiretroviral therapy (ART) before disease progression are key remaining gaps in neonatal HIV-related care. In this issue of the Southern African Journal of HIV Medicine, experts provide valuable recommendations for addressing these gaps. The present article highlights a number of areas where evidence is lacking to inform guidelines and programme development for optimal neonatal HIV-related care.
Collapse
Affiliation(s)
- Mary-Ann Davies
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, South Africa
| |
Collapse
|