1
|
Chigor VN, Digwo DC, Adediji A, Chidebelu PE, Chigor CB, Ugwu KO, Ibangha IAI, Street R, Farkas K. Epidemiology of norovirus infection in Nigeria: a systematic review and meta-analysis. Arch Virol 2024; 169:138. [PMID: 38847856 DOI: 10.1007/s00705-024-06056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024]
Abstract
Human norovirus (HuNoV) is responsible for most cases of gastroenteritis worldwide, but information about the prevalence and diversity of HuNoV infections in lower-income settings is lacking. In order to provide more information about the burden and distribution of norovirus in Nigeria, we systematically reviewed original published research articles on the prevalence of HuNoV in Nigeria by accessing databases, including PubMed, Web of Science, ScienceDirect, Google Scholar, and African Journals Online (AJOL). The protocol for the review was registered on PROSPERO (registration number CRD42022308857). Thirteen relevant articles were included in the review, and 10 of them were used for meta-analysis. The pooled prevalence of HuNoV-associated gastroenteritis among children below 5 years of age in Nigeria, determined using the random-effects model, was 10.9% (95% CI, 6.7-16.7%). Among children below the age of 5 presenting with HuNoV infections, the highest prevalence was in children ≤2 years old (n = 127, 83%). The prevalence of HuNoV infections was seen to decrease with increasing age. In addition, HuNoV was detected in asymptomatic food handlers, bats, and seafoods. A total of 85 sequences of HuNoV isolates from Nigeria have been determined, and based on those sequences, the most prevalent norovirus genogroup was GII (84%). Genotypes GII.4 and GI.3 were the most frequently identified genotypes, with GII.4 constituting 46% of all of the HuNoVs identified in Nigeria. These results suggest a risk associated with cocirculation of emerging variants with known genotypes because of their recombination potential. Larger molecular epidemiological studies are still needed to fully understand the extent and pattern of circulation of HuNoVs in Nigeria.
Collapse
Affiliation(s)
- Vincent N Chigor
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria.
| | - Daniel C Digwo
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Adedapo Adediji
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Paul E Chidebelu
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chinyere B Chigor
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Kenneth O Ugwu
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Ini-Abasi I Ibangha
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Renee Street
- South African Medical Research Council, Environment & Health Research Unit, Durban, KwaZulu-Natal, South Africa
| | - Kata Farkas
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| |
Collapse
|
2
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
3
|
Lewis MA, Cortés-Penfield NW, Ettayebi K, Patil K, Kaur G, Neill FH, Atmar RL, Ramani S, Estes MK. Standardization of an antiviral pipeline for human norovirus in human intestinal enteroids demonstrates nitazoxanide has no to weak antiviral activity. Antimicrob Agents Chemother 2023; 67:e0063623. [PMID: 37787556 PMCID: PMC10583671 DOI: 10.1128/aac.00636-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 10/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within 3 days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we standardized a pipeline for antiviral testing using multiple human small intestinal enteroid lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of five HuNoV strains in vitro. Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strain tested, indicating it is not an effective antiviral for HuNoV infection. Human intestinal enteroids are further demonstrated as a model to serve as a preclinical platform to test antivirals against HuNoVs to treat gastrointestinal disease. Abstr.
Collapse
Affiliation(s)
- Miranda A. Lewis
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicolás W. Cortés-Penfield
- Department of Medicine, Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Gurpreet Kaur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Lewis MA, Cortés-Penfield NW, Ettayebi K, Patil K, Kaur G, Neill FH, Atmar RL, Ramani S, Estes MK. A Standardized Antiviral Pipeline for Human Norovirus in Human Intestinal Enteroids Demonstrates No Antiviral Activity of Nitazoxanide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542011. [PMID: 37293103 PMCID: PMC10245936 DOI: 10.1101/2023.05.23.542011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within three days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we established a standardized pipeline for antiviral testing using multiple human small intestinal enteroid (HIE) lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of 5 HuNoV strains in vitro . Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strains tested, indicating it is not an effective antiviral for norovirus infection. HIEs are further demonstrated as a model to serve as a pre-clinical platform to test antivirals against human noroviruses to treat gastrointestinal disease.
Collapse
Affiliation(s)
- Miranda A. Lewis
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | | | - Khalil Ettayebi
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Ketki Patil
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Gurpreet Kaur
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Frederick H. Neill
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Robert L. Atmar
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Sasirekha Ramani
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Mary K. Estes
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
5
|
Lucero Y, Matson DO, Ashkenazi S, George S, O’Ryan M. Norovirus: Facts and Reflections from Past, Present, and Future. Viruses 2021; 13:v13122399. [PMID: 34960668 PMCID: PMC8707792 DOI: 10.3390/v13122399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Human Norovirus is currently the main viral cause of acute gastroenteritis (AGEs) in most countries worldwide. Nearly 50 years after the discovery of the "Norwalk virus" by Kapikian and colleagues, the scientific and medical community continue to generate new knowledge on the full biological and disease spectrum of Norovirus infection. Nevertheless, several areas remain incompletely understood due to the serious constraints to effectively replicate and propagate the virus. Here, we present a narrated historic perspective and summarize our current knowledge, including insights and reflections on current points of interest for a broad medical community, including clinical and molecular epidemiology, viral-host-microbiota interactions, antivirals, and vaccine prototypes. We also include a reflection on the present and future impacts of the COVID-19 pandemic on Norovirus infection and disease.
Collapse
Affiliation(s)
- Yalda Lucero
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
- Hospital Dr. Roberto del Río Hospital, Department of Pediatrics and Pediatric Surgery (Northern Campus), Faculty of Medicine, Universidad de Chile, Santiago 8380418, Chile
- Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo-Clínica Alemana, Santiago 7650568, Chile
| | - David O. Matson
- Eastern Shore Health Department, Virginia Department of Public Health, Accomack County, VA 23301, USA;
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Pediatrics A, Schneider Children’s Medical Center, Petach Tikva 49202, Israel
| | - Sergio George
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
| | - Miguel O’Ryan
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (Y.L.); (S.G.)
- Correspondence:
| |
Collapse
|
6
|
Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021; 13:v13081541. [PMID: 34452406 PMCID: PMC8402810 DOI: 10.3390/v13081541] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.
Collapse
|
7
|
Tohma K, Lepore CJ, Martinez M, Degiuseppe JI, Khamrin P, Saito M, Mayta H, Nwaba AUA, Ford-Siltz LA, Green KY, Galeano ME, Zimic M, Stupka JA, Gilman RH, Maneekarn N, Ushijima H, Parra GI. Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathog 2021; 17:e1009744. [PMID: 34255807 PMCID: PMC8318288 DOI: 10.1371/journal.ppat.1009744] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/28/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission. Norovirus is a highly diverse enteric pathogen. The large genomic database accumulated in the last three decades advanced our understanding of norovirus diversity; however, this information is limited by geographical bias, sporadic times of collection, and missing or incomplete genome sequences. In this multinational collaborative study, we mined archival samples collected since the 1970s and sequenced nearly full-length new genomes from 281 historical noroviruses, including the first full-length genomic sequences for three genotypes. Using this novel dataset, we found evidence for restrictions in the recombination of genetically disparate viruses and that diversifying selection results in new variants with different epidemiological profiles. These new insights on the diversification of noroviruses could provide baseline information for the study of future epidemics and ultimately the prevention of norovirus infections.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Cara J. Lepore
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Magaly Martinez
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
- IICS, National University of Asuncion, Asuncion, Paraguay
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Holger Mayta
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Amy U. Amanda Nwaba
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Lauren A. Ford-Siltz
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Kim Y. Green
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | | | - Mirko Zimic
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Robert H. Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Gabriel I. Parra
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhang M, Fu M, Hu Q. Advances in Human Norovirus Vaccine Research. Vaccines (Basel) 2021; 9:732. [PMID: 34358148 PMCID: PMC8310286 DOI: 10.3390/vaccines9070732] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute gastroenteritis (AGE) worldwide, which is highly stable and contagious, with a few virus particles being sufficient to establish infection. Although the World Health Organization in 2016 stated that it should be an absolute priority to develop a HuNoV vaccine, unfortunately, there is currently no licensed HuNoV vaccine available. The major barrier to the development of an effective HuNoV vaccine is the lack of a robust and reproducible in vitro cultivation system. To develop a HuNoV vaccine, HuNoV immunogen alone or in combination with other viral immunogens have been designed to assess whether they can simultaneously induce protective immune responses against different viruses. Additionally, monovalent and multivalent vaccines from different HuNoV genotypes, including GI and GII HuNoV virus-like particles (VLPs), have been assessed in order to induce broad protection. Although there are several HuNoV vaccine candidates based on VLPs that are being tested in clinical trials, the challenges to develop effective HuNoV vaccines remain largely unresolved. In this review, we summarize the advances of the HuNoV cultivation system and HuNoV vaccine research and discuss current challenges and future perspectives in HuNoV vaccine development.
Collapse
Affiliation(s)
- Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| | - Ming Fu
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou 510623, China;
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
9
|
Ludwig-Begall LF, Di Felice E, Toffoli B, Ceci C, Di Martino B, Marsilio F, Mauroy A, Thiry E. Analysis of Synchronous and Asynchronous In Vitro Infections with Homologous Murine Norovirus Strains Reveals Time-Dependent Viral Interference Effects. Viruses 2021; 13:823. [PMID: 34063220 PMCID: PMC8147416 DOI: 10.3390/v13050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Viral recombination is a key mechanism in the evolution and diversity of noroviruses. In vivo, synchronous single-cell coinfection by multiple viruses, the ultimate prerequisite to viral recombination, is likely to be a rare event and delayed secondary infections are a more probable occurrence. Here, we determine the effect of a temporal separation of in vitro infections with the two homologous murine norovirus strains MNV-1 WU20 and CW1 on the composition of nascent viral populations. WU20 and CW1 were either synchronously inoculated onto murine macrophage cell monolayers (coinfection) or asynchronously applied (superinfection with varying titres of CW1 at half-hour to 24-h delays). Then, 24 h after initial co-or superinfection, quantification of genomic copy numbers and discriminative screening of plaque picked infectious progeny viruses demonstrated a time-dependent predominance of primary infecting WU20 in the majority of viral progenies. Our results indicate that a time interval from one to two hours onwards between two consecutive norovirus infections allows for the establishment of a barrier that reduces or prevents superinfection.
Collapse
Affiliation(s)
- Louisa F. Ludwig-Begall
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| | - Elisabetta Di Felice
- Department of Diagnosis and Surveillance of Exotic Disease, IZS Istituto Zooprofilattico Sperimentale A&M G. Caporale, 64100 Teramo, Italy;
| | - Barbara Toffoli
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| | - Chiara Ceci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Axel Mauroy
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
- Staff Direction for Risk Assessment, Control Policy, FASFC, 1000 Brussels, Belgium
| | - Etienne Thiry
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| |
Collapse
|
10
|
Nainu F, Abidin RS, Bahar MA, Frediansyah A, Emran TB, Rabaan AA, Dhama K, Harapan H. SARS-CoV-2 reinfection and implications for vaccine development. Hum Vaccin Immunother 2020; 16:3061-3073. [PMID: 33393854 PMCID: PMC8641611 DOI: 10.1080/21645515.2020.1830683] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic continues to constitute a public health emergency of international concern. Multiple vaccine candidates for COVID-19, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have entered clinical trials. However, some evidence suggests that patients who have recovered from COVID-19 can be reinfected. For example, in China, two discharged COVID-19 patients who had recovered and fulfilled the discharge criteria for COVID-19 were retested positive to a reverse transcription polymerase chain reaction (RT-PCR) assay for the virus. This finding is critical and could hamper COVID-19 vaccine development. This review offers literature-based evidence of reinfection with SARS-CoV-2, provides explanation for the possibility of SARS-CoV-2 reinfection both from the agent and host points of view, and discusses its implication for COVID-19 vaccine development.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, 90245, Tamalanrea, Makassar, Indonesia
| | - Rufika Shari Abidin
- Faculty of Medicine, Hasanuddin University, 90245, Tamalanrea, Makassar, Indonesia
| | - Muh. Akbar Bahar
- Faculty of Pharmacy, Hasanuddin University, 90245, Tamalanrea, Makassar, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), 55861, Wonosari, Indonesia
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076, Tübingen, Germany
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, 4381, Chittagong, Bangladesh
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, 243122, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, 23111, Banda Aceh, Indonesia
| |
Collapse
|
11
|
Nonthabenjawan N, Boonyos P, Phattanawiboon B, Towayunanta W, Chuntrakool K, Ngaopravet K, Ruchusatsawat K, Uppapong B, Sangkitporn S, Mekada E, Matsuura Y, Tatsumi M, Mizushima H. Identification of GII.14[P7] norovirus and its genomic mutations from a case of long-term infection in a post-symptomatic individual. INFECTION GENETICS AND EVOLUTION 2020; 86:104612. [PMID: 33137471 DOI: 10.1016/j.meegid.2020.104612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Norovirus is a leading cause of acute gastroenteritis worldwide. Norovirus shedding typically lasts one week to one month after the onset of diarrhea in immunocompetent hosts. The occurrence of mutations in the genome during infection has contributed to the evolution of norovirus. It has been suggested that genomic mutations in the P2-domain of capsid protein VP1, the major antigenic site for virus clearance, are involved in the evasion of host immunity and prolonged shedding of norovirus. In our previous study, we found a case of long-term shedding of GII.14 norovirus in a post-symptomatic immunocompetent individual that lasted about three months. In this study, we characterized the genomic sequence of the GII.14 strain to gain insight into the context of long-term shedding. By sequencing a 4.8 kb region of the genome corresponding to half of ORF1 and the entire ORF2 and ORF3, which encode several non-structural proteins and the structural proteins VP1 and VP2, the GII.14 strain was found to be classified as recombinant GII.14[P7]. Six point-mutations occurred during the three-month period of infection in a time-dependent manner in the genomic regions encoding RNA-dependent RNA polymerase, VP1, and VP2. Three of the six mutations were sense mutations, but no amino acid substitution was identified in the P2-domain of VP1. These results suggest that there is a mechanism by which long-term shedding of norovirus occurs in immunocompetent individuals independent of P2-domain mutations.
Collapse
Affiliation(s)
- Nutthawan Nonthabenjawan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Patcharaporn Boonyos
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Benjarat Phattanawiboon
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | | | | | | | - Kriangsak Ruchusatsawat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eisuke Mekada
- Research and Education Promotion Foundation, Bangkok, Thailand
| | - Yoshiharu Matsuura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Hiroto Mizushima
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand.
| |
Collapse
|
12
|
Zhirakovskaia EV, Tikunov AY, Sokolov SN, Kravchuk BI, Krasnova EI, Tikunova NV. Characterization of the complete genome sequence of the recombinant norovirus GII.P16/GII.4_Sydney_2012 revealed in Russia. Vavilovskii Zhurnal Genet Selektsii 2020; 24:69-79. [PMID: 33659783 PMCID: PMC7716542 DOI: 10.18699/vj20.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Noroviruses (the Caliciviridae family) are a common cause of acute gastroenteritis in all age groups. These small non-envelope viruses with a single-stranded (+)RNA genome are characterized by high genetic variability. Continuous changes in the genetic diversity of co-circulating noroviruses and the emergence of new recombinant variants are observed worldwide. Recently, new recombinant noroviruses with a novel GII.P16 polymerase associated with different capsid proteins VP1 were reported. As a part of the surveillance study of sporadic cases of acute gastroenteritis in Novosibirsk, a total of 46 clinical samples from children with diarrhea were screened in 2016. Norovirus was detected in six samples from hospitalized children by RT-PCR. The identified noroviruses were classified as recombinant variants GII.P21/GII.3, GII. Pe/GII.4_Sydney_2012, and GII.P16/GII.4_Sydney_2012 by sequencing of the ORF1/ORF2 junction. In Novosibirsk, the first appearance of the new recombinant genotype GII.P16/ GII.4_Sydney_2012 was recorded in spring 2016. Before this study, only four complete genome sequences of the Russian GII.P16/GII.3 norovirus strains were available in the GenBank database. In this work, the complete genome sequence of the Russian strain Hu/GII.P16-GII.4/RUS/Novosibirsk/NS16-C38/2016 (GenBank KY210980) was determined. A comparison of the nucleotide and the deduced amino acid sequences showed a high homology of the Russian strain with GII.P16/GII.4_Sydney_2012 strains from other parts of the world. A comparative analysis showed that several unique substitutions occurred in the GII.P16 polymerase, N-terminal p48 protein, and minor capsid protein VP2 genes, while no unique changes in the capsid VP1 gene were observed. A functional significance of these changes suggests that a wide distribution of the strains with the novel GII.P16 polymerase may be associated both with several amino acid substitutions in the polymerase active center and with the insertion of glutamic acid or glycine in an N-terminal p48 protein that blocks the secretory immunity of intestinal epithelial cells. Further monitoring of genotypes will allow determining the distribution of norovirus recombinants with the polymerase GII.P16 in Russia.
Collapse
Affiliation(s)
- E V Zhirakovskaia
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Y Tikunov
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S N Sokolov
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
| | - B I Kravchuk
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Krasnova
- Novosibirsk State Medical University, Department of Infectious Diseases, Novosibirsk, Russia
| | - N V Tikunova
- Institute of Сhemical Biology аnd Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Brown JR, Roy S, Shah D, Williams CA, Williams R, Dunn H, Hartley J, Harris K, Breuer J. Norovirus Transmission Dynamics in a Pediatric Hospital Using Full Genome Sequences. Clin Infect Dis 2020; 68:222-228. [PMID: 29800111 PMCID: PMC6321856 DOI: 10.1093/cid/ciy438] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background Norovirus is a leading cause of worldwide and nosocomial gastroenteritis. The study aim was to assess the utility of molecular epidemiology using full genome sequences compared to routine infection prevention and control (IPC) investigations. Methods Norovirus genomes were generated from new episodes of norovirus at a pediatric tertiary referral hospital over a 19-month period (n = 182). Phylogeny identified clusters of related sequences that were verified using epidemiological and clinical data. Results Twenty-four clusters of related norovirus sequences (“sequence clusters”) were observed, including 8 previously identified by IPC investigations (“IPC outbreaks”). Seventeen sequence clusters (involving 77/182 patients) were corroborated by epidemiological data (“epidemiologically supported clusters”), suggesting transmission between patients. Linked infections were identified among 44 patients who were missed by IPC investigations. Thirty-three percent of norovirus sequences were linked, suggesting nosocomial transmission; 24% of patients had nosocomial infections from an unknown source; and 43% were norovirus positive on admission. Conclusions We show there are frequent introductions of multiple norovirus strains with extensive onward nosocomial transmission of norovirus in a pediatric hospital with a high proportion of immunosuppressed patients nursed in isolation. Phylogenetic analysis using full genome sequences is more sensitive than classic IPC investigations for identifying linked cases and should be considered when investigating norovirus nosocomial transmission. Sampling of staff, visitors, and the environment may be required for complete understanding of infection sources and transmission routes in patients with nosocomial infections not linked to other patients and among patients with phylogenetically linked cases but no evidence of direct contact.
Collapse
Affiliation(s)
- Julianne R Brown
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital National Health Service Foundation Trust
| | - Sunando Roy
- Infection and Immunity, University College London, United Kingdom
| | - Divya Shah
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital National Health Service Foundation Trust
| | | | - Rachel Williams
- Infection and Immunity, University College London, United Kingdom
| | - Helen Dunn
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital National Health Service Foundation Trust
| | - John Hartley
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital National Health Service Foundation Trust
| | - Kathryn Harris
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital National Health Service Foundation Trust
| | - Judy Breuer
- Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital National Health Service Foundation Trust.,Infection and Immunity, University College London, United Kingdom
| |
Collapse
|
14
|
Abstract
Noroviruses are a very diverse group of viruses that infect different mammalian species. In humans, norovirus is a major cause of acute gastroenteritis. Multiple norovirus infections can occur in a lifetime as the result of limited duration of acquired immunity and cross-protection among different strains. A combination of advances in sequencing methods and improvements on surveillance has provided new insights into norovirus diversification and emergence. The generation of diverse norovirus strains has been associated with (1) point mutations on two different genes: ORF1, encoding the non-structural proteins, and ORF2, encoding the major capsid protein (VP1); and (2) recombination events that create chimeric viruses. While both mechanisms are exploited by all norovirus strains, individual genotypes utilize each mechanism differently to emerge and persist in the human population. GII.4 noroviruses (the most prevalent genotype in humans) present an accumulation of amino acid mutations on VP1 resulting in the chronological emergence of new variants. In contrast, non-GII.4 noroviruses present co-circulation of different variants over long periods with limited changes on their VP1. Notably, genetic diversity of non-GII.4 noroviruses is mostly related to the high number of recombinant strains detected in humans. While it is difficult to determine the precise mechanism of emergence of epidemic noroviruses, observations point to multiple factors that include host-virus interactions and changes on two regions of the genome (ORF1 and ORF2). Larger datasets of viral genomes are needed to facilitate comparison of epidemic strains and those circulating at low levels in the population. This will provide a better understanding of the mechanism of norovirus emergence and persistence.
Collapse
Affiliation(s)
- Gabriel I Parra
- Division of Viral Products, Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1308, Silver Spring, MD 20993, USA
| |
Collapse
|
15
|
Brown LAK, Ruis C, Clark I, Roy S, Brown JR, Albuquerque AS, Patel SY, Miller J, Karim MY, Dervisevic S, Moore J, Williams CA, Cudini J, Moreira F, Neild P, Seneviratne SL, Workman S, Toumpanakis C, Atkinson C, Burns SO, Breuer J, Lowe DM. A comprehensive characterization of chronic norovirus infection in immunodeficient hosts. J Allergy Clin Immunol 2019; 144:1450-1453. [PMID: 31415785 PMCID: PMC6843911 DOI: 10.1016/j.jaci.2019.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li-An K Brown
- Department of Infectious Diseases, Royal Free London NHS Foundation Trust, London, United Kingdom; Department of Microbiology, Whittington Health NHS Trust, London, United Kingdom
| | - Christopher Ruis
- Division of Infection and Immunity, University College London, London, United Kingdom; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Medical Research Council (MRC)-Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ian Clark
- Department of Histopathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Julianne R Brown
- Department of Microbiology, Virology and Infection Prevention and Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Adriana S Albuquerque
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom
| | - Smita Y Patel
- Oxford University Hospitals NHS Trust and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Joanne Miller
- Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, Surrey, United Kingdom
| | - Mohammed Yousuf Karim
- Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, Surrey, United Kingdom; Pathology, Sidra Medicine, Doha, Qatar
| | - Samir Dervisevic
- Norfolk and Norwich University Hospital, Norwich, Norfolk, United Kingdom
| | - Jennifer Moore
- Norfolk and Norwich University Hospital, Norwich, Norfolk, United Kingdom
| | - Charlotte A Williams
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Juliana Cudini
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fernando Moreira
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Penny Neild
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Suranjith L Seneviratne
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Sarita Workman
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Christos Toumpanakis
- Department of Gastroenterology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Claire Atkinson
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom; Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - David M Lowe
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom; Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Noroviruses are a major cause of gastroenteritis. This review summarizes new information on noroviruses that may lead to the development of improved measures for limiting their human health impact. RECENT FINDINGS GII.4 strains remain the most common human noroviruses causing disease, although GII.2 and GII.17 strains have recently emerged as dominant strains in some populations. Histo-blood group antigen (HBGA) expression on the gut mucosa drives susceptibility to different norovirus strains. Antibodies that block virus binding to these glycans correlate with protection from infection and illness. Immunocompromised patients are significantly impacted by norovirus infection, and the increasing availability of molecular diagnostics has improved infection recognition. Human noroviruses can be propagated in human intestinal enteroid cultures containing enterocytes that are a significant primary target for initiating infection. Strain-specific requirements for replication exist with bile being essential for some strains. Several vaccine candidates are progressing through preclinical and clinical development and studies of potential antiviral interventions are underway. SUMMARY Norovirus epidemiology is complex and requires continued surveillance to track the emergence of new strains and recombinants, especially with the continued progress in vaccine development. Humans are the best model to study disease pathogenesis and prevention. New in-vitro cultivation methods should lead to better approaches for understanding virus-host interactions and ultimately to improved strategies for mitigation of human norovirus-associated disease.
Collapse
|
17
|
Pietsch C, Ennuschat N, Härtel S, Liebert UG. Within-host evolution of virus variants during chronic infection with novel GII.P26-GII.26 norovirus. J Clin Virol 2018; 108:96-102. [PMID: 30268000 DOI: 10.1016/j.jcv.2018.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Noroviruses are a leading cause of acute gastroenteritis in all age groups. They generally cause a rapidly self-limiting illness. However, chronic norovirus diarrheal disease occurs in immunocompromised individuals, and is accompanied by persistent shedding of infectious norovirus in stool. OBJECTIVES The study aims to characterize a novel GII.P26-GII.26 norovirus strain. Furthermore, it analyses viral mutations arising during chronic infection of an immunocompromised host. STUDY DESIGN Over the course of more than three years, stool samples were obtained from an immunocompromised patient and screened for the presence of norovirus RNA by real-time PCR and norovirus antigen by immunoassay. Viral population kinetics was analyzed by conventional and high-throughput-sequencing. RESULTS Real-time PCR yielded high amounts of norovirus RNA in the stool, but antigen immunoassays failed to detect the virus. The near complete norovirus genome was assigned as novel GII.P26-GII.26 genotype. Conventional as well as high-throughput sequencing pointed to a heterogeneous viral population with low rates of non-synonymous substitutions. Within-host evolution was enhanced in non-structural protein p22 and the N-terminal arm of the capsid protein VP1 but reduced in the viral polymerase RdRp. Intermittent non-synonymous substitutions in the protruding domain of the VP1 reverted fully over time. CONCLUSIONS Confirmation of novel GII.P26-GII.26 norovirus genotypes provides insight into norovirus genetic diversity. The study further illustrates norovirus infection as an important differential diagnosis of recurrent persistent diarrhea in immunocompromised patients. The provided data on within-host evolution contribute to the insight of the mechanisms of viral persistence and pathogenesis in chronic norovirus infections.
Collapse
Affiliation(s)
- Corinna Pietsch
- Institute of Virology, Leipzig University, Leipzig, Germany.
| | - Nora Ennuschat
- Institute of Virology, Leipzig University, Leipzig, Germany
| | - Sabine Härtel
- Institute of Virology, Leipzig University, Leipzig, Germany
| | - Uwe G Liebert
- Institute of Virology, Leipzig University, Leipzig, Germany.
| |
Collapse
|