1
|
Brani P, Manzoor HZ, Spezia PG, Vigezzi A, Ietto G, Dalla Gasperina D, Minosse C, Bosi A, Giaroni C, Carcano G, Maggi F, Baj A. Torque Teno Virus: Lights and Shades. Viruses 2025; 17:334. [PMID: 40143262 PMCID: PMC11945719 DOI: 10.3390/v17030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Torque Teno Virus (TTV) is a highly prevalent non-pathogenic DNA virus whose plasma levels may be related to the host's immune status. TTV gained attention about 25 years ago, but its replication is not fully understood, nor is its relationship with the host's immune system. Despite this lack of knowledge, TTV is currently being investigated as a functional biomarker of the immune system in patients with immunological damage and inflammatory diseases. Monitoring TTV viral load over time may help clinicians in making therapeutic decisions regarding immunosuppression as well as the likelihood of infectious complications. This review summarizes what we do and do not know about this enigmatic virus.
Collapse
Affiliation(s)
- Paola Brani
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| | - Hafza Zahira Manzoor
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy
| | - Andrea Vigezzi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Giuseppe Ietto
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Claudia Minosse
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Fabrizio Maggi
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| |
Collapse
|
2
|
Iwata KI, Torii Y, Sakai A, Fukuda Y, Haruta K, Yamaguchi M, Suzuki T, Etani Y, Takahashi Y, Umetsu S, Inui A, Sumazaki R, Kawada JI. Association between adeno-associated virus 2 and severe acute hepatitis of unknown etiology in Japanese children. J Infect Chemother 2025; 31:102462. [PMID: 38969101 DOI: 10.1016/j.jiac.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
INTRODUCTION Outbreaks of acute hepatitis of unknown etiology (AHUE) in children were reported in Western countries in 2022. Previous studies found that adeno-associated virus 2 (AAV2) and its helper viruses, such as human adenovirus (HAdV) and human herpesvirus-6 (HHV-6), are frequently detected in patients with AHUE. However, the existence of hepatitis associated with AAV2 prior to AHUE outbreaks in 2022 had not yet been investigated. We aimed to investigate the association between AAV2 and pediatric acute hepatitis in Japanese children, as well as the incidence of AAV2-related hepatitis prior to 2022. METHODS Preserved blood samples obtained from 49 pediatric patients with acute hepatitis between 2017 and 2023 were retrospectively analyzed. Blood samples from 50 children with acute illnesses and 50 children with chronic conditions were used as controls. Viral DNA loads were quantitated using real-time PCR. RESULTS AAV2 DNA was detected in 12 % (6/49) of acute hepatitis cases but in only one acute illness and none of the chronic-condition control cases. The concentration of AAV2 DNA in the six acute hepatitis cases was higher than that in the acute-illness control case. Co-infection with one or more helper viruses, including HAdV, HHV-6, cytomegalovirus, and Epstein-Barr virus, was observed in five AAV2-positive cases. CONCLUSIONS Our results indicated the sporadic occurrence of pediatric severe hepatitis associated with AAV2 infection in Japan prior to the AHUE outbreaks in 2022. Our findings suggest that co-infection with AAV2 and helper viruses plays a role in developing severe hepatitis.
Collapse
Affiliation(s)
- Ken-Ichi Iwata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aiko Sakai
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yuto Fukuda
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunori Haruta
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Yamaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuri Etani
- Department of Pediatric Gastroenterology, Nutrition, and Endocrinology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuichiro Umetsu
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Ryo Sumazaki
- Department of General Pediatrics, Ibaraki Children's Hospital, Mito, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| |
Collapse
|
3
|
Chen Q, Chen Z, Tan Y, Wu S, Zou S, Liu J, Song S, Du Q, Wang M, Liang K. Blood microbiota in HIV-infected and HIV-uninfected patients with suspected sepsis detected by metagenomic next-generation sequencing. BMC Infect Dis 2024; 24:1210. [PMID: 39468445 PMCID: PMC11520051 DOI: 10.1186/s12879-024-10009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Information on the comparison of blood microbiota between human immunodeficiency virus (HIV)-infected and HIV-uninfected patients with suspected sepsis by metagenomic next-generation sequencing (mNGS) is limited. METHODS Retrospectively analysis was conducted in HIV-infected and HIV-uninfected patients with suspected sepsis at Changsha First Hospital (China) from March 2019 to August 2022. Patients who underwent blood mNGS testing were enrolled. The blood microbiota detected by mNGS were analyzed. RESULTS A total of 233 patients with suspected sepsis who performed blood mNGS were recruited in this study, including 79 HIV-infected and 154 HIV-uninfected patients. Compared with HIV-uninfected patients, the proportions of mycobacterium (p = 0.001), fungus (p < 0.001) and viruses (p < 0.001) were significantly higher, while the proportion of bacteria (p = 0.001) was significantly lower in HIV-infected patients. The higher positive rates of non-tuberculous mycobacteriosis (NTM, p = 0.022), Pneumocystis jirovecii (P. jirovecii) (p = 0.014), Talaromyces marneffei (T. marneffei) (p < 0.001) and cytomegalovirus (CMV) (p < 0.001) were observed in HIV-infected patients, compared with HIV-uninfected patients. In addition, compared with HIV-uninfected patients, the constituent ratio of T. marneffei (p < 0.001) in the fungus spectrum were significantly higher, while the constituent ratios of Candida (p < 0.001) and Aspergillus (p = 0.001) were significantly lower in HIV-infected patients. CONCLUSIONS Significant differences in the blood microbiota profiles exist between HIV-infected and HIV-uninfected patients with suspected sepsis.
Collapse
Affiliation(s)
- Qianhui Chen
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Zhong Chen
- Department of Infection and Immunology, The First Hospital of Changsha City, 410000, Hengyang, Hunan, China
- Hengyang Medical School, Graduate Collaborative Training Base of the First Hospital of Changsha, University of South China, Hengyang, Hunan, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Jie Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Shihui Song
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Qian Du
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Min Wang
- Department of Infection and Immunology, The First Hospital of Changsha City, 410000, Hengyang, Hunan, China.
- Hengyang Medical School, Graduate Collaborative Training Base of the First Hospital of Changsha, University of South China, Hengyang, Hunan, China.
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Han S, Yang S, Wang Y, Xu Y. Case Report: Encephalitis with Initial Manifestation of Orientia Tsutsugamushi Infection Detected by Metagenomic Next-Generation Sequencing. Infect Drug Resist 2024; 17:749-760. [PMID: 38433784 PMCID: PMC10906725 DOI: 10.2147/idr.s450693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Scrub typhus, caused by Orientia tsutsugamushi, is characterized by fever, eschars, lymphadenopathy, and rash. The absence of eschars in some cases makes it difficult to distinguish it from other diseases, complicating the diagnosis process. Atypical Scrub typhus is difficult to diagnose and often leads to delayed treatment. Therefore, early diagnosis and treatment through effective detection methods have high clinical value. Here, a case of scrub typhus with encephalitis symptoms is reported. Patients and Methods A 64-year-old man and mNGS testing. Results A 64-year-old man developed cough, headache, and fever, dismissing it as a respiratory tract infection. Initial treatment with cephalosporin antibiotics had minimal effect. Admission to the respiratory department showed inflammation in blood tests. Subsequent CT and further treatment provided no improvement. Multidisciplinary discussions and neurology department guidance were conducted to consider the suspected diagnosis of encephalitis in the patient. After improving the mNGS detection, the patient was diagnosed with "Orientia tsutsugamushi encephalitis". After treatment with doxycycline, the patient's symptoms were alleviated. He remained afebrile in follow-up and adhered well to medical advice. Conclusion Our case demonstrates that it is difficult to distinguish Orientia tsutsugamushi encephalitis from central nervous system infectious diseases such as meningitis and encephalitis using conventional diagnostic methods, which may affect the treatment plan for the disease. mNGS is a useful and valuable method for early diagnosis of scrub typhus.
Collapse
Affiliation(s)
- Song Han
- The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, 250033, People’s Republic of China
| | - Suge Yang
- The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, 250033, People’s Republic of China
| | - Yun Wang
- Department of Neurology Medicine, The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, 250033, People’s Republic of China
| | - Yingying Xu
- Department of Neurology Medicine, The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, 250033, People’s Republic of China
| |
Collapse
|
5
|
Okumura T, Horiba K, Tetsuka N, Sato Y, Sugiyama Y, Haruta K, Yamaguchi M, Suzuki T, Torii Y, Kawada JI, Ogi T, Hayakawa M, Ito Y. Next-generation sequencing-based detection of Ureaplasma in the gastric fluid of neonates with respiratory distress and chorioamnionitis. J Matern Fetal Neonatal Med 2023; 36:2207113. [PMID: 37150592 DOI: 10.1080/14767058.2023.2207113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Respiratory distress is common in neonates admitted to neonatal intensive care units. Additionally, infectious diseases such as intrauterine infections or vertical transmission are important underlying causes of respiratory failure. However, pathogens often cannot be identified in neonates, and there are many cases in which antibacterial drugs are empirically administered. Next-generation sequencing (NGS) is advantageous in that it can detect trace amounts of bacteria that cannot be detected by culturing or bacteria that are difficult to cultivate. However, there are few reports on the diagnosis of infectious diseases using NGS in the neonatal field, especially those targeting respiratory distress. OBJECTIVE The purpose of our study was to investigate the microorganisms associated with neonatal respiratory distress and to determine whether less invasive collection specimens such as plasma and gastric fluid are useful. METHODS Neonates were prospectively recruited between January and August 2020 from Nagoya University Hospital. The inclusion criteria were as follows: 1) admission to the neonatal intensive care unit; 2) respiratory distress presentation within 48 h of birth; and 3) suspected infection, collection of blood culture, and administration of antibiotics. Plasma samples and blood cultures were simultaneously collected. Gastric fluid samples were also collected if the patient was not started on enteral nutrition. Information on the patients and their mothers were collected from the medical records. DNA was extracted from 140 µL of plasma and gastric fluid samples. DNA sequencing libraries were prepared, and their quality was analyzed. DNA libraries were sequenced using high-throughput NGS. The NGS data of plasma and gastric fluid samples were analyzed using the metagenomic pipeline PATHDET, which calculated the number of reads assigned to microorganisms and their relative abundance. Putative pathogens were listed. RESULTS Overall, 30 plasma samples and 25 gastric fluid samples from 30 neonates were analyzed. Microorganism-derived reads of gastric fluid samples were significantly higher than those of plasma samples. Transient tachypnea of the newborn was the most common cause of respiratory distress with 13 cases (43%), followed by respiratory distress syndrome with 7 cases (23%). There were 8 cases (29%) of chorioamnionitis and 7 cases (25%) of funisitis pathologically diagnosed. All blood cultures were negative, and only two gastric fluid cultures were positive for group B Streptococcus (Patient 15) and Candida albicans (Patient 24). Putative pathogens that met the positive criteria for PATHET were detected in four gastric fluid samples, one of which was group B Streptococcus from Patient 15. In the gastric fluid sample of Patient 24, Candida albicans were detected by NGS but did not meet the positive criteria for PATHDET. Cluster analysis of the plasma samples divided them into two study groups, and the indicator genera of each cluster (Phormidium or Toxoplasma) are shown in Figure 1. Clinical findings did not show any significant differences between the two groups. Cluster analysis of the gastric fluid samples divided them into three study groups, and the indicator genera of each cluster (Ureaplasma, Nostoc, and Streptococcus) are shown in Figure 2. The incidence rate of chorioamnionitis was significantly higher in Ureaplasma group than in the other two groups. CONCLUSION Gastric fluid may be useful for assessing neonatal patients with respiratory distress. To the best of our knowledge, this was the first study to reveal that the presence of Ureaplasma in the gastric fluid of neonates with respiratory distress was associated with chorioamnionitis. The early diagnosis of intra-amniotic infections using gastric fluid and its treatment may change the treatment strategy for neonatal respiratory distress. Screening for Ureaplasma in neonates with respiratory distress may reduce the need for empirical antibiotic administration. Further research is required to confirm these findings.
Collapse
Affiliation(s)
- Toshihiko Okumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuyuki Tetsuka
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Sugiyama
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kazunori Haruta
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Yamaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Teng M, Li Y, Zhao X, White JC, Zhao L, Sun J, Zhu W, Wu F. Vitamin D modulation of brain-gut-virome disorder caused by polystyrene nanoplastics exposure in zebrafish (Danio rerio). MICROBIOME 2023; 11:266. [PMID: 38008755 PMCID: PMC10680193 DOI: 10.1186/s40168-023-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/27/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Many studies have investigated how nanoplastics (NPs) exposure mediates nerve and intestinal toxicity through a dysregulated brain-gut axis interaction, but there are few studies aimed at alleviating those effects. To determine whether and how vitamin D can impact that toxicity, fish were supplemented with a vitamin D-low diet and vitamin D-high diet. RESULTS Transmission electron microscopy (TEM) showed that polystyrene nanoplastics (PS-NPs) accumulated in zebrafish brain and intestine, resulting in brain blood-brain barrier basement membrane damage and the vacuolization of intestinal goblet cells and mitochondria. A high concentration of vitamin D reduced the accumulation of PS-NPs in zebrafish brain tissues by 20% and intestinal tissues by 58.8% and 52.2%, respectively, and alleviated the pathological damage induced by PS-NPs. Adequate vitamin D significantly increased the content of serotonin (5-HT) and reduced the anxiety-like behavior of zebrafish caused by PS-NPs exposure. Virus metagenome showed that PS-NPs exposure affected the composition and abundance of zebrafish intestinal viruses. Differentially expressed viruses in the vitamin D-low and vitamin D-high group affected the secretion of brain neurotransmitters in zebrafish. Virus AF191073 was negatively correlated with neurotransmitter 5-HT, whereas KT319643 was positively correlated with malondialdehyde (MDA) content and the expression of cytochrome 1a1 (cyp1a1) and cytochrome 1b1 (cyp1b1) in the intestine. This suggests that AF191073 and KT319643 may be key viruses that mediate the vitamin D reduction in neurotoxicity and immunotoxicity induced by PS-NPs. CONCLUSION Vitamin D can alleviate neurotoxicity and immunotoxicity induced by PS-NPs exposure by directionally altering the gut virome. These findings highlight the potential of vitamin D to alleviate the brain-gut-virome disorder caused by PS-NPs exposure and suggest potential therapeutic strategies to reduce the risk of NPs toxicity in aquaculture, that is, adding adequate vitamin D to diet. Video Abstract.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yunxia Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wentao Zhu
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing, 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
7
|
Shao J, Hassouna A, Wang Y, Zhang R, Zhen L, Li R, Chen M, Liu C, Wang X, Zhang M, Wang P, Yuan S, Chen J, Lu J. Next-generation sequencing as an advanced supplementary tool for the diagnosis of pathogens in lower respiratory tract infections: An observational trial in Xi'an, China. Biomed Rep 2021; 16:14. [PMID: 35070298 PMCID: PMC8764650 DOI: 10.3892/br.2021.1497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/07/2021] [Indexed: 11/06/2022] Open
Abstract
The application of next-generation sequencing (NGS) in routine clinical analysis is still limited. The significance of NGS in the identification of pathogens of lower respiratory tract infection should be assessed as part of routine clinical bacterial examinations and chest imaging results. In the present study, the alveolar lavage fluid samples of 30 patients (25 males and 5 females, aged 19-92 years old, with a median age of 62) were examined by routine bacterial culture and NGS, and the results of pathogen detection and identification were compared. Chest imaging showed consolidation in all 30 patients (100%), and pleural effusion in 13 of the 30 patients (43.33%). The routine bacterial culture of the lavage solution was only positive in 14 of the 30 patients (46.6%), and negative in 16 patients (53.33%). However, the positive rate of NGS test results of the lavage fluid was 100%. A total of 12 cases (40%) were completely consistent with the routine bacterial culture test, with 56 other pathogens of mixed infection detected, accounting for the short comings of the routine bacterial examination. Although NGS cannot distinguish between live and dead bacteria, it is still a useful detection technology for accurate diagnosis of clinical infectious diseases. It is worthy of adaptation in the clinic for more effective clinical management and treatment of the lower respiratory airway infection in addition to the routine bacterial culture testing.
Collapse
Affiliation(s)
- Jie Shao
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Amira Hassouna
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0622, New Zealand
| | - Yaqin Wang
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Ruirui Zhang
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Lifang Zhen
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Ruidan Li
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Mingli Chen
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Chengjie Liu
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Xiangye Wang
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | | | - Peng Wang
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Shenghua Yuan
- Norinco 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Jie Chen
- Guangzhou Sagene Biotech Co., Ltd., Guangzhou, Guangdong 510320, P.R. China
| | - Jun Lu
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0622, New Zealand
| |
Collapse
|
8
|
Horiba K, Torii Y, Okumura T, Takeuchi S, Suzuki T, Kawada JI, Muramatsu H, Takahashi Y, Ogi T, Ito Y. Next-Generation Sequencing to Detect Pathogens in Pediatric Febrile Neutropenia: A Single-Center Retrospective Study of 112 Cases. Open Forum Infect Dis 2021; 8:ofab223. [PMID: 34859110 PMCID: PMC8634086 DOI: 10.1093/ofid/ofab223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Background Febrile neutropenia (FN) is a frequent complication in immunocompromised patients. However, causative microorganisms are detected in only 10% of patients. This study aimed to detect the microorganisms that cause FN using next-generation sequencing (NGS) to identify the genome derived from pathogenic microorganisms in the bloodstream. Here, we implemented a metagenomic approach to comprehensively analyze microorganisms present in clinical samples from patients with FN. Methods FN is defined as a neutrophil count <500 cells/µL and fever ≥37.5°C. Plasma/serum samples of 112 pediatric patients with FN and 10 patients with neutropenia without fever (NE) were sequenced by NGS and analyzed by a metagenomic pipeline, PATHDET. Results The putative pathogens were detected by NGS in 5 of 10 FN patients with positive blood culture results, 15 of 87 FN patients (17%) with negative blood culture results, and 3 of 8 NE patients. Several bacteria that were common in the oral, skin, and gut flora were commonly detected in blood samples, suggesting translocation of the human microbiota to the bloodstream in the setting of neutropenia. The cluster analysis of the microbiota in blood samples using NGS demonstrated that the representative bacteria of each cluster were mostly consistent with the pathogens in each patient. Conclusions NGS technique has great potential for detecting causative pathogens in patients with FN. Cluster analysis, which extracts characteristic microorganisms from a complex microbial population, may be effective to detect pathogens in minute quantities of microbiota, such as those from the bloodstream.
Collapse
Affiliation(s)
- Kazuhiro Horiba
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Okumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Takeuchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Correspondence: Yoshinori Ito, MD, PhD, Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466–8550, Japan ()
| |
Collapse
|
9
|
Okumura T, Horiba K, Kamei H, Takeuchi S, Suzuki T, Torii Y, Kawada JI, Takahashi Y, Ogura Y, Ogi T, Ito Y. Temporal dynamics of the plasma microbiome in recipients at early post-liver transplantation: a retrospective study. BMC Microbiol 2021; 21:104. [PMID: 33823791 PMCID: PMC8025517 DOI: 10.1186/s12866-021-02154-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background Immunosuppression during liver transplantation (LT) enables the prevention and treatment of organ rejection but poses a risk for severe infectious diseases. Immune modulation and antimicrobials affect the plasma microbiome. Thus, determining the impact of immunosuppression on the microbiome may be important to understand immunocompetence, elucidate the source of infection, and predict the risk of infection in LT recipients. We characterized the plasma microbiome of LT recipients at early post-LT and assessed the association between the microbiome and clinical events. Results In this study, 51 patients who received LT at Nagoya University Hospital from 2016 to 2018 were enrolled. Plasma samples were retrospectively collected at the following time points: 1) within a week after LT; 2) 4 ± 1 weeks after LT; 3) 8 ± 1 weeks after LT; and 4) within 2 days after a positive blood culture. A total of 111 plasma samples were analyzed using shotgun next-generation sequencing (NGS) with the PATHDET pipeline. Relative abundance of Anelloviridae, Nocardiaceae, Microbacteriaceae, and Enterobacteriaceae significantly changed during the postoperative period. Microbiome diversity was higher within a week after LT than that at 8 weeks after LT. Antimicrobials were significantly associated with the microbiome of LT recipients. In addition, the proportion of Enterobacteriaceae was significantly increased and the plasma microbiome diversity was significantly lower in patients with acute cellular rejection (ACR) than non-ACR patients. Sequencing reads of bacteria isolated from blood cultures were predominantly identified by NGS in 8 of 16 samples, and human herpesvirus 6 was detected as a causative pathogen in one recipient with severe clinical condition. Conclusions The metagenomic NGS technique has great potential in revealing the plasma microbiome and is useful as a comprehensive diagnostic procedure in clinical settings. Temporal dynamics of specific microorganisms may be used as indirect markers for the determination of immunocompetence and ACR in LT recipients. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02154-w.
Collapse
Affiliation(s)
- Toshihiko Okumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideya Kamei
- Department of Transplantation Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Suguru Takeuchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Ogura
- Department of Transplantation Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
10
|
Comprehensive Detection of Candidate Pathogens in the Lower Respiratory Tract of Pediatric Patients With Unexpected Cardiopulmonary Deterioration Using Next-Generation Sequencing. Pediatr Crit Care Med 2020; 21:e1026-e1030. [PMID: 32956172 DOI: 10.1097/pcc.0000000000002558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Next-generation sequencing has been applied to the investigation of microorganisms in several clinical settings. We investigated the infectious etiologies in respiratory specimens from pediatric patients with unexpected cardiopulmonary deterioration using next-generation sequencing. DESIGN Retrospective, single-center, observational study. SETTING Tertiary care, a children's hospital. SUBJECTS The study enrolled a total of 16 pediatric patients with unexpected cardiopulmonary deterioration who were admitted to the PICU. Ten bronchoalveolar lavage fluid and six transtracheal aspirate samples were analyzed. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS RNA libraries were prepared from specimens and analyzed using next-generation sequencing. One or more bacterial/viral pathogens were detected in the bronchoalveolar lavage fluid or transtracheal aspirate specimens from 10 patients. Bacterial and viral coinfection was considered in four cases. Compared with the conventional culture and viral antigen test results, an additional six bacterial and four viral pathogens were identified by next-generation sequencing. Conversely, among 18 pathogens identified by the conventional methods, nine pathogens were detected by next-generation sequencing. Candidate pathogens (e.g., coxsackievirus A6 and Chlamydia trachomatis) were detected by next-generation sequencing in four of 10 patients in whom no causative pathogen had been identified by conventional methods. CONCLUSIONS Our results suggest that viral and bacterial infections are common triggers in unexpected cardiopulmonary deterioration in pediatric patients. Next-generation sequencing has the potential to contribute to clarification of the etiology of pediatric critical illness.
Collapse
|
11
|
Torii Y, Horiba K, Hayano S, Kato T, Suzuki T, Kawada JI, Takahashi Y, Kojima S, Okuno Y, Ogi T, Ito Y. Comprehensive pathogen detection in sera of Kawasaki disease patients by high-throughput sequencing: a retrospective exploratory study. BMC Pediatr 2020; 20:482. [PMID: 33059644 PMCID: PMC7557310 DOI: 10.1186/s12887-020-02380-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Kawasaki disease (KD) is an idiopathic systemic vasculitis that predominantly damages coronary arteries in children. Various pathogens have been investigated as triggers for KD, but no definitive causative pathogen has been determined. As KD is diagnosed by symptoms, several days are needed for diagnosis. Therefore, at the time of diagnosis of KD, the pathogen of the trigger may already be diminished. The aim of this study was to explore comprehensive pathogens in the sera at the acute stage of KD using high-throughput sequencing (HTS). Methods Sera of 12 patients at an extremely early stage of KD and 12 controls were investigated. DNA and RNA sequences were read separately using HTS. Sequence data were imported into the home-brew meta-genomic analysis pipeline, PATHDET, to identify the pathogen sequences. Results No RNA virus reads were detected in any KD case except for that of equine infectious anemia, which is known as a contaminant of commercial reverse transcriptase. Concerning DNA viruses, human herpesvirus 6B (HHV-6B, two cases) and Anelloviridae (eight cases) were detected among KD cases as well as controls. Multiple bacterial reads were obtained from KD and controls. Bacteria of the genera Acinetobacter, Pseudomonas, Delfita, Roseomonas, and Rhodocyclaceae appeared to be more common in KD sera than in the controls. Conclusion No single pathogen was identified in serum samples of patients at the acute phase of KD. With multiple bacteria detected in the serum samples, it is difficult to exclude the possibility of contamination; however, it is possible that these bacteria might stimulate the immune system and induce KD.
Collapse
Affiliation(s)
- Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Genetics, Research Institute of Environmental Medicine Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Hayano
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taichi Kato
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
12
|
Kawada JI, Takeuchi S, Imai H, Okumura T, Horiba K, Suzuki T, Torii Y, Yasuda K, Imanaka-Yoshida K, Ito Y. Immune cell infiltration landscapes in pediatric acute myocarditis analyzed by CIBERSORT. J Cardiol 2020; 77:174-178. [PMID: 32891480 DOI: 10.1016/j.jjcc.2020.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Myocarditis is an inflammatory disease of the myocardium, which leads to cardiac dysfunction and heart failure. Previous studies have suggested that complex cross-talk between innate and adaptive immune responses is involved in the pathogenesis of acute myocarditis. Immunohistochemistry is the current standard method for the evaluation of infiltrating immune cells, however, it is difficult to investigate and quantify many immune cell populations using this technique. METHODS Endomyocardial biopsy samples of five pediatric patients with myocarditis were analyzed by cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT), a computational method for quantifying cell fractions from tissue gene expression profiles. CIBERSORT results were then compared with immunohistochemistry analyses. RESULTS Significant results of immune infiltrate deconvolution were obtained in four patients with fulminant myocarditis by CIBERSORT analysis. Among 22 immune cell types, 19 cell types were detected in one or more patients. Activated NK cells were the most prevalent population in two patients, whereas activated memory CD4+ T cells and M2 macrophages were the most prevalent population in one patient each. Overall CIBERSORT results were consistent with those of immunohistochemistry, although some discrepancies were observed. CONCLUSIONS Infiltrating immune cell subsets detected by CIBERSORT analysis can reflect the time course of innate and adaptive immune responses in acute myocarditis. CIBERSORT may have the potential to characterize the detail of infiltrating immune cells in myocardial tissues and provide novel insights into the pathogenesis of acute myocarditis.
Collapse
Affiliation(s)
- Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Suguru Takeuchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Imai
- Pathology Division, Mie University Hospital, Mie, Japan
| | - Toshihiko Okumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Horiba
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Yasuda
- Department of Pediatric Cardiology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Lu IN, Muller CP, He FQ. Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies. Virus Res 2020; 283:197963. [PMID: 32278821 PMCID: PMC7144618 DOI: 10.1016/j.virusres.2020.197963] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized the scale and depth of biomedical sciences. Because of its unique ability for the detection of sub-clonal variants within genetically diverse populations, NGS has been successfully applied to analyze and quantify the exceptionally-high diversity within viral quasispecies, and many low-frequency drug- or vaccine-resistant mutations of therapeutic importance have been discovered. Although many works have intensively discussed the latest NGS approaches and applications in general, none of them has focused on applying NGS in viral quasispecies studies, mostly due to the limited ability of current NGS technologies to accurately detect and quantify rare viral variants. Here, we summarize several error-correction strategies that have been developed to enhance the detection accuracy of minority variants. We also discuss critical considerations for preparing a sequencing library from viral RNAs and for analyzing NGS data to unravel the mutational landscape.
Collapse
Affiliation(s)
- I-Na Lu
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, D-45147 Essen, Germany; Department of Infectious Diseases, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-Sur-Alzette, Luxembourg; Laboratoire National de Santé, L-3583 Dudelange, Luxembourg
| | - Feng Q He
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-Sur-Alzette, Luxembourg; Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
High resolution metagenomic characterization of complex infectomes in paediatric acute respiratory infection. Sci Rep 2020; 10:3963. [PMID: 32127629 PMCID: PMC7054269 DOI: 10.1038/s41598-020-60992-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
The diversity of pathogens associated with acute respiratory infection (ARI) makes diagnosis challenging. Traditional pathogen screening tests have a limited detection range and provide little additional information. We used total RNA sequencing (“meta-transcriptomics”) to reveal the full spectrum of microbes associated with paediatric ARI. Throat swabs were collected from 48 paediatric ARI patients and 7 healthy controls. Samples were subjected to meta-transcriptomics to determine the presence and abundance of viral, bacterial, and eukaryotic pathogens, and to reveal mixed infections, pathogen genotypes/subtypes, evolutionary origins, epidemiological history, and antimicrobial resistance. We identified 11 RNA viruses, 4 DNA viruses, 4 species of bacteria, and 1 fungus. While most are known to cause ARIs, others, such as echovirus 6, are rarely associated with respiratory disease. Co-infection of viruses and bacteria and of multiple viruses were commonplace (9/48), with one patient harboring 5 different pathogens, and genome sequence data revealed large intra-species diversity. Expressed resistance against eight classes of antibiotic was detected, with those for MLS, Bla, Tet, Phe at relatively high abundance. In summary, we used a simple total RNA sequencing approach to reveal the complex polymicrobial infectome in ARI. This provided comprehensive and clinically informative information relevant to understanding respiratory disease.
Collapse
|
15
|
Multi-gene technical assessment of qPCR and NanoString n-Counter analysis platforms in cynomolgus monkey cardiac allograft recipients. Cell Immunol 2019; 347:104019. [PMID: 31744596 DOI: 10.1016/j.cellimm.2019.104019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
Abstract
Quantitative gene expression profiling of cardiac allografts characterizes the phenotype of the alloimmune response, yields information regarding differential effects that may be associated with various anti-rejection drug regimens, and generates testable hypotheses regarding the pathogenesis of the chronic rejection lesions typically observed in non-human primate heart transplant models. The goal of this study was to assess interplatform performance and variability between the relatively novel NanoString nCounter Analysis System, ΔΔCT (relative) RT-qPCR, and standard curve (absolute) RT-qPCR utilizing cynomolgus monkey cardiac allografts. Methods for RNA isolation and preamplification were also systematically evaluated and effective methods are proposed. In this study, we demonstrate strong correlation between the two RT-qPCR methods, but variable and, at times, weak correlation between RT-qPCR and NanoString. NanoString fold change results demonstrate less sensitivity to small changes in gene expression than RT-qPCR. These findings appear to be driven by technical aspects of each platform that influence the conditions under which each technique is ideal. Collectively, our data contribute to the general effort to optimally utilize gene expression profiling techniques, not only for transplanted tissues, but for many other applications where accurate rank-order of gene expression versus precise quantification of absolute gene transcript number may be relatively valuable.
Collapse
|
16
|
Schenz J, Weigand MA, Uhle F. Molecular and biomarker-based diagnostics in early sepsis: current challenges and future perspectives. Expert Rev Mol Diagn 2019; 19:1069-1078. [PMID: 31608730 DOI: 10.1080/14737159.2020.1680285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction: Sepsis, defined as a life-threatening organ dysfunction resulting from dysregulated host response to infection, is still a major challenge for healthcare systems. Early diagnosis is highly needed, yet challenging, due to the non-specificity of clinical symptoms. Rapid and targeted application of therapy strategies is crucial for patient's outcome.Areas covered: Faster and better diagnostics with high accuracy is promised by novel host response biomarkers and a wide variety of direct pathogen identification technologies, which have emerged over the last years. This review will cover both - host response-guided diagnostics and methods for direct pathogen detection. Some of the markers and technologies are already market-ready, others are more likely aspirants. We will discuss them in terms of their performance and benefit for use in clinical diagnostics.Expert opinion: Latest technological advances enable the development of promising diagnostic tests, detecting the host response as well as identifying pathogens without the need of cultivation. However, the syndrome's heterogeneity makes it difficult to develop a universal test suitable for routine use. Moreover, the robustness of the biomarkers and technologies still has to be verified. Combining these technologies and clinical routine parameters with bioinformatic methods (e.g., machine-learning algorithms) may revolutionize sepsis diagnostics.
Collapse
Affiliation(s)
- Judith Schenz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
17
|
Takeuchi S, Kawada JI, Horiba K, Okuno Y, Okumura T, Suzuki T, Torii Y, Kawabe S, Wada S, Ikeyama T, Ito Y. Metagenomic analysis using next-generation sequencing of pathogens in bronchoalveolar lavage fluid from pediatric patients with respiratory failure. Sci Rep 2019; 9:12909. [PMID: 31501513 PMCID: PMC6733840 DOI: 10.1038/s41598-019-49372-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/23/2019] [Indexed: 01/29/2023] Open
Abstract
Next-generation sequencing (NGS) has been applied in the field of infectious diseases. Bronchoalveolar lavage fluid (BALF) is considered a sterile type of specimen that is suitable for detecting pathogens of respiratory infections. The aim of this study was to comprehensively identify causative pathogens using NGS in BALF samples from immunocompetent pediatric patients with respiratory failure. Ten patients hospitalized with respiratory failure were included. BALF samples obtained in the acute phase were used to prepare DNA- and RNA-sequencing libraries. The libraries were sequenced on MiSeq, and the sequence data were analyzed using metagenome analysis tools. A mean of 2,041,216 total reads were sequenced for each library. Significant bacterial or viral sequencing reads were detected in eight of the 10 patients. Furthermore, candidate pathogens were detected in three patients in whom etiologic agents were not identified by conventional methods. The complete genome of enterovirus D68 was identified in two patients, and phylogenetic analysis suggested that both strains belong to subclade B3, which is an epidemic strain that has spread worldwide in recent years. Our results suggest that NGS can be applied for comprehensive molecular diagnostics as well as surveillance of pathogens in BALF from patients with respiratory infection.
Collapse
Affiliation(s)
- Suguru Takeuchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toshihiko Okumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinji Kawabe
- Departments of Infection and Immunity, Aichi Children's Health and Medical Center, 7-426 Morioka-machi, Obu, 474-8710, Japan
| | - Sho Wada
- Division of Pediatric Critical Care Medicine, Aichi Children's Health and Medical Center, 7-426 Morioka-machi, Obu, 474-8710, Japan
| | - Takanari Ikeyama
- Division of Pediatric Critical Care Medicine, Aichi Children's Health and Medical Center, 7-426 Morioka-machi, Obu, 474-8710, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
18
|
Cendejas-Bueno E, Romero-Gómez MP, Mingorance J. The challenge of molecular diagnosis of bloodstream infections. World J Microbiol Biotechnol 2019; 35:65. [DOI: 10.1007/s11274-019-2640-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/27/2019] [Indexed: 01/09/2023]
|
19
|
Acute Liver Failure: From Textbook to Emergency Room and Intensive Care Unit With Concomitant Established and Modern Novel Therapies. J Clin Gastroenterol 2019; 53:89-101. [PMID: 30575637 DOI: 10.1097/mcg.0000000000001162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute liver failure is a rare hepatic emergent situation that affects primarily young people and has often a catastrophic or even fatal outcome. Definition of acute liver failure has not reached a universal consensus and the interval between the appearance of jaundice and hepatic encephalopathy for the establishment of the acute failure is a matter of debate. Among the wide variety of causes, acetaminophen intoxication in western societies and viral hepatitis in the developing countries rank at the top of the etiology list. Identification of the clinical appearance and initial management for the stabilization of the patient are of vital significance. Further advanced therapies, that require intensive care unit, should be offered. The hallmark of treatment for selected patients can be orthotopic liver transplantation. Apart from well-established treatments, novel therapies like hepatocyte or stem cell transplantation, additional new therapeutic strategies targeting acetaminophen intoxication and/or hepatic encephalopathy are mainly experimental, and some of them do not belong, yet, to clinical practice. For clinicians, it is substantial to have the alertness to timely identify the patient and transfer them to a specialized center, where more treatment opportunities are available.
Collapse
|
20
|
Lan Y, Yan Z, Guo Y, Duan T, Li C, Gao P, Christensen MJ. RETRACTED ARTICLE: Albinism and mosaicism in Apocynum venetum associated with viral infections in China. Arch Virol 2019; 164:333. [PMID: 30267156 DOI: 10.1007/s00705-018-4059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Yanru Lan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Agriculture Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhichen Yan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Agriculture Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yane Guo
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Agriculture Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingyu Duan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China.
- Agriculture Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China.
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Agriculture Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Peng Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Agriculture Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Michael J Christensen
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Agriculture Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Takeuchi S, Kawada JI, Okuno Y, Horiba K, Suzuki T, Torii Y, Yasuda K, Numaguchi A, Kato T, Takahashi Y, Ito Y. Identification of potential pathogenic viruses in patients with acute myocarditis using next-generation sequencing. J Med Virol 2018; 90:1814-1821. [PMID: 30011073 DOI: 10.1002/jmv.25263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/30/2018] [Indexed: 12/18/2022]
Abstract
Myocarditis is an inflammatory disease of the myocardium and leads to cardiac dysfunction and heart failure. Although viral infections are considered to be the most common etiology of myocarditis, the identification of the causative virus is still challenging. Recently, next-generation sequencing (NGS) has been applied in the diagnosis of infectious diseases. The aim of the current study was to comprehensively analyze potential pathogenic microorganisms using NGS in the sera of patients with myocarditis. Twelve pediatric and five adult patients hospitalized for acute myocarditis were included. Serum samples in the acute phase were obtained and analyzed using NGS to detect pathogen-derived DNA and RNA. Viral sequence reads were detected in 7 (41%) of the 17 myocarditis patients by NGS. Among these patients, detection of Epstein-Barr virus, human parvovirus B19, torque teno virus, and respiratory syncytial virus reads by NGS was consistent with polymerase chain reaction or antigen test results in one patient each. A large number of human pegivirus reads were detected from one patient by RNA sequencing; however, its pathogenicity to human is unknown. Conversely, the number of detected virus-derived reads was small in most cases, and the pathophysiological role of these viruses remains to be clarified. No significant bacterial or fungal reads other than normal bacterial flora was detected. These data indicate that comprehensive detection of virus-derived DNA and RNA using NGS can be useful for the identification of potential pathogenic viruses in myocarditis.
Collapse
Affiliation(s)
- Suguru Takeuchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Yasuda
- Department of Pediatric Cardiology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Atsushi Numaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taichi Kato
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Goya S, Valinotto LE, Tittarelli E, Rojo GL, Nabaes Jodar MS, Greninger AL, Zaiat JJ, Marti MA, Mistchenko AS, Viegas M. An optimized methodology for whole genome sequencing of RNA respiratory viruses from nasopharyngeal aspirates. PLoS One 2018; 13:e0199714. [PMID: 29940028 PMCID: PMC6016902 DOI: 10.1371/journal.pone.0199714] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022] Open
Abstract
Over the last decade, the number of viral genome sequences deposited in available databases has grown exponentially. However, sequencing methodology vary widely and many published works have relied on viral enrichment by viral culture or nucleic acid amplification with specific primers rather than through unbiased techniques such as metagenomics. The genome of RNA viruses is highly variable and these enrichment methodologies may be difficult to achieve or may bias the results. In order to obtain genomic sequences of human respiratory syncytial virus (HRSV) from positive nasopharyngeal aspirates diverse methodologies were evaluated and compared. A total of 29 nearly complete and complete viral genomes were obtained. The best performance was achieved with a DNase I treatment to the RNA directly extracted from the nasopharyngeal aspirate (NPA), sequence-independent single-primer amplification (SISPA) and library preparation performed with Nextera XT DNA Library Prep Kit with manual normalization. An average of 633,789 and 1,674,845 filtered reads per library were obtained with MiSeq and NextSeq 500 platforms, respectively. The higher output of NextSeq 500 was accompanied by the increasing of duplicated reads percentage generated during SISPA (from an average of 1.5% duplicated viral reads in MiSeq to an average of 74% in NextSeq 500). HRSV genome recovery was not affected by the presence or absence of duplicated reads but the computational demand during the analysis was increased. Considering that only samples with viral load ≥ E+06 copies/ml NPA were tested, no correlation between sample viral loads and number of total filtered reads was observed, nor with the mapped viral reads. The HRSV genomes showed a mean coverage of 98.46% with the best methodology. In addition, genomes of human metapneumovirus (HMPV), human rhinovirus (HRV) and human parainfluenza virus types 1–3 (HPIV1-3) were also obtained with the selected optimal methodology.
Collapse
Affiliation(s)
- Stephanie Goya
- Ricardo Gutiérrez Children’s Hospital, Ciudad Autónoma Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Laura E. Valinotto
- Ricardo Gutiérrez Children’s Hospital, Ciudad Autónoma Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Estefania Tittarelli
- Ricardo Gutiérrez Children’s Hospital, Ciudad Autónoma Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Gabriel L. Rojo
- Ricardo Gutiérrez Children’s Hospital, Ciudad Autónoma Buenos Aires, Argentina
| | - Mercedes S. Nabaes Jodar
- Ricardo Gutiérrez Children’s Hospital, Ciudad Autónoma Buenos Aires, Argentina
- Ministerio de Salud de la Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jonathan J. Zaiat
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Argentine Bioinformatic Platform (BIA), Buenos Aires, Argentina
| | - Marcelo A. Marti
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Argentine Bioinformatic Platform (BIA), Buenos Aires, Argentina
| | - Alicia S. Mistchenko
- Ricardo Gutiérrez Children’s Hospital, Ciudad Autónoma Buenos Aires, Argentina
- Comisión de Investigaciones Científicas (CIC), Buenos Aires, Argentina
| | - Mariana Viegas
- Ricardo Gutiérrez Children’s Hospital, Ciudad Autónoma Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|