1
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
2
|
Amesz JH, Zhang L, Everts BR, De Groot NMS, Taverne YJHJ. Living myocardial slices: Advancing arrhythmia research. Front Physiol 2023; 14:1076261. [PMID: 36711023 PMCID: PMC9880234 DOI: 10.3389/fphys.2023.1076261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Living myocardial slices (LMS) are ultrathin (150-400 µm) sections of intact myocardium that can be used as a comprehensive model for cardiac arrhythmia research. The recent introduction of biomimetic electromechanical cultivation chambers enables long-term cultivation and easy control of living myocardial slices culture conditions. The aim of this review is to present the potential of this biomimetic interface using living myocardial slices in electrophysiological studies outlining advantages, disadvantages and future perspectives of the model. Furthermore, different electrophysiological techniques and their application on living myocardial slices will be discussed. The developments of living myocardial slices in electrophysiology research will hopefully lead to future breakthroughs in the understanding of cardiac arrhythmia mechanisms and the development of novel therapeutic options.
Collapse
Affiliation(s)
- Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lu Zhang
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bian R. Everts
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Natasja M. S. De Groot
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
3
|
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Akagi S, Miyoshi T, Morita H, Ito H. Enhancement of pacing function by HCN4 overexpression in human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:141. [PMID: 35365232 PMCID: PMC8973792 DOI: 10.1186/s13287-022-02818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The number of patients with bradyarrhythmia and the number of patients with cardiac pacemakers are increasing with the aging population and the increase in the number of patients with heart diseases. Some patients in whom a cardiac pacemaker has been implanted experience problems such as pacemaker infection and inconvenience due to electromagnetic interference. We have reported that overexpression of HCN channels producing a pacemaker current in mouse embryonic stem cell-derived cardiomyocytes showed enhanced pacing function in vitro and in vivo. The aim of this study was to determine whether HCN4 overexpression in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can strengthen the pacing function of the cells. Methods Human HCN4 was transduced in the AAVS1 locus of human induced pluripotent stem cells by nucleofection and HCN4-overexpressing iPSC-CMs were generated. Gene expression profiles, frequencies of spontaneous contraction and pacing abilities of HCN4-overexpressing and non-overexpressing iPSC-CMs in vitro were compared. Results HCN4-overexpressing iPSC-CMs showed higher spontaneous contraction rates than those of non-overexpressing iPSC-CMs. They responded to an HCN channel blocker and β adrenergic stimulation. The pacing rates against parent iPSC line-derived cardiomyocytes were also higher in HCN4-overexpressing iPSC-CMs than in non-overexpressing iPSC-CMs. Conclusions Overexpression of HCN4 showed enhancement of If current, spontaneous firing and pacing function in iPSC-CMs. These data suggest this transgenic cell line may be useful as a cardiac pacemaker. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02818-y.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama, Japan.
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan.
| | - Masashi Yoshida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Dentistry, and Pharmaceutical Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiroki Sugiyama
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| |
Collapse
|
4
|
Naumova N, Iop L. Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Front Bioeng Biotechnol 2021; 9:673477. [PMID: 34409019 PMCID: PMC8365186 DOI: 10.3389/fbioe.2021.673477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Heart rhythm disturbances caused by different etiologies may affect pediatric and adult patients with life-threatening consequences. When pharmacological therapy is ineffective in treating the disturbances, the implantation of electronic devices to control and/or restore normal heart pacing is a unique clinical management option. Although these artificial devices are life-saving, they display many limitations; not least, they do not have any capability to adapt to somatic growth or respond to neuroautonomic physiological changes. A biological pacemaker could offer a new clinical solution for restoring heart rhythms in the conditions of disorder in the cardiac conduction system. Several experimental approaches, such as cell-based, gene-based approaches, and the combination of both, for the generation of biological pacemakers are currently established and widely studied. Pacemaker bioengineering is also emerging as a technology to regenerate nodal tissues. This review analyzes and summarizes the strategies applied so far for the development of biological pacemakers, and discusses current translational challenges toward the first-in-human clinical application.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Sun B, Dong X, Zhao J, Yang Z, Zhang Y, Li L. Differentiation of human urine-derived stem cells into interstitial cells of Cajal-like cells by exogenous gene modification: A preliminary study. Biochem Biophys Res Commun 2019; 523:10-17. [PMID: 31831171 DOI: 10.1016/j.bbrc.2019.09.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
Human urine-derived stem cells (hUSCs) show multipotential differentiation ability and can differentiate into mesodermal cell lineages. Interstitial cells of Cajal-like cells (ICC-LCs) are crucial for the pace-making function of spontaneous contraction in the bladder. However, the mechanisms by which hUSCs generate ICC-LCs have not been elucidated. In this study, we developed a strategy for directional differentiation of hUSCs into ICC-LCs. hUSCs were transfected with lentiviral vectors encoding c-Kit, stem cell factor (SCF), hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4), and 5-azacytidine induced 2 (AZI2) genes, and the cells were cultured for an additional 7 days in specific medium. The expression of the surface marker c-Kit on ICC-LCs was determined at 7 days after transfection. hUSCs were successfully expanded and transfected with the four lentiviral vectors. hUSCs transfected with lentiviral-c-Kit, lentiviral-HCN4, and lentiviral-AZI2 showed higher expression of c-Kit 7 days after transfection, but only the lentiviral-HCN4-transfected cells showed morphological alterations in ICC-LCs. These cells also displayed visible HCN current amplitude and density. This approach may provide a new strategy for the treatment of underactive bladder.
Collapse
Affiliation(s)
- Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
6
|
Li Y, Yang M, Zhang G, Li L, Ye B, Huang C, Tang Y. Transcription factor TBX18 promotes adult rat bone mesenchymal stem cell differentiation to biological pacemaker cells. Int J Mol Med 2017; 41:845-851. [PMID: 29207072 PMCID: PMC5752232 DOI: 10.3892/ijmm.2017.3259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/01/2017] [Indexed: 01/17/2023] Open
Abstract
Bone mesenchymal stem cells (BMSCs) are currently considered the optimal stem cells for biological pacemaker cell transformation. The cardiac-specific transcription factor T-Box protein 18 (TBX18) is essential for sinoatrial node (SAN) formation, particularly formation of the head region that generates the electrical impulses that induce heart contraction. The present study aimed to confirm the effects of TBX18 on biological pace-maker differentiation of rat BMSCs. Flow cytometry was used to identify the surface markers of BMSCs, in order to acquire pure mesenchymal stem cells. Subsequently, BMSCs were transduced with TBX18 or green fluorescent protein adenovirus vectors. The effects of TBX18 were evaluated using SAN-specific makers including TBX18, α-actin, cardiac troponin I, hyperpolarization-activated cyclic nucleotide-gated channel 4 and connexin 43 by reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence. The findings demonstrated that direct conversion of BMSCs to biological pacemaker cells via TBX18 is a feasible method in the field of cardiology.
Collapse
Affiliation(s)
- Yanjun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Gege Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Le Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Bingjie Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Cai Y, Tang H, Jiang F, Dong Z. Slow Wave Activity and Modulations in Mouse Jejunum Myenteric Plexus In Situ. J Neurogastroenterol Motil 2017; 23:117-123. [PMID: 27436346 PMCID: PMC5216642 DOI: 10.5056/jnm16012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 01/25/2023] Open
Abstract
Background/Aims Myenteric plexus interstitial cells of Cajal (ICC-MY) are involved in the generation of gut pacemaker activity and neuronal communication. We performed patch clamp on ICC-MY in situ to observe the changes of pacemaker activity in response to neural modulations. Methods A fresh longitudinal muscle with myenteric plexus (LMMP) from mouse jejunum was prepared. ICC-MY and ganglion neurons embedded in the layer of longitudinal muscles were targeted by patch clamping in whole-cell configuration in a model of current or voltage clamp. Neurogenic modulators were applied to evaluate their effects on ICC pacemaker activity. Results In situ ICC-MY showed spontaneous and rhythmical voltage oscillations with a frequency of 27.2 ± 3.9 cycles/min, amplitude of 32.6 ± 6.3 mV, and resting membrane potential of −62.2 ± 2.8 mV. In situ neurons showed electrically evocable action potential in single or multiple spikes. Pacemaker activity was modulated by neuronal activators through receiving a neuronal input. Application of tetrodotoxin depolarized pacemaker potentials in a dose dependent manner, and decreased the amplitude at tetrodotoxin 0.3 μM for about 40 ± 10%; capsaicin (1 μM) ameliorated ICC-MY K+ current for about 49 ± 14.8%; and, nitric oxide hyperpolarized pacemaker potential and decreased the amplitude and frequency. Conclusions The in situ preparation patch clamp study further demonstrates that the pacemaker activity is an intrinsic property of ICC. The neurogenic activators change and shape pacemaker potential and activity in situ. LMMP preparation in situ patch clamp provides an ideal platform to study the functional innervation of the ICC and the enteric neural system, thereby, for evaluating the neural regulation of pacemaker activity, especially in disorder models.
Collapse
Affiliation(s)
- Ying Cai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - He Tang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fan Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhaojun Dong
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Antiarrhythmic gene therapy - will biologics replace catheters, drugs and devices? Eur J Pharmacol 2016; 791:264-273. [PMID: 27593579 DOI: 10.1016/j.ejphar.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/08/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023]
Abstract
The clinical management of heart rhythm disorders still constitutes a major challenge. The development of alternatives to current approaches is of significant interest in order to establish more effective therapies that increase quality of life and reduce symptoms and hospitalizations. Over the past two decades the mechanistic understanding of pathophysiological pathways underlying cardiac arrhythmias has advanced profoundly, opening up novel avenues for mechanism-based therapeutic approaches. In particular, gene therapy offers greater selectivity than small molecule-based or interventional treatment. The gene of interest is packaged into viral or non-viral carriers and delivered to the target area via direct injection or using catheter-based techniques, providing the advantage of site-restricted action in contrast to systemic application of drugs. This work summarizes the current knowledge on mechanistic background, application strategies, and preclinical outcome of antiarrhythmic gene therapy for atrial fibrillation, ventricular tachycardia, and modulation of sinus node function.
Collapse
Affiliation(s)
- Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital, Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital, Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany; Heidelberg Research Center for Molecular Medicine (HRCMM), Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital, Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital, Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Electric pulse current stimulation increases electrophysiological properties of I f current reconstructed in mHCN4-transfected canine mesenchymal stem cells. Exp Ther Med 2016; 11:1323-1329. [PMID: 27073443 PMCID: PMC4812437 DOI: 10.3892/etm.2016.3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/28/2016] [Indexed: 01/11/2023] Open
Abstract
The 'funny' current, also known as the If current, play a crucial role in the spontaneous diastolic depolarization of sinoatrial node cells. The If current is primarily induced by the protein encoded by the hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) gene. The functional If channel can be reconstructed in canine mesenchymal stem cells (cMSCs) transfected with mouse HCN4 (mHCN4). Biomimetic studies have shown that electric pulse current stimulation (EPCS) can promote cardiogenesis in cMSCs. However, whether EPCS is able to influence the properties of the If current reconstructed in mHCN4-transfected cMSCs remains unclear. The present study aimed to investigate the effects of EPCS on the If current reconstructed in mHCN4-transfected cMSCs. The cMSCs were transfected with the lentiviral vector pLentis-mHCN4-GFP. Following transfection, these cells were divided into two groups: mHCN4-transfected cMSCs (group A), and mHCN4-transfected cMSCs induced by EPCS (group B). Using a whole cell patch-clamp technique, the If current was recorded, and group A cMSCs showed significant time and voltage dependencies and sensitivity to extracellular Cs+. The half-maximal activation (V1/2) value was -101.2±4.6 mV and the time constant of activation was 324±41 msec under -160 mV. In the group B cells the If current increased obviously and activation curve moved to right. The absolute value of V1/2 increased significantly to -92.4±4.8 mV (P<0.05), and the time constant of activation diminished under the same command voltage (251±44 vs. 324±41, P<0.05). In addition, the mRNA and protein expression levels of HCN4, connexin 43 (Cx43) and Cx45 were upregulated in group B compared with group A, as determined by reverse transcription-quantitative polymerase chain reaction and western blot analyses. Transmission electron micrographs also confirmed the increased gap junctions in group B. Collectively, these results indicated that reconstructed If channels may have a positive regulatory role in EPCS induction. The cMSCs transfected with mHCN4 induced by EPCS may be a source of effective biological pacemaker cells.
Collapse
|
10
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|