1
|
Aikawa NE, Borba EF, Balbi VA, Sallum AME, Buscatti IM, Campos LMA, Kozu KT, Garcia CC, Capão ASV, de Proença ACT, Leon EP, da Silva Duarte AJ, Lopes MH, Silva CA, Bonfá E. Safety and immunogenicity of influenza A(H3N2) component vaccine in juvenile systemic lupus erythematosus. Adv Rheumatol 2023; 63:55. [PMID: 38017564 DOI: 10.1186/s42358-023-00339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
INTRODUCTION Seasonal influenza A (H3N2) virus is an important cause of morbidity and mortality in the last 50 years in population that is greater than the impact of H1N1. Data assessing immunogenicity and safety of this virus component in juvenile systemic lupus erythematosus (JSLE) is lacking in the literature. OBJECTIVE To evaluate short-term immunogenicity and safety of influenza A/Singapore (H3N2) vaccine in JSLE. METHODS 24 consecutive JSLE patients and 29 healthy controls (HC) were vaccinated with influenza A/Singapore/INFIMH-16-0019/2016(H3N2)-like virus. Influenza A (H3N2) seroprotection (SP), seroconversion (SC), geometric mean titers (GMT), factor increase in GMT (FI-GMT) titers were assessed before and 4 weeks post-vaccination. Disease activity, therapies and adverse events (AE) were also evaluated. RESULTS JSLE patients and controls were comparable in current age [14.5 (10.1-18.3) vs. 14 (9-18.4) years, p = 0.448] and female sex [21 (87.5%) vs. 19 (65.5%), p = 0.108]. Before vaccination, JSLE and HC had comparable SP rates [22 (91.7%) vs. 25 (86.2%), p = 0.678] and GMT titers [102.3 (95% CI 75.0-139.4) vs. 109.6 (95% CI 68.2-176.2), p = 0.231]. At D30, JSLE and HC had similar immune response, since no differences were observed in SP [24 (100%) vs. 28 (96.6%), p = 1.000)], SC [4 (16.7%) vs. 9 (31.0%), p = 0.338), GMT [162.3 (132.9-198.3) vs. 208.1 (150.5-287.8), p = 0.143] and factor increase in GMT [1.6 (1.2-2.1) vs. 1.9 (1.4-2.5), p = 0.574]. SLEDAI-2K scores [2 (0-17) vs. 2 (0-17), p = 0.765] and therapies remained stable throughout the study. Further analysis of possible factors influencing vaccine immune response among JSLE patients demonstrated similar GMT between patients with SLEDAI < 4 compared to SLEDAI ≥ 4 (p = 0.713), as well as between patients with and without current use of prednisone (p = 0.420), azathioprine (p = 1.0), mycophenolate mofetil (p = 0.185), and methotrexate (p = 0.095). No serious AE were reported in both groups and most of them were asymptomatic (58.3% vs. 44.8%, p = 0.958). Local and systemic AE were alike in both groups (p > 0.05). CONCLUSION This is the first study that identified adequate immune protection against H3N2-influenza strain with additional vaccine-induced increment of immune response and an adequate safety profile in JSLE. ( www. CLINICALTRIALS gov , NCT03540823).
Collapse
Affiliation(s)
- Nadia Emi Aikawa
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil.
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Eduardo Ferreira Borba
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Verena Andrade Balbi
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Adriana Maluf Elias Sallum
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Izabel Mantovani Buscatti
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Lucia Maria Arruda Campos
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Kátia Tomie Kozu
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
| | - Cristiana Couto Garcia
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Integrated Research Group On Biomarkers. René Rachou Institute, FIOCRUZ Minas, Belo Horizonte, MG, Brazil
| | - Artur Silva Vidal Capão
- Laboratory of Respiratory, Exanthematic Viruses, Enterovirus and Viral Emergencies, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Adriana Coracini Tonacio de Proença
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Elaine Pires Leon
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alberto José da Silva Duarte
- Clinical Laboratory Division - Department of Pathology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marta Heloisa Lopes
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Clovis Artur Silva
- Pediatric Rheumatology Unit, Instituto da Criança e do Adolescente, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3Rd Floor, room 3190 - Cerqueira Cesar, São Paulo, SP, CEP 05403-010, Brazil
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eloisa Bonfá
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Hernández-Hernández VA, Higuera-Iglesias AL, Palma-Cortes G, Tapia-Trejo D, Ávila-Ríos S, González-Fernández RR, Pérez-Moreno LÁ, Zuñiga-Ramos JA, Guadarrama-Pérez C, Sandoval-Gutiérrez JL, Cabello-Gutiérrez C. A(H3N2) antigenic variation of influenza is associated with low vaccine efficacy in the early 2018 influenza season in Mexico City. Int J Infect Dis 2022; 125:114-119. [PMID: 36283676 DOI: 10.1016/j.ijid.2022.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES We evaluated the VE and the mutations of the viruses present in the Mexican population at the beginning of 2018. METHODS We diagnosed influenza in outpatients with a high-performance Rapid Influenza Diagnostic Test (RIDT) qRT-PCR. Descriptive statistics were used to describe the study population, while the chi-square test was used to determine clinical variables. VE was analyzed through a negative test design. We sequenced the hemagglutinin (HA) gene, performed a phylogenetic analysis, and analyzed the nonsynonymous substitutions both in and outside antigenic sites. RESULTS Of the 240 patients analyzed, 42.5% received the trivalent vaccine, and 37.5% were positive for influenza. The VE for the general population for any influenza virus type or subtype was 37.0%, while the VE for the predominant influenza A(H3N2) subtype was the lowest (19.7%). The phylogenetic analysis of HA showed the co-circulation of clades and subclades 3C.2a1, 3C.2a1b, 3C.2a2, 3C.2a2re, 3C.2a3, and 3C.3a with identities approximately 97-98% similar to the vaccine composition. CONCLUSION Low VE was related to the co-circulation of multiple clades and subclades of influenza A(H3N2), with sufficient genetic and phenotypic distance to allow for the infection of vaccinated individuals.
Collapse
Affiliation(s)
- Victor Alberto Hernández-Hernández
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Department of Research in Virology and Mycology, Mexico City, Mexico; National Autonomous University of Mexico, Postgraduate in Biological Sciences, Faculty of Medicine, Mexico City, Mexico
| | - Anjarath Lorena Higuera-Iglesias
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Research in Clinical Epidemiology, Mexico City, Mexico
| | - Gabriel Palma-Cortes
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Department of Research in Virology and Mycology, Mexico City, Mexico
| | - Daniela Tapia-Trejo
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Infectious Disease Research Center, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Infectious Disease Research Center, Mexico City, Mexico
| | - Rubén Roberto González-Fernández
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Department of Research in Virology and Mycology, Mexico City, Mexico
| | - Luis Ángel Pérez-Moreno
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Department of Research in Virology and Mycology, Mexico City, Mexico
| | - Joaquín Alejandro Zuñiga-Ramos
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Immunobiology and Genetics Laboratory, Mexico City, Mexico; Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Cristóbal Guadarrama-Pérez
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Institutional Influenza Committee, Mexico City, Mexico
| | - José Luis Sandoval-Gutiérrez
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Institutional Influenza Committee, Mexico City, Mexico
| | - Carlos Cabello-Gutiérrez
- National Institute of Respiratory Diseases "Ismael Cosio Villegas" (INER), Department of Research in Virology and Mycology, Mexico City, Mexico.
| |
Collapse
|
3
|
Zhang Z, Li S, Zhu X, Hou J, Zhang H, Zhao B, Tian Z. Increased genetic variation of A(H3N2) virus from influenza surveillance at the end of the 2016/2017 season for Shanghai port, China. Sci Rep 2022; 12:17089. [PMID: 36224196 PMCID: PMC9556717 DOI: 10.1038/s41598-022-19228-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/25/2022] [Indexed: 01/04/2023] Open
Abstract
Influenza A(H3N2) virus exhibited complex seasonal patterns to evade pre-existing antibodies, resulting in changes in the antigenicity of the viron surface protein hemagglutinin (HA). To monitor the currently imported influenza viruses as well as to assess the capacity of health emergencies at the Shanghai port, we collected respiratory specimens of passengers from different countries and regions including some of Europe with influenza-like illness at the Shanghai port during 2016/2017, examined amino acid substitutions, and calculated the perfect-match vaccine efficacy using the p epitope model. Phylogenetic analysis of the HA genes revealed that influenza A(H3N2) viruses belonging to eight subclades were detected, and three amino acid substitutions in the subclade 3C.2a.4 were also added. Besides, two epidemic influenza virus strains were found in the 2016/2017 winter and 2016 summer. The results of lower predicted vaccine effectiveness in summer suggest that the imported A(H3N2) strains were not a good match for the A/Hong Kong/4801/2014 vaccine strain since the summer of 2017. Therefore, the Shanghai Port might stop the risk of the international spread of influenza for the first time, and curb the entry of A(H3N2) from overseas at the earliest stage of a probable influenza pandemic.
Collapse
Affiliation(s)
- Zilong Zhang
- Shanghai International Travel Healthcare Center, Shanghai, 200335 China ,Shanghai Customs District P.R.China, Shanghai, 200135 China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai, 200335 China ,Shanghai Customs District P.R.China, Shanghai, 200135 China
| | - Xiaolin Zhu
- Shanghai BioGerm Medical Biotechnology Co., Ltd, Shanghai, 201401 China
| | - Jian Hou
- Shanghai Customs District P.R.China, Shanghai, 200135 China
| | - Hong Zhang
- Shanghai International Travel Healthcare Center, Shanghai, 200335 China ,Shanghai Customs District P.R.China, Shanghai, 200135 China
| | - Baihui Zhao
- grid.16821.3c0000 0004 0368 8293Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai, 200030 China ,Shanghai BioGerm Medical Biotechnology Co., Ltd, Shanghai, 201401 China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center, Shanghai, 200335 China ,Shanghai Customs District P.R.China, Shanghai, 200135 China
| |
Collapse
|
4
|
Owuor DC, de Laurent ZR, Kikwai GK, Mayieka LM, Ochieng M, Müller NF, Otieno NA, Emukule GO, Hunsperger EA, Garten R, Barnes JR, Chaves SS, Nokes DJ, Agoti CN. Characterizing the Countrywide Epidemic Spread of Influenza A(H1N1)pdm09 Virus in Kenya between 2009 and 2018. Viruses 2021; 13:1956. [PMID: 34696386 PMCID: PMC8539974 DOI: 10.3390/v13101956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
The spatiotemporal patterns of spread of influenza A(H1N1)pdm09 viruses on a countrywide scale are unclear in many tropical/subtropical regions mainly because spatiotemporally representative sequence data are lacking. We isolated, sequenced, and analyzed 383 A(H1N1)pdm09 viral genomes from hospitalized patients between 2009 and 2018 from seven locations across Kenya. Using these genomes and contemporaneously sampled global sequences, we characterized the spread of the virus in Kenya over several seasons using phylodynamic methods. The transmission dynamics of A(H1N1)pdm09 virus in Kenya were characterized by (i) multiple virus introductions into Kenya over the study period, although only a few of those introductions instigated local seasonal epidemics that then established local transmission clusters, (ii) persistence of transmission clusters over several epidemic seasons across the country, (iii) seasonal fluctuations in effective reproduction number (Re) associated with lower number of infections and seasonal fluctuations in relative genetic diversity after an initial rapid increase during the early pandemic phase, which broadly corresponded to epidemic peaks in the northern and southern hemispheres, (iv) high virus genetic diversity with greater frequency of seasonal fluctuations in 2009-2011 and 2018 and low virus genetic diversity with relatively weaker seasonal fluctuations in 2012-2017, and (v) virus spread across Kenya. Considerable influenza virus diversity circulated within Kenya, including persistent viral lineages that were unique to the country, which may have been capable of dissemination to other continents through a globally migrating virus population. Further knowledge of the viral lineages that circulate within understudied low-to-middle-income tropical and subtropical regions is required to understand the full diversity and global ecology of influenza viruses in humans and to inform vaccination strategies within these regions.
Collapse
Affiliation(s)
- D. Collins Owuor
- Wellcome Trust Research Programme, Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI), Kilifi 230-80108, Kenya; (Z.R.d.L.); (D.J.N.); (C.N.A.)
| | - Zaydah R. de Laurent
- Wellcome Trust Research Programme, Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI), Kilifi 230-80108, Kenya; (Z.R.d.L.); (D.J.N.); (C.N.A.)
| | - Gilbert K. Kikwai
- Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya; (G.K.K.); (L.M.M.); (M.O.); (N.A.O.)
| | - Lillian M. Mayieka
- Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya; (G.K.K.); (L.M.M.); (M.O.); (N.A.O.)
| | - Melvin Ochieng
- Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya; (G.K.K.); (L.M.M.); (M.O.); (N.A.O.)
| | - Nicola F. Müller
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA;
| | - Nancy A. Otieno
- Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya; (G.K.K.); (L.M.M.); (M.O.); (N.A.O.)
| | - Gideon O. Emukule
- Centers for Disease Control and Prevention (CDC), Influenza Division, Nairobi 606-00621, Kenya; (G.O.E.); (S.S.C.)
| | - Elizabeth A. Hunsperger
- Centers for Disease Control and Prevention, Division of Global Health Protection, Nairobi 606-00621, Kenya;
- Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, GA 30333, USA
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.G.); (J.R.B.)
| | - John R. Barnes
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.G.); (J.R.B.)
| | - Sandra S. Chaves
- Centers for Disease Control and Prevention (CDC), Influenza Division, Nairobi 606-00621, Kenya; (G.O.E.); (S.S.C.)
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.G.); (J.R.B.)
| | - D. James Nokes
- Wellcome Trust Research Programme, Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI), Kilifi 230-80108, Kenya; (Z.R.d.L.); (D.J.N.); (C.N.A.)
- School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), Coventry CV4 7AL, UK
| | - Charles N. Agoti
- Wellcome Trust Research Programme, Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI), Kilifi 230-80108, Kenya; (Z.R.d.L.); (D.J.N.); (C.N.A.)
- School of Public Health and Human Sciences, Pwani University, Kilifi 195-80108, Kenya
| |
Collapse
|
5
|
Claudino Formiga FF, Silva CA, Pedrosa TDN, Aikawa NE, Pasoto SG, Garcia CC, Capão ASV, Martins VADO, Proença ACTD, Fuller R, Yuki EFN, Vendramini MBG, Rosário DCD, Brandão LMKR, Sartori AMC, Antonangelo L, Bonfá E, Borba EF. Influenza A/Singapore (H3N2) component vaccine in systemic lupus erythematosus: A distinct pattern of immunogenicity. Lupus 2021; 30:1915-1922. [PMID: 34459317 DOI: 10.1177/09612033211040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Influenza A (H3N2) virus is the most important cause of seasonal influenza morbidity and mortality in the last 50 years, surpassing the impact of H1N1. Data assessing immunogenicity and safety of this virus component are lacking in systemic lupus erythematosus (SLE) and restricted to small reports with other H3N2 strains. OBJECTIVE This study aims to evaluate short-term immunogenicity and safety of influenza A/Singapore (H3N2) vaccine in SLE. METHODS 81 consecutive SLE patients and 81 age- and sex-matched healthy controls (HC) were vaccinated with the influenza A/Singapore/INFIMH-16-0019/2016(H3N2)-like virus. Seroprotection (SP) and seroconversion (SC) rates, geometric mean titers(GMT), and factor increase in GMT(FI-GMT) and adverse events were assessed before and 4 weeks post-vaccination. Disease activity and therapies were also evaluated. RESULTS Before immunization, SLE and HC groups had high SP rates (89% vs 77%, p = 0.061) and elevated GMT titer with higher levels in SLE (129.1(104.1-154.1) vs 54.8(45.0-64.6), p < 0.001). Frequency of two previous years' influenza vaccination was high and comparable in SLE and HC (89% vs 90%, p = 1.000). Four weeks post-vaccination, median GMT increased for both groups and remained higher in SLE compared to HC (239.9(189.5-290.4) vs 94.5(72.6-116.4), p < 0.0001) with a comparable FI-GMT (2.3(1.8-2.9) vs 1.9(1.5-2.3), p = 0.051). SC rates were low and comparable for both groups (16% vs 11%, respectively, p = 0.974). Disease activity scores remained stable throughout the study (p = 1.000) and severe adverse events were not identified. CONCLUSION Influenza A/Singapore (H3N2) vaccine has an adequate safety profile. The distinct immunogenicity pattern from other influenza A components characterized by a remarkably high pre- and post-vaccination SP rate and high GMT levels may be associated with previous influenza A vaccination. (www.clinicaltrials.gov, NCT03540823).
Collapse
Affiliation(s)
| | - Clovis Artur Silva
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tatiana do Nascimento Pedrosa
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Nadia Emi Aikawa
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sandra Gofinet Pasoto
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cristiana Couto Garcia
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Artur Silva Vidal Capão
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Adriana Coracini Tonacio de Proença
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ricardo Fuller
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Emily Figueiredo Neves Yuki
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Debora Cordeiro do Rosário
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Ana Marli Christovam Sartori
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leila Antonangelo
- Clinical Laboratory Division - Department of Pathology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Bonfá
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eduardo Ferreira Borba
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Lee CCD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021; 17:e1009407. [PMID: 33750987 PMCID: PMC8016226 DOI: 10.1371/journal.ppat.1009407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.
Collapse
Affiliation(s)
- Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, England, United Kingdom
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei City, Taiwan
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
7
|
Janik E, Ceremuga M, Niemcewicz M, Bijak M. Dangerous Pathogens as a Potential Problem for Public Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E591. [PMID: 33172013 PMCID: PMC7694656 DOI: 10.3390/medicina56110591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Pathogens are various organisms, such as viruses, bacteria, fungi, and protozoa, which can cause severe illnesses to their hosts. Throughout history, pathogens have accompanied human populations and caused various epidemics. One of the most significant outbreaks was the Black Death, which occurred in the 14th century and caused the death of one-third of Europe's population. Pathogens have also been studied for their use as biological warfare agents by the former Soviet Union, Japan, and the USA. Among bacteria and viruses, there are high priority agents that have a significant impact on public health. Bacillus anthracis, Francisella tularensis, Yersinia pestis, Variola virus, Filoviruses (Ebola, Marburg), Arenoviruses (Lassa), and influenza viruses are included in this group of agents. Outbreaks and infections caused by them might result in social disruption and panic, which is why special operations are needed for public health preparedness. Antibiotic-resistant bacteria that significantly impede treatment and recovery of patients are also valid threats. Furthermore, recent events related to the massive spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an example of how virus-induced diseases cannot be ignored. The impact of outbreaks, such as SARS-CoV-2, have had far-reaching consequences beyond public health. The economic losses due to lockdowns are difficult to estimate, but it would take years to restore countries to pre-outbreak status. For countries affected by the 2019 coronavirus disease (COVID-19), their health systems have been overwhelmed, resulting in an increase in the mortality rate caused by diseases or injuries. Furthermore, outbreaks, such as SARS-CoV-2, will induce serious, wide-ranging (and possibly long-lasting) psychological problems among, not only health workers, but ordinary citizens (this is due to isolation, quarantine, etc.). The aim of this paper is to present the most dangerous pathogens, as well as general characterizations, mechanisms of action, and treatments.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| |
Collapse
|
8
|
Cheng HY, Wu YC, Lin MH, Liu YL, Tsai YY, Wu JH, Pan KH, Ke CJ, Chen CM, Liu DP, Lin IF, Chuang JH. Applying Machine Learning Models with An Ensemble Approach for Accurate Real-Time Influenza Forecasting in Taiwan: Development and Validation Study. J Med Internet Res 2020; 22:e15394. [PMID: 32755888 PMCID: PMC7439145 DOI: 10.2196/15394] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/21/2019] [Accepted: 06/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Changeful seasonal influenza activity in subtropical areas such as Taiwan causes problems in epidemic preparedness. The Taiwan Centers for Disease Control has maintained real-time national influenza surveillance systems since 2004. Except for timely monitoring, epidemic forecasting using the national influenza surveillance data can provide pivotal information for public health response. Objective We aimed to develop predictive models using machine learning to provide real-time influenza-like illness forecasts. Methods Using surveillance data of influenza-like illness visits from emergency departments (from the Real-Time Outbreak and Disease Surveillance System), outpatient departments (from the National Health Insurance database), and the records of patients with severe influenza with complications (from the National Notifiable Disease Surveillance System), we developed 4 machine learning models (autoregressive integrated moving average, random forest, support vector regression, and extreme gradient boosting) to produce weekly influenza-like illness predictions for a given week and 3 subsequent weeks. We established a framework of the machine learning models and used an ensemble approach called stacking to integrate these predictions. We trained the models using historical data from 2008-2014. We evaluated their predictive ability during 2015-2017 for each of the 4-week time periods using Pearson correlation, mean absolute percentage error (MAPE), and hit rate of trend prediction. A dashboard website was built to visualize the forecasts, and the results of real-world implementation of this forecasting framework in 2018 were evaluated using the same metrics. Results All models could accurately predict the timing and magnitudes of the seasonal peaks in the then-current week (nowcast) (ρ=0.802-0.965; MAPE: 5.2%-9.2%; hit rate: 0.577-0.756), 1-week (ρ=0.803-0.918; MAPE: 8.3%-11.8%; hit rate: 0.643-0.747), 2-week (ρ=0.783-0.867; MAPE: 10.1%-15.3%; hit rate: 0.669-0.734), and 3-week forecasts (ρ=0.676-0.801; MAPE: 12.0%-18.9%; hit rate: 0.643-0.786), especially the ensemble model. In real-world implementation in 2018, the forecasting performance was still accurate in nowcasts (ρ=0.875-0.969; MAPE: 5.3%-8.0%; hit rate: 0.582-0.782) and remained satisfactory in 3-week forecasts (ρ=0.721-0.908; MAPE: 7.6%-13.5%; hit rate: 0.596-0.904). Conclusions This machine learning and ensemble approach can make accurate, real-time influenza-like illness forecasts for a 4-week period, and thus, facilitate decision making.
Collapse
Affiliation(s)
| | | | - Min-Hau Lin
- Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Yu-Lun Liu
- Taiwan Centers for Disease Control, Taipei, Taiwan
| | | | - Jo-Hua Wu
- Value Lab, Acer Inc., Taipei, Taiwan
| | | | - Chih-Jung Ke
- Taiwan Centers for Disease Control, Taipei, Taiwan
| | | | - Ding-Ping Liu
- Taiwan Centers for Disease Control, Taipei, Taiwan.,National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - I-Feng Lin
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Hsiang Chuang
- Taiwan Centers for Disease Control, Taipei, Taiwan.,Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
9
|
Sardesai I, Grover J, Garg M, Nanayakkara P, Di Somma S, Paladino L, Anderson HL, Gaieski D, Galwankar SC, Stawicki SP. Short Term Home Oxygen Therapy for COVID-19 patients: The COVID-HOT algorithm. J Family Med Prim Care 2020; 9:3209-3219. [PMID: 33102272 PMCID: PMC7567238 DOI: 10.4103/jfmpc.jfmpc_1044_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Innovative solutions are required to effectively address the unprecedented surge of demand on our healthcare systems created by the COVID-19 pandemic. Home treatment and monitoring of patients who are asymptomatic or mildly symptomatic can be readily implemented to ameliorate the health system burden while maintaining safety and effectiveness of care. Such endeavor requires careful triage and coordination, telemedicine and technology support, workforce and education, as well as robust infrastructure. In the understandable paucity of evidence-based, protocolized approaches toward HOT for COVID-19 patients, our group has created the current document based on the cumulative experience of members of the Joint ACAIM-WACEM COVID-19 Clinical Management Taskforce. Utilizing available evidence-based resources and extensive front-line experience, the authors have suggested a pragmatic pathway for providing safe and effective home oxygen therapy in the community setting.
Collapse
Affiliation(s)
- Indrani Sardesai
- Department of Emergency Medicine, Queen Elizabeth Hospital, Gateshead, England, United Kingdom
| | - Joydeep Grover
- Department of Emergency Medicine, Southmead Hospital, Bristol, England, United Kingdom
| | - Manish Garg
- Weill Cornell Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - P.W.B. Nanayakkara
- Section General and Acute Internal Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Salvatore Di Somma
- Department of Medical-Surgery Sciences and Translational Medicine, University of Rome Sapienza, Rome, Italy
| | | | - Harry L. Anderson
- Department of Surgery, St. Joseph Mercy Ann Arbor, Ann Arbor, Michigan, USA
| | - David Gaieski
- Department of Emergency Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sagar C. Galwankar
- Department of Emergency Medicine, Sarasota Memorial Hospital, Florida State University, Sarasota, Florida, USA
| | - Stanislaw P. Stawicki
- Department of Research and Innovation, St. Luke's University Health Network, Bethlehem, Pennsylvania, USA
| |
Collapse
|
10
|
Yang JR, Kuo CY, Huang HY, Hsu SZ, Wu FT, Wu FT, Li CH, Liu MT. Seasonal dynamics of influenza viruses and age distribution of infected individuals across nine seasons covering 2009-2018 in Taiwan. J Formos Med Assoc 2019; 119:850-860. [PMID: 31521467 DOI: 10.1016/j.jfma.2019.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/PURPOSE A swine-origin influenza A/H1N1 virus (termed A/H1N1pdm) caused a pandemic in 2009 and has continuously circulated in the human population. To investigate its possible ecological effects on circulating influenza strains, the seasonal patterns of influenza viruses and the respective age distribution of infected patients were studies. METHODS The data obtained from national influenza surveillance systems in Taiwan from July 2009 to June 2018 were analyzed. RESULTS The A/H1N1pdm and A/H3N2 strains usually caused a higher ratio of severe to mild cases than influenza B. New variants of A/H1N1pdm and A/H3N2 emerged accompanied by a large epidemic peak. However, the new influenza B variants intended to circulate for several seasons before causing a large epidemic. The major group of outpatients affected by A/H1N1pdm were aged 13-23 years in the pandemic wave, and the age range of infected individuals gradually shifted to 24-49 and 0-6 years across seasons; A/H1N1pdm-infected inpatients were aged 24-49 years in 2009-2011, and the age range gradually switched to older groups aged 50-65 and >65 years. Individuals aged 0-6 or 24-49 years accounted for the majority of A/H3N2-infected outpatients across seasons, whereas most of the inpatients affected by A/H3N2 were aged >65 years. CONCLUSION Understanding the effects of new variants and changes in dominant circulating viral strains on the age distribution of the affected human population, disease severity and epidemic levels is useful for the establishment of fine-tuned strategies for further improvement of influenza control.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Centers for Disease Control, Taipei, Taiwan, ROC
| | - Chuan-Yi Kuo
- Centers for Disease Control, Taipei, Taiwan, ROC
| | | | - Shu-Zhen Hsu
- Centers for Disease Control, Taipei, Taiwan, ROC
| | - Fu-Ting Wu
- Centers for Disease Control, Taipei, Taiwan, ROC
| | - Fang-Tzy Wu
- Centers for Disease Control, Taipei, Taiwan, ROC
| | - Chung-Hao Li
- Centers for Disease Control, Taipei, Taiwan, ROC
| | | |
Collapse
|
11
|
Kolosova NP, Ilyicheva TN, Danilenko AV, Bulanovich JA, Svyatchenko SV, Durymanov AG, Goncharova NI, Gudymo AS, Shvalov AN, Susloparov IM, Marchenko VY, Tregubchak TV, Gavrilova EV, Maksyutov RA, Ryzhikov AB. Severe cases of seasonal influenza in Russia in 2017-2018. PLoS One 2019; 14:e0220401. [PMID: 31356626 PMCID: PMC6663013 DOI: 10.1371/journal.pone.0220401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/14/2019] [Indexed: 11/19/2022] Open
Abstract
The 2017-2018 influenza epidemic season in Russia was characterized by a relatively low morbidity and mortality. We evaluated herd immunity prior to the 2017-2018 influenza season in hemagglutination inhibition assay, and performed characterization of influenza viruses isolated from severe or fatal influenza cases and from influenza cases in people vaccinated in the fall of 2017. During the 2017-2018 epidemic season, 87 influenza A and B viruses were isolated and viruses of the 75 influenza cases, including selected viral isolates and viruses analyzed directly from the original clinical material, were genetically characterized. The analyzed A(H1N1)pdm09 viruses belonged to clade 6B.1, B/Yamagata-like viruses belonged to clade 3, and B/Victoria-like viruses belonged to clade 1A and they were antigenically similar to the corresponding vaccine strains. A(H3N2) viruses belonged to clade 3C.2a and were difficult to characterize antigenically and the analysis indicated antigenic differences from the corresponding egg-grown vaccine strain. The next generation sequencing revealed the presence of D222/G/N polymorphism in the hemagglutinin gene in 32% of the analyzed A(H1N1)pdm09 lethal cases. This study demonstrated the importance of monitoring D222G/N polymorphism, including detection of minor viral variants with the mutations, in the hemagglutinin gene of A(H1N1)pdm09 for epidemiological surveillance. One strain of influenza virus A(H1N1)pdm09 was resistant to oseltamivir and had the H275Y amino acid substitution in the NA protein. All other isolates were susceptible to NA inhibitors. Prior to the 2017-2018 epidemic season, 67.4 million people were vaccinated, which accounted for 46.6% of the country's population. Just before the epidemic season 33-47% and 24-30% of blood sera samples collected within the territory of Russia showed the presence of protective antibody titers against vaccine strains of influenza A and influenza B/Victoria-like, respectively. Mass vaccination of the population had evidently reduced the severity of the flu epidemic during the 2017-2018 influenza epidemic season in Russia.
Collapse
Affiliation(s)
- Natalia P. Kolosova
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Tatyana N. Ilyicheva
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexey V. Danilenko
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Julia A. Bulanovich
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | | | - Alexander G. Durymanov
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Natalia I. Goncharova
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Andrei S. Gudymo
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Alexander N. Shvalov
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Ivan M. Susloparov
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Vasiliy Y. Marchenko
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Tatyana V. Tregubchak
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Elena V. Gavrilova
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Rinat A. Maksyutov
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| | - Alexander B. Ryzhikov
- State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia
| |
Collapse
|
12
|
Gong YN, Kuo RL, Chen GW, Shih SR. Centennial review of influenza in Taiwan. Biomed J 2018; 41:234-241. [PMID: 30348266 PMCID: PMC6197989 DOI: 10.1016/j.bj.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/25/2022] Open
Abstract
The history of influenza in Taiwan can be traced up to the 1918 H1N1 Spanish flu pandemic, followed by several others including the 1957 H2N2, 1968 H3N2, and the 2009 new H1N1. A couple of avian influenza viruses of H5N1 and H7N9 also posed threats to the general public in Taiwan in the two recent decades. Nevertheless, two seasonal influenza A viruses and two lineages of influenza B viruses continue causing annual endemics one after the other, or appearing simultaneously. Their interplay provided interesting evolutionary trajectories for these viruses, allowing us to computationally model their global migrations together with the data collected elsewhere from different geographical locations. An island-wide laboratory-based surveillance network was also established since 2000 for systematically collecting and managing the disease and molecular epidemiology. Experiences learned from this network helped in encountering and managing newly emerging infectious diseases, including the 2003 SARS and 2009 H1N1 outbreaks.
Collapse
Affiliation(s)
- Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Guang-Wu Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Computer Science and Information Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Humoral immunity to influenza in an at-risk population and severe influenza cases in Russia in 2016-2017. Arch Virol 2018; 163:2675-2685. [PMID: 29872951 DOI: 10.1007/s00705-018-3904-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/19/2018] [Indexed: 12/19/2022]
Abstract
This work aimed to analyze the herd immunity to influenza among a Russian population living in regions with an increased risk of emergence of viruses with pandemic potential, and to isolate and investigate virus strains from severe influenza cases, including fatal cases, during the 2016-2017 epidemic season. In November 2016 - March 2017 highly pathogenic influenza outbreaks were registered in Russia among wild birds and poultry. No cases of human infection were registered. Analysis of 760 sera from people who had contact with infected or perished birds revealed the presence of antibodies to A(H5N1) virus of clade 2.3.2.1c and A(H5N8) virus of clade 2.3.4.4. The 2016-2017 influenza epidemic season in Russia began in weeks 46-47 of 2016 with predominant circulation of influenza A(H3N2) viruses. Strains isolated from severe influenza cases mainly belonged to 3C.2a.2 and 3C.2a.3 genetic groups. Up to the 8th week of 2017 severe influenza cases were often caused by influenza B viruses which belonged to 1A genetic group with antigenic properties similar to B/Brisbane/60/2008. All influenza A and B virus strains isolated in the 2016-2017 epidemic season were sensitive to oseltamivir and zanamivir.
Collapse
|