1
|
Ventura-Enríquez Y, Casas-Guerrero A, Sánchez-Guzmán MDJ, Loyola-Cruz MÁ, Cruz-Cruz C, Nolasco-Rojas AE, Durán-Manuel EM, Blanco-Hernández DMR, Álvarez-Mora F, Ibáñez-Cervantes G, Cureño-Díaz MA, Bello-López JM, Fernández-Sánchez V. Plasma Photoinactivation of Bacterial Isolated from Blood Donors Skin: Potential of Security Barrier in Transfusional Therapy. Pathogens 2024; 13:577. [PMID: 39057804 PMCID: PMC11280016 DOI: 10.3390/pathogens13070577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of skin bacteria capable of forming biofilm, exhibiting antibiotic resistance, and displaying virulence represents a significant challenge in the field of transfusion medicine. This underscores the necessity of enhancing the microbiological safety of blood and blood components against pathogens with virulent characteristics. The aim of this work was to demonstrate bacterial inactivation in plasma by using a photoinactivation method against virulent bacteria and to evaluate coagulation factors before and after treatment. Logarithmic loads of biofilm-producing, antibiotic-resistant, and virulent bacteria isolated from skin (Enterobacter cloacae, Klebsiella ozaenae, and Staphylococcus epidermidis) were used in artificial contamination assays of fresh frozen plasma bags and subjected to photoreduction. FVIII and FI activity were evaluated before and after photoinactivation. The photoinactivation of plasma was demonstrated to be an effective method for the elimination of these bacteria. However, the efficiency of this method was found to be dependent on the bacterial load and the type of test microorganism. Conversely, decay of coagulation factors was observed with net residual activities of 61 and 69% for FVIII and FI, respectively. The photoinactivation system could have a bias in its effectiveness that is dependent on the test pathogen. These findings highlight the importance of employing technologies that increase the safety of the recipient of blood and/or blood components, especially against virulent bacteria, and show the relevance of the role of photoinactivation systems as an option in transfusion practice.
Collapse
Affiliation(s)
| | | | | | | | - Clemente Cruz-Cruz
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Andres Emmanuel Nolasco-Rojas
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Emilio Mariano Durán-Manuel
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Gabriela Ibáñez-Cervantes
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Verónica Fernández-Sánchez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Mexico City 04470, Mexico
- Hospital Juárez de México, Mexico City 07760, Mexico
- Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Mexico City 54090, Mexico
| |
Collapse
|
2
|
Coyne D, Butler D, Meehan A, Keogh E, Williams P, Carterson A, Hervig T, O'Flaherty N, Waters A. The changing profile of SARS-CoV-2 serology in Irish blood donors. GLOBAL EPIDEMIOLOGY 2023; 5:100108. [PMID: 37122774 PMCID: PMC10121150 DOI: 10.1016/j.gloepi.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Background The present study aimed to investigate the progression of the SARS-CoV-2 pandemic in Ireland over the first three waves of infection. Method A selection of blood donor serum samples collected between February 2020 and December 2021 were analysed by various commercially available serological assays for antibodies to SARS-CoV-2 (n = 15,066). Results An increase in seropositivity was observed between wave 1 (February to September 2020) and wave 2 (November and December 2020) of 2.20% to 3.55%. A large increase in estimated seroprevalence to 11.89% was observed in samples collected in February and March 2021 (wave 3 of infection).The rate of seropositivity varied by age group, with the highest rate observed in the youngest donors (18-29 years) peaking at 18.79% in wave 3. The results of spike antibody (anti-S) testing indicated that 44/1009 (4.36%) of seroreactive donors in wave 3 had a serological profile consistent with vaccination. By November 2021, we detected an overall seropositivity of 97.04%. Conclusions The present study provides a comprehensive estimation of the level of circulating SARS-CoV-2 antibodies in Irish blood donors, enabling differentiation between vaccination and natural infection, as well as real-time monitoring of the progression of the COVID-19 pandemic in Ireland. Seroepidemiology has a role in determining reliable estimates of transmission, infection fatality rates and vaccine uptake. The continued screening of blood donors for this purpose has the potential to generate important data to assist with the management of future waves of SARS-CoV-2.
Collapse
Affiliation(s)
- Dermot Coyne
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin D08 NH5R, Ireland
| | - Dearbhla Butler
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin D08 NH5R, Ireland
| | - Adrienne Meehan
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin D08 NH5R, Ireland
| | - Evan Keogh
- Centre for Laboratory Medicine and Molecular Pathology, St James's Hospital, James's Street, Dublin D08 NHY1, Ireland
| | - Pádraig Williams
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin D08 NH5R, Ireland
| | - Alex Carterson
- Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Tor Hervig
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin D08 NH5R, Ireland
| | - Niamh O'Flaherty
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin D08 NH5R, Ireland
- UCD National Virus Reference Laboratory, University College Dublin, Dublin 4, Ireland
| | - Allison Waters
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin D08 NH5R, Ireland
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
3
|
Gallian P, Hozé N, Brisbarre N, Saba Villarroel PM, Nurtop E, Isnard C, Pastorino B, Richard P, Morel P, Cauchemez S, de Lamballerie X. SARS-CoV-2 IgG seroprevalence surveys in blood donors before the vaccination campaign, France 2020-2021. iScience 2023; 26:106222. [PMID: 36818722 PMCID: PMC9930380 DOI: 10.1016/j.isci.2023.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/20/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
We conducted a cross-sectional study for SARS-CoV-2 anti-S1 IgG prevalence in French blood donors (n = 32605), from March-2020 to January-2021. A mathematical model combined seroprevalence with a daily number of hospital admissions to estimate the probability of hospitalization upon infection and determine the number of infections while correcting for antibody decay. There was an overall seroprevalence increase over the study period and we estimate that ∼15% of the French population had been infected by SARS-CoV-2 by January-2021. The infection/hospitalization ratio increased with age, from 0.31% (18-30yo) to 4.5% (61-70yo). Half of the IgG-S1 positive individuals had no detectable antibodies 4 to 5 months after infection. The seroprevalence in group O donors (7.43%) was lower (p = 0.003) than in A, B, and AB donors (8.90%). We conclude, based on seroprevalence data and mathematical modeling, that a large proportion of the French population was unprotected against severe disease prior to the vaccination campaign.
Collapse
Affiliation(s)
- Pierre Gallian
- Établissement Français du Sang, La Plaine Saint Denis 93218, France
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
| | - Nathanaël Hozé
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, 75015 Paris, France
| | - Nadège Brisbarre
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
- Établissement Français du Sang Provence Alpes Côte d'Azur et Corse, 13005 Marseille France
| | | | - Elif Nurtop
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
| | - Christine Isnard
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
- Établissement Français du Sang Provence Alpes Côte d'Azur et Corse, 13005 Marseille France
| | - Boris Pastorino
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
| | - Pascale Richard
- Établissement Français du Sang, La Plaine Saint Denis 93218, France
| | - Pascal Morel
- Établissement Français du Sang, La Plaine Saint Denis 93218, France
- UMR RIGHT 1098, Inserm, Établissement Français du Sang, University of Franche-Comté, 25000 Besançon, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, 75015 Paris, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille University - IRD 190 - Inserm 1207), 13005 Marseille, France
| |
Collapse
|
4
|
Humphreys H, Burke L, O'Connell K, Keogan M. Answering Ireland's call: pathology during the COVID-19 pandemic. J Clin Pathol 2022; 75:721-723. [PMID: 35863884 DOI: 10.1136/jclinpath-2022-208323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Hilary Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons, Dublin, Ireland
| | - Louise Burke
- Department of Pathology, Cork University Hospital/University College Cork, Cork, Ireland
| | | | - Mary Keogan
- Department of Immunology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Chang L, Zhao L, Xiao Y, Xu T, Chen L, Cai Y, Dong X, Wang C, Xiao X, Ren L, Wang L. Serosurvey for SARS-CoV-2 among blood donors in Wuhan, China from September to December 2019. Protein Cell 2022; 14:28-36. [PMID: 36726761 PMCID: PMC9871965 DOI: 10.1093/procel/pwac013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The emerging of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused COVID-19 pandemic. The first case of COVID-19 was reported at early December in 2019 in Wuhan City, China. To examine specific antibodies against SARS-CoV-2 in biological samples before December 2019 would give clues when the epidemic of SARS-CoV-2 might start to circulate in populations. We obtained all 88,517 plasmas from 76,844 blood donors in Wuhan between 1 September and 31 December 2019. We first evaluated the pan-immunoglobin (pan-Ig) against SARS-CoV-2 in 43,850 samples from 32,484 blood donors with suitable sample quality and enough volume. Two hundred and sixty-four samples from 213 donors were pan-Ig reactive, then further tested IgG and IgM, and validated by neutralizing antibodies against SARS-CoV-2. Two hundred and thirteen samples (from 175 donors) were only pan-Ig reactive, 8 (from 4 donors) were pan-Ig and IgG reactive, and 43 (from 34 donors) were pan-Ig and IgM reactive. Microneutralization assay showed all negative results. In addition, 213 screened reactive donors were analyzed and did not show obviously temporal or regional tendency, but the distribution of age showed a difference compared with all tested donors. Then we reviewed SARS-CoV-2 antibody results from these donors who donated several times from September 2019 to June 2020, partly tested in a previous published study, no one was found a significant increase in S/CO of antibodies against SARS-CoV-2. Our findings showed no SARS-CoV-2-specific antibodies existing among blood donors in Wuhan, China before 2020, indicating no evidence of transmission of COVID-19 before December 2019 in Wuhan, China.
Collapse
Affiliation(s)
| | | | - Yan Xiao
- National Health Commission of the People’s Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tingting Xu
- Department of Laboratory, Wuhan Blood Center, Wuhan 430030, China,Confirmation Laboratory for Transfusion Transmitted Disease, Institute of Blood Transfusion of Hubei Province, Wuhan 430030, China
| | - Lan Chen
- National Health Commission of the People’s Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Cai
- Department of Quality Control, Wuhan Blood Center, Wuhan 430030, China
| | - Xiaojing Dong
- National Health Commission of the People’s Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Conghui Wang
- National Health Commission of the People’s Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xia Xiao
- National Health Commission of the People’s Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | |
Collapse
|
6
|
Wade H, Duan Q, Su Q. Interaction between Sars-CoV-2 structural proteins and host cellular receptors: From basic mechanisms to clinical perspectives. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:243-277. [PMID: 36088078 PMCID: PMC9182089 DOI: 10.1016/bs.apcsb.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) has caused a global pandemic that has affected the lives of billions of individuals. Sars-CoV-2 primarily infects human cells by binding of the viral spike protein to angiotensin-converting enzyme 2 (ACE2). In addition, novel means of viral entry are currently being investigated, including Neuropillin 1, toll-like receptors (TLRs), cluster of differentiation 147 (CD147), and integrin α5β1. Enriched expression of these proteins across metabolic regulatory organs/tissues, including the circulatory system, liver, pancreas, and intestine contributes to major clinical complications among COVID-19 patients, particularly the development of hypertension, myocardial injury, arrhythmia, acute coronary syndrome and increased coagulation in the circulatory system during and post-infection. Pre-existing metabolic disease, such as cardiovascular disease, obesity, diabetes, and non-alcoholic fatty liver disease, is associated with increased risk of hospitalization, persistent post-infection complications and worse outcomes in patients with COVID-19. This review overviews the biological features of Sars-CoV-2, highlights recent findings that delineate the pathological mechanisms of COVID-19 and the consequent clinical diseases.
Collapse
|