1
|
Lin SL, Lee W, Liu SP, Chang YW, Jeng LB, Shyu WC. Novel Programmed Death Ligand 1-AKT-engineered Mesenchymal Stem Cells Promote Neuroplasticity to Target Stroke Therapy. Mol Neurobiol 2024; 61:3819-3835. [PMID: 38030932 DOI: 10.1007/s12035-023-03779-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Although tissue plasminogen activator (t-PA) and endovascular thrombectomy are well-established treatments for acute ischemic stroke, over half of patients with stroke remain disabled for a long time. Thus, a significant unmet need exists to develop an effective strategy for treating acute stroke. We developed a combination of programmed cell death-ligand 1 (PD-L1) and AKT-modified umbilical cord mesenchymal stem cells (UMSC-PD-L1-AKT) implanted through intravenous (IV) and intracarotid (IA) routes to enhance therapeutic efficacy in a murine stroke model for overcoming the hypoxic environment of the ischemic brain, to prolong stem cell survival, and to attenuate systemic inflammation to protect neuroglial cells from ischemic injury. Higher cellular proliferation and survival upon exposure to toxic agents were observed in UMSC-PD-L1-AKT cells than in UMSCs in vitro. Moreover, increased attenuation of CFSE+ cell proliferation and increased survival of primary cortical cells were verified by the interaction with UMSC-PD-L1-AKT. Consistently, dual-route administration (IV + IA) of UMSC-PD-L1-AKT resulted in a significant reduction in infarction volume and improvement of neurological dysfunction in a stroke model. Furthermore, enhancing CD8+CD122+IL-10+ T-regulatory (Treg) cells and reducing CD11b+CD80+ microglial/macrophages and CD3+CD8+TNF-α+ and CD3+CD8+ IFN-α+ cytotoxic T cells induced an anti-inflammatory microenvironment to protect neuroglial cells in the ischemic brain. Collectively, therapeutic intervention using UMSC-PD-L1-AKT could provide a niche for inducing neuroplastic regeneration in brains after stroke.
Collapse
Affiliation(s)
- Syuan-Ling Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei Lee
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Liu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chang
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, China Medical University, Taichung, Taiwan.
- Department of Occupational Therapy, Asia University, Taichung, Taiwan.
| |
Collapse
|
2
|
Gornostaeva AN, Bobyleva PI, Andreeva ER, Gogiya BS, Buravkova LB. Alteration of PBMC transcriptome profile after interaction with multipotent mesenchymal stromal cells under "physiological" hypoxia. Immunobiology 2024; 229:152766. [PMID: 38091798 DOI: 10.1016/j.imbio.2023.152766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
Multipotent mesenchymal stromal cells (MSCs) have demonstrated a pronounced immunosuppressive activity, the manifestation of which depends on the microenvironmental factors, including O2 level. Here we examined the effects of MSCs on transcriptomic profile of allogeneic phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) after interaction at ambient (20%) or "physiological" hypoxia (5%) O2. As revealed with microarray analysis, PBMC transcriptome at 20% O2 was more affected, which was manifested as differential expression of more than 300 genes, whereas under 5% O2 220 genes were changed. Most of genes at 20% O2 were downregulated, while at hypoxia most of genes were upregulated. Altered gene patterns were only partly overlapped at different O2 levels. A set of altered genes at hypoxia only was of particular interest. According to Gene Ontology a part of above genes was responsible for adhesion, cell communication, and immune response. At both oxygen concentrations, MSCs demonstrated effective immunosuppression manifested as attenuation of T cell activation and proliferation as well as anti-inflammatory shift of cytokine profile. Thus, MSC-mediated immunosuppression is executed with greater efficacy at a "physiological" hypoxia, since the same result has been achieved through a change in the expression of a fewer genes in target PBMCs.
Collapse
Affiliation(s)
- A N Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia.
| | - P I Bobyleva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| | - E R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| | - B Sh Gogiya
- Department of Herniology and Plastic Surgery, A. V. Vishnevsky Institute of Surgery, Bolshaya Serpukhovskaya Str, 27, 117997 Moscow, Russia
| | - L B Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse 76a, 123007 Moscow, Russia
| |
Collapse
|
3
|
Bonilla X, Lara AM, Llano-León M, López-González DA, Hernández-Mejía DG, Bustos RH, Camacho-Rodríguez B, Perdomo-Arciniegas AM. Mesenchymal Stromal Cells from Perinatal Tissues as an Alternative for Ex Vivo Expansion of Hematopoietic Progenitor and Stem Cells from Umbilical Cord Blood. Int J Mol Sci 2023; 24:15544. [PMID: 37958529 PMCID: PMC10648510 DOI: 10.3390/ijms242115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Umbilical cord blood (UCB) serves as a source of hematopoietic stem and progenitor cells (HSPCs) utilized in the regeneration of hematopoietic and immune systems, forming a crucial part of the treatment for various benign and malignant hematological diseases. UCB has been utilized as an alternative HSPC source to bone marrow (BM). Although the use of UCB has extended transplantation access to many individuals, it still encounters significant challenges in selecting a histocompatible UCB unit with an adequate cell dose for a substantial proportion of adults with malignant hematological diseases. Consequently, recent research has focused on developing ex vivo expansion strategies for UCB HSPCs. Our results demonstrate that co-cultures with the investigated mesenchymal stromal cells (MSCs) enable a 10- to 15-fold increase in the cellular dose of UCB HSPCs while partially regulating the proliferation capacity when compared to HSPCs expanded with early acting cytokines. Furthermore, the secretory profile of UCB-derived MSCs closely resembles that of BM-derived MSCs. Moreover, both co-cultures exhibit alterations in cytokine secretion, which could potentially impact HSPC proliferation during the expansion process. This study underscores the fact that UCB-derived MSCs possess a remarkably similar supportive capacity to BM-derived MSCs, implying their potential use as feeder layers in the ex vivo expansion process of HSPCs.
Collapse
Affiliation(s)
- Ximena Bonilla
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - Ana Milena Lara
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - Manuela Llano-León
- Advanced Therapies Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (M.L.-L.); (D.G.H.-M.)
| | - David A. López-González
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - David G. Hernández-Mejía
- Advanced Therapies Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (M.L.-L.); (D.G.H.-M.)
| | - Rosa Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía 140013, Colombia;
| | - Bernardo Camacho-Rodríguez
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | | |
Collapse
|
4
|
Olmedo-Moreno L, Aguilera Y, Baliña-Sánchez C, Martín-Montalvo A, Capilla-González V. Heterogeneity of In Vitro Expanded Mesenchymal Stromal Cells and Strategies to Improve Their Therapeutic Actions. Pharmaceutics 2022; 14:1112. [PMID: 35631698 PMCID: PMC9146397 DOI: 10.3390/pharmaceutics14051112] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Beneficial properties of mesenchymal stromal cells (MSCs) have prompted their use in preclinical and clinical research. Accumulating evidence has been provided for the therapeutic effects of MSCs in several pathologies, including neurodegenerative diseases, myocardial infarction, skin problems, liver disorders and cancer, among others. Although MSCs are found in multiple tissues, the number of MSCs is low, making in vitro expansion a required step before MSC application. However, culture-expanded MSCs exhibit notable differences in terms of cell morphology, physiology and function, which decisively contribute to MSC heterogeneity. The changes induced in MSCs during in vitro expansion may account for the variability in the results obtained in different MSC-based therapy studies, including those using MSCs as living drug delivery systems. This review dissects the different changes that occur in culture-expanded MSCs and how these modifications alter their therapeutic properties after transplantation. Furthermore, we discuss the current strategies developed to improve the beneficial effects of MSCs for successful clinical implementation, as well as potential therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, 41092 Seville, Spain; (L.O.-M.); (Y.A.); (C.B.-S.); (A.M.-M.)
| |
Collapse
|
5
|
Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res 2021; 31:1244-1262. [PMID: 34702946 PMCID: PMC8546390 DOI: 10.1038/s41422-021-00573-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.
Collapse
|
6
|
Ahn SY, Sung DK, Chang YS, Sung SI, Kim YE, Kim HJ, Lee SM, Park WS. BDNF-Overexpressing Engineered Mesenchymal Stem Cells Enhances Their Therapeutic Efficacy against Severe Neonatal Hypoxic Ischemic Brain Injury. Int J Mol Sci 2021; 22:ijms222111395. [PMID: 34768827 PMCID: PMC8583727 DOI: 10.3390/ijms222111395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
We investigated whether irradiated brain-derived neurotropic factor (BDNF)-overexpressing engineered human mesenchymal stem cells (BDNF-eMSCs) improve paracrine efficiency and, thus, the beneficial potency of naïve MSCs against severe hypoxic ischemic (HI) brain injury in newborn rats. Irradiated BDNF-eMSCs hyper-secreted BDNF > 10 fold and were >5 fold more effective than naïve MSCs in attenuating the oxygen-glucose deprivation-induced increase in cytotoxicity, oxidative stress, and cell death in vitro. Only the irradiated BDNF-eMSCs, but not naïve MSCs, showed significant attenuating effects on severe neonatal HI-induced short-term brain injury scores, long-term progress of brain infarct, increased apoptotic cell death, astrogliosis and inflammatory responses, and impaired negative geotaxis and rotarod tests in vivo. Our data, showing better paracrine potency and the resultant better therapeutic efficacy of the irradiated BDNF-eMSCs, compared to naïve MSCs, suggest that MSCs transfected with the BDNF gene might represent a better, new therapeutic strategy against severe neonatal HI brain injury.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Young Eun Kim
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Hyo-Jin Kim
- SL BiGen, Inc., SL BIGEN Research Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (H.-J.K.); (S.M.L.)
| | - Soon Min Lee
- SL BiGen, Inc., SL BIGEN Research Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (H.-J.K.); (S.M.L.)
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
- Correspondence: ; Tel.: +82-2-3410-3523
| |
Collapse
|
7
|
Hansen M, Stahl L, Heider A, Hilger N, Sack U, Kirschner A, Cross M, Fricke S. Reduction of Graft-versus-Host-Disease in NOD.Cg-Prkdc scid Il2rg tm1Wjl/SzJ (NSG) Mice by Cotransplantation of Syngeneic Human Umbilical Cord-Derived Mesenchymal Stromal Cells. Transplant Cell Ther 2021; 27:658.e1-658.e10. [PMID: 33964513 DOI: 10.1016/j.jtct.2021.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Graft-versus-host disease (GVHD) is one of the major complications following hematopoietic stem cell transplantation, which remains the sole curative therapy for many malignant diseases of the hematopoietic system. The immunomodulatory potential of mesenchymal stromal cells (MSCs) to treat GVHD is currently being tested in various preclinical and clinical trials. Because the results of the preclinical and clinical trials on the use of MSCs to treat GVHD have not been consistent, we analyzed the potential beneficial effects of syngeneic versus allogenic treatment, culture expansion of MSCs, and various MSC cell doses and time points of MSC transplantation in a murine GVHD model. We established the murine GVHD model based on the transplantation of umbilical cord blood-derived hematopoietic stem cells (UC-HSCs) and used this model to assess the therapeutic potential of umbilical cord blood-derived MSCs (UC-MSCs). The use of HSC and MSC populations derived from the same donor allowed us to exclude third-party cells and test the UC-HSCs and UC-MSCs in a matched setting. Moreover, we were able to compare various doses, transplantation time points, and the influence of culture expansion of MSCs on the impact of treatment. This resulted in 16 different treatment groups. The most efficient setting for treatment of UC-HSC-induced GVHD reactions was based on the simultaneous administration of 1 × 106 culture-expanded, syngeneically matched UC-MSCs. This therapy effectively reduced the number of CD8+ T cells in the blood, protected the mice from weight loss, and prolonged their survival until the end of observation period. Taken together, our data show beneficial effects of (1) syngeneic over allogeneic UC-HSCs and UC-MSCs, (2) culture-expanded cells over freshly isolated primary cells, (3) simultaneous over sequential administration, and (4) high doses of UC-MSCs. The animal model of GVHD established here is now available for more detailed studies, including a comparative analysis of the efficacy of MSCs derived from alternative sources, such as adipose tissue and bone marrow.
Collapse
Affiliation(s)
- Max Hansen
- Vita 34 AG, Leipzig, Germany; Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | - Lilly Stahl
- Tcell Tolerance GmbH, Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ulrich Sack
- Department of Hematology and Cell Therapy, Leipzig University Hospital, Leipzig, Germany
| | - Andreas Kirschner
- Vita 34 AG, Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Michael Cross
- Department of Hematology and Cell Therapy, Leipzig University Hospital, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
8
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Analysis of Same Selected Immunomodulatory Properties of Chorionic Mesenchymal Stem Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) represent a population of adherent cells that can be isolated from multiple adult tissues. MSCs have immunomodulatory capacity and the ability to differentiate into many cell lines. Research study examines the immunomodulatory properties of MSCs isolated from chorion (CMSCs). Following the stimulation process, it was found that MSCs are capable of immunomodulatory action via the release of bioactive molecules as well as through direct contact with the immune cells. Immunomodulatory potential of the CMSCs was analyzed by modifying proliferative capacity of mitogen-activated lymphocytes. CMSCs and lymphocytes were tested in cell-to-cell contact. Lymphocytes were stained with carboxyfluorescein diacetate succinimidyl ester. Inhibition of the proliferation of activated lymphocytes was observed. Following the co-cultivation, the expression of markers involved in the immune response modulation was assessed. Afterwards, an increase in CMSCs expression of IL-10 was detected. Following the co-cultivation with activated lymphocyte, adhesion molecules CD54 and CD44 in the CMSCs increased. An increase of CD54 expression was observed. The properties of CMSCs, adherence and differentiation ability, were confirmed. The phenotype of CMSCs CD105+, CD90+, CD73+, CD44+, CD29+, CD45−, CD34−, CD54+ was characterized. It was demonstrated that chorion-derived MSCs have important immunomodulatory effects.
Collapse
|
10
|
Chinnadurai R, Forsberg MH, Kink JA, Hematti P, Capitini CM. Use of MSCs and MSC-educated macrophages to mitigate hematopoietic acute radiation syndrome. CURRENT STEM CELL REPORTS 2020; 6:77-85. [PMID: 32944493 DOI: 10.1007/s40778-020-00176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Innovative and minimally toxic treatment approaches are sorely needed for the prevention and treatment of hematopoietic acute radiation syndrome (H-ARS). Cell therapies have been increasingly studied for their potential use as countermeasures for accidental and intentional ionizing radiation exposures which can lead to fatal ARS. Mesenchymal stem/stromal cells (MSCs) are a cell therapy that have shown promising results in preclinical studies of ARS, and are being developed in clinical trials specifically for H-ARS. MSCs, MSC-educated macrophages (MEMs) and MSC-exosome educated macrophages (EEMs) all have the potential to be used as adoptive cell therapies for H-ARS. Here we review how MSCs have been reported to mitigate inflammation from radiation injury while also stimulating hematopoiesis during ARS. Recent findings We discuss emerging work with immune cell subsets educated by MSCs, including MEMs and EEMs, in promoting hematopoiesis in xenogeneic models of ARS. We also discuss the first placental-derived MSC product to enter phase I trials, PLX-R18, and the challenges faced by bringing MSC and other cell therapies into the clinic for treating ARS. Summary Although MSCs, MEMs and EEMs are potential cell therapy candidates in promoting hematopoietic HRS, challenges persist in translational clinical development of these products to the clinic. Whether any of these cellular therapies will be sufficient as stand-alone therapies to mitigate H-ARS or if they will be a bridging therapy that insures survival until a curative allogeneic hematopoietic stem cell transplant can be performed are the key questions that will have to be answered.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - John A Kink
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
11
|
Liu S, Xu X, Liang S, Chen Z, Zhang Y, Qian A, Hu L. The Application of MSCs-Derived Extracellular Vesicles in Bone Disorders: Novel Cell-Free Therapeutic Strategy. Front Cell Dev Biol 2020; 8:619. [PMID: 32793590 PMCID: PMC7387669 DOI: 10.3389/fcell.2020.00619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is crucial for supporting the body, protecting other organs, providing minerals, and secreting hormone to regulate other organ's function. Bone disorders result in pain and disability, severely affecting human health, reducing the quality of life and increasing costs to society. With the rapid increase in the aging population worldwide, bone disorders have become one major disease. As a result, efficacious therapies of bone disorders have become the focus of attention worldwide. Mesenchymal stem cells (MSCs) have been widely explored as a new therapeutic method for numerous diseases. Recent evidence suggests that the therapeutic effects of MSCs are mainly mediated by their extracellular vesicles (EV). MSCs-derived extracellular vesicles (MSCs-EV) is indicated as a novel cell-free alternative to cell therapy with MSCs in regenerative medicine. Here, we review the current knowledge of EV and highlight the application studies of MSCs-EV in bone disorders by focusing on osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP), and bone fracture. Moreover, we discuss the key issues and perspectives of MSCs-EV as a clinical therapeutic strategy for bone diseases.
Collapse
Affiliation(s)
- Shuyu Liu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Xia Xu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Shujing Liang
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhihao Chen
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Yan Zhang
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Airong Qian
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lifang Hu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
12
|
Adipose-derived stromal cell immunosuppression of T cells is enhanced under "physiological" hypoxia. Tissue Cell 2019; 63:101320. [PMID: 32223948 DOI: 10.1016/j.tice.2019.101320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023]
Abstract
Multipotent mesenchymal stromal cells (MSCs) are characterized by immunomodulatory properties along with the high proliferative and paracrine activity, as well as multilineage potency. The effects of MSCs on the T cell adaptive immunity are of a special interest. Low O2 level (1-7 %) is known to be typical for the putative site of the MSC - T cell interactions. A comparative evaluation of the effects of adipose tissue derived MSC (ASCs) on the mitogen-stimulated T cells at the ambient (20 %) and tissue-related (5 %) O2 levels demonstrated reduced T cell activation by the HLA-DR expression, decreased pro-inflammatory and increased anti-inflammatory cytokine production in co-culture, inhibited T cell proliferation, with the effects increased at hypoxia. T cell interactions with ASCs resulted in the up-regulation of PDCD1, Foxp3, and TGFβ1 known to play an important role in the immune response suppression, and in the down-regulation of genes involved in the inflammatory reaction (IL2, IFNG). These changes were significantly increased under hypoxia. At the same time, neither ASCs nor the reduced O2 level had negative effects on the viability of T cells.
Collapse
|
13
|
de Castro LL, Lopes-Pacheco M, Weiss DJ, Cruz FF, Rocco PRM. Current understanding of the immunosuppressive properties of mesenchymal stromal cells. J Mol Med (Berl) 2019; 97:605-618. [PMID: 30903229 DOI: 10.1007/s00109-019-01776-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/17/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Several studies have demonstrated the anti-inflammatory potential of mesenchymal stromal cells (MSCs) isolated from bone marrow, adipose tissue, placenta, and other sources. Nevertheless, MSCs may also induce immunosuppression when administered systemically or directly to injured environments, as shown in different preclinical disease models. MSCs express certain receptors, including toll-like receptors and the aryl-hydrocarbon receptor, that are activated by the surrounding environment, thus leading to modulation of their immunosuppressive activity. Once MSCs are activated, they can affect a wide range of immune cells (e.g., neutrophils, monocytes/macrophages, dendritic cells, natural killer cells, T and B lymphocytes), a phenomenon that has been correlated to secretion of several mediators (e.g., indolamine 2,3-dioxygenase, galectins, prostaglandin E2, nitric oxide, and damage- and pathogen-associated molecular patterns) and stimulation of certain signaling pathways (e.g., protein kinase R, signal transducer and activator of transcription-1, nuclear factor-κB). Additionally, MSC manipulation and culture conditions, as well as the number of passages, duration of cryopreservation, and O2 content available, can significantly affect the immunosuppressive properties of MSCs. This review sheds light on current knowledge regarding the mechanisms by which MSCs exert immunosuppressive effects both in vitro and in vivo, focusing on the receptors expressed by MSCs, the correlation between soluble factors secreted by MSCs and their immunosuppressive effects, and interactions between MSCs and immune cells.
Collapse
Affiliation(s)
- Ligia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Daniel Jay Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3:90-104. [PMID: 30944433 DOI: 10.1038/s41551-018-0325-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.
Collapse
|
15
|
Chinnadurai R, Rajan D, Qayed M, Arafat D, Garcia M, Liu Y, Kugathasan S, Anderson LJ, Gibson G, Galipeau J. Potency Analysis of Mesenchymal Stromal Cells Using a Combinatorial Assay Matrix Approach. Cell Rep 2018; 22:2504-2517. [PMID: 29490284 PMCID: PMC5855117 DOI: 10.1016/j.celrep.2018.02.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/11/2017] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Devi Rajan
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Muna Qayed
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Dalia Arafat
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Yifei Liu
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Subra Kugathasan
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Larry J Anderson
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Greg Gibson
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin - Madison, Madison, WI 53705, USA.
| |
Collapse
|
16
|
Abstract
The mechanisms underlying immunomodulatory ability of mesenchymal stromal cells (MSCs) remain unknown. Recently, studies suggested that the immunomodulatory activity of MSCs is largely mediated by paracrine factors. Among which, exosome is considered to play a major role in the communication between MSCs and target tissue. The aim of our study is to investigate the effect of MSCs-derived exosome on peripheral blood mononuclear cells (PBMCs), especially T cells. We find that the MSCs-derived exosome extracted from healthy donors' bone marrow suppressed the secretion of pro-inflammatory factor TNF-α and IL-1β, but increased the concentration of anti-inflammatory factor TGF-β during in vitro culture. In addition, exosome may induce conversion of T helper type 1 (Th1) into T helper type 2 (Th2) cells and reduced potential of T cells to differentiate into interleukin 17-producing effector T cells (Th17). Moreover, the level of regulatory T cells (Treg) and cytotoxic T lymphocyte-associated protein 4 were also increased. These results suggested that MSC-derived exosome possesses the immunomodulatory properties. However, it showed no effects on the proliferation of PBMCs or CD3+ T cells, but increases the apoptosis of them. In addition, indoleamine 2, 3-dioxygenase (IDO) was previously shown to mediate the immunoregulation of MSCs, which was increased in PBMCs co-cultured with MSCs. In our study, IDO showed no significant changes in PBMCs exposed to MSCs-derived exosome. We conclude that exosome and MSCs might differ in their immune-modulating activities and mechanisms.
Collapse
|
17
|
Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury. Cytokine 2017; 95:27-34. [DOI: 10.1016/j.cyto.2017.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
|
18
|
Egger D, Schwedhelm I, Hansmann J, Kasper C. Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor. Bioengineering (Basel) 2017; 4:bioengineering4020047. [PMID: 28952526 PMCID: PMC5590473 DOI: 10.3390/bioengineering4020047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 01/10/2023] Open
Abstract
Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.
Collapse
Affiliation(s)
- Dominik Egger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Ivo Schwedhelm
- Translational Center, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Jan Hansmann
- Translational Center, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
19
|
Killer MC, Nold P, Henkenius K, Fritz L, Riedlinger T, Barckhausen C, Frech M, Hackstein H, Neubauer A, Brendel C. Immunosuppressive capacity of mesenchymal stem cells correlates with metabolic activity and can be enhanced by valproic acid. Stem Cell Res Ther 2017; 8:100. [PMID: 28446224 PMCID: PMC5406996 DOI: 10.1186/s13287-017-0553-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/16/2017] [Accepted: 04/04/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have entered the clinic as an Advanced Therapy Medicinal Product and are currently evaluated in a wide range of studies for tissue regeneration or in autoimmune disorders. Various efforts have been made to standardize and optimize expansion and manufacturing processes, but until now reliable potency assays for the final MSC product are lacking. Because recent findings suggest superior therapeutic efficacy of freshly administered MSCs in comparison with frozen cells, we sought to correlate the T-cell suppressive capacity of MSCs with their metabolic activity. METHODS Human MSCs were obtained from patients' bone fragments and were employed in coculture with peripheral blood mononuclear cells (PBMCs) in an allogeneic T-cell proliferation assay to measure immunosuppressive function. Metabolic activity of MSCs was measured in real time in terms of aerobic glycolysis quantified by the extracellular acidification rate and mitochondrial respiration quantified by the oxygen consumption rate. RESULTS We show that MSC-induced suppression of T-cell proliferation was highly dependent on individual healthy donors' lymphocytes. Moreover, coculture with PBMCs increased the glycolytic and respiratory activity of MSCs considerably in a PBMC donor-dependent manner. The twofold to threefold enhancement of cell metabolism was accompanied by higher T-cell suppressive capacities of MSCs. The cryoprotectant dimethyl sulfoxide decreased metabolic and immunosuppressive performances of MSCs while valproic acid (VPA) increased their glycolytic, respiratory and T-cell suppressive capacity. CONCLUSIONS Functional fitness of MSCs can be determined by measuring metabolic activity and can be enhanced by exposure to VPA. Pretesting the increment of metabolic activity upon interaction of donor MSCs with patient T-cells provides a rational approach for an individualized potency assay prior to MSC therapy.
Collapse
Affiliation(s)
- Madeleine C Killer
- Zentrum für Tumor- und Immunbiologie (ZTI), Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Philipp Nold
- Zentrum für Tumor- und Immunbiologie (ZTI), Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Katharina Henkenius
- Zentrum für Tumor- und Immunbiologie (ZTI), Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Lea Fritz
- Zentrum für Tumor- und Immunbiologie (ZTI), Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Tabea Riedlinger
- Biochemisches Institut, Friedrichstraße 24, 35392, Giessen, Germany
| | - Christina Barckhausen
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Miriam Frech
- Zentrum für Tumor- und Immunbiologie (ZTI), Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig University Giessen, Langhansstraße 7, 35385, Giessen, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany.
| |
Collapse
|
20
|
Nold P, Hartmann R, Feliu N, Kantner K, Gamal M, Pelaz B, Hühn J, Sun X, Jungebluth P, Del Pino P, Hackstein H, Macchiarini P, Parak WJ, Brendel C. Optimizing conditions for labeling of mesenchymal stromal cells (MSCs) with gold nanoparticles: a prerequisite for in vivo tracking of MSCs. J Nanobiotechnology 2017; 15:24. [PMID: 28356160 PMCID: PMC5372278 DOI: 10.1186/s12951-017-0258-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) have an inherent migratory capacity towards tumor tissue in vivo. With the future objective to quantify the tumor homing efficacy of MSCs, as first step in this direction we investigated the use of inorganic nanoparticles (NPs), in particular ca. 4 nm-sized Au NPs, for MSC labeling. Time dependent uptake efficiencies of NPs at different exposure concentrations and times were determined via inductively coupled plasma mass spectrometry (ICP-MS). Results The labeling efficiency of the MSCs was determined in terms of the amount of exocytosed NPs versus the amount of initially endocytosed NPs, demonstrating that at high concentrations the internalized Au NPs were exocytosed over time, leading to continuous exhaustion. While exposure to NPs did not significantly impair cell viability or expression of surface markers, even at high dose levels, MSCs were significantly affected in their proliferation and migration potential. These results demonstrate that proliferation or migration assays are more suitable to evaluate whether labeling of MSCs with certain amounts of NPs exerts distress on cells. However, despite optimized conditions the labeling efficiency varied considerably in MSC lots from different donors, indicating cell specific loading capacities for NPs. Finally, we determined the detection limits of Au NP-labeled MSCs within murine tissue employing ICP-MS and demonstrate the distribution and homing of NP labeled MSCs in vivo. Conclusion Although large amounts of NPs improve contrast for imaging, duration and extend of labeling needs to be adjusted carefully to avoid functional deficits in MSCs. We established an optimized labeling strategy for human MSCs with Au NPs that preserves their migratory capacity in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0258-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Nold
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Raimo Hartmann
- Department of Physics, Philipps-University of Marburg, Marburg, Germany
| | - Neus Feliu
- Department of Physics, Philipps-University of Marburg, Marburg, Germany
| | - Karsten Kantner
- Department of Physics, Philipps-University of Marburg, Marburg, Germany
| | - Mahmoud Gamal
- Department of Physics, Philipps-University of Marburg, Marburg, Germany
| | - Beatriz Pelaz
- Department of Physics, Philipps-University of Marburg, Marburg, Germany
| | - Jonas Hühn
- Department of Physics, Philipps-University of Marburg, Marburg, Germany
| | - Xing Sun
- Department of Physics, Philipps-University of Marburg, Marburg, Germany
| | | | - Pablo Del Pino
- Department of Physics, Philipps-University of Marburg, Marburg, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Paolo Macchiarini
- Laboratory of Bioengineering & Regenerative Medicine (BioReM), Kazan Federal University, Kazan, Russia
| | - Wolfgang J Parak
- Department of Physics, Philipps-University of Marburg, Marburg, Germany. .,CIC Biomagune, San Sebastián, Spain.
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
21
|
Kim DS, Lee MW, Ko YJ, Park HJ, Park YJ, Kim DI, Jung HL, Sung KW, Koo HH, Yoo KH. Application of human mesenchymal stem cells cultured in different oxygen concentrations for treatment of graft-versus-host disease in mice. Biomed Res 2017; 37:311-317. [PMID: 27784875 DOI: 10.2220/biomedres.37.311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human mesenchymal stem cell (MSC) heterogeneity and problems associated with the ex vivo expansion of MSC are linked with the failure of MSC clinical trials. In this study, we compared the effect of MSCs cultured in different oxygen concentrations on GVHD in mice to elucidate whether hypoxia improves the immunosuppressive capacity of MSCs. Hypoxia increased the proliferative activity and the expression of several stemness and chemokine genes, such as KLF4, OCT4, C-MYC, CCL2, and CXCL10. Mice that received MSCs cultured in normoxia or hypoxia showed alleviated symptoms of GVHD and increased survival times. However, there was no significant difference in survival rates between mice that received MSCs cultured in normoxia and hypoxia. These data suggest that hypoxic culture is a useful method for maintaining and obtaining MSCs used for cell therapy and that the therapeutic potential of MSCs cultured in hypoxia warrants further investigation.
Collapse
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L. Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy 2016; 18:160-71. [PMID: 26794710 DOI: 10.1016/j.jcyt.2015.10.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022]
Abstract
Because of their well-recognized immunomodulatory properties, mesenchymal stromal cells (MSCs) represent an attractive cell population for therapeutic purposes. In particular, there is growing interest in the use of MSCs as cellular immunotherapeutics for tolerance induction in allogeneic transplantations and the treatment of autoimmune diseases. However, multiple mechanisms have been identified to mediate the immunomodulatory effects of MSCs, sometimes with several ambiguities and inconsistencies. Although published studies have mainly reported the role of soluble factors, we believe that a sizeable cellular component plays a critical role in MSC immunomodulation. We refer to these cells as regulatory immune cells, which are generated from both the innate and adaptive responses after co-culture with MSCs. In this review, we discuss the nature and role of these immune regulatory cells as well as the role of different mediators, and, in particular, regulatory immune cell induction by MSCs through interleukin-10. Once induced, immune regulatory cells accumulate and converge their regulatory pathways to create a tolerogenic environment conducive for immunomodulation. Thus, a better understanding of these regulatory immune cells, in terms of how they can be optimally manipulated and induced, would be suitable for improving MSC-based immunomodulatory therapeutic strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium.
| | - Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Michel Toungouz
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| |
Collapse
|
23
|
Hackstein H, Tschipakow I, Bein G, Nold P, Brendel C, Baal N. Contact-dependent abrogation of bone marrow-derived plasmacytoid dendritic cell differentiation by murine mesenchymal stem cells. Biochem Biophys Res Commun 2016; 476:15-20. [PMID: 27233615 DOI: 10.1016/j.bbrc.2016.05.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 01/14/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are rare central regulators of antiviral immunity and unsurpassed producers of interferon-α (IFN-α). Despite their crucial role as a link between innate and adaptive immunity, little is known about the modulation of pDC differentiation by other bone marrow (BM) cells. In this study, we investigated the modulation of pDC differentiation in Flt-3 ligand (Flt3L)-supplemented BM cultures, using highly purified mesenchymal stem cells (MSCs) that were FACS-isolated from murine BM based on surface marker expression and used after in vitro expansion. Initial analysis revealed an almost complete inhibition of BM-derived pDC expansion in the presence of >2% MSC. This inhibition was cell contact-dependent and soluble factor-independent, as indicated by trans-well experiments. The abrogation of functional pDC development by MSCs was confirmed after TLR9 stimulation, revealing a complete, contact-dependent suppression of the IFN-a producing capacity of pDCs in Flt3L MSC BM co-cultures. MSC selectively inhibited pDC development in contrast to myeloid DC development, as indicated by the significantly increased numbers of myeloid DC in Flt3L-supplemented BM cultures. The absence of significant MSC-mediated inhibitory effects on myeloid DC differentiation was confirmed by additional experiments in GM-CSF/IL-4-supplemented BM cultures. In summary, we describe a novel contact-dependent immunomodulatory mechanism of MSC that targets the BM-derived expansion of functional pDCs.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Germany.
| | - Inna Tschipakow
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Germany
| | - Philipp Nold
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen und Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen und Marburg, Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
24
|
Ketterl N, Brachtl G, Schuh C, Bieback K, Schallmoser K, Reinisch A, Strunk D. A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance. Stem Cell Res Ther 2015; 6:236. [PMID: 26620155 PMCID: PMC4666276 DOI: 10.1186/s13287-015-0233-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 01/01/2023] Open
Abstract
The inherent immunomodulatory capacity of mesenchymal stem/progenitor cells (MSPCs) encouraged initiation of multiple clinical trials. Release criteria for therapeutic MSPCs cover identity, purity and safety but appropriate potency assessment is often missing. Reports on functional heterogeneity of MSPCs created additional uncertainty regarding donor and organ/source selection. We established a robust immunomodulation potency assay based on pooling responder leukocytes to minimize individual immune response variability. Comparing various MSPCs revealed significant potency inconsistency and generally diminished allo-immunosuppression compared to dose-dependent inhibition of mitogenesis. Gamma-irradiation to block unintended MSPC proliferation did not prohibit chondrogenesis and osteogenesis in vivo, indicating the need for alternative safety strategies.
Collapse
Affiliation(s)
- Nina Ketterl
- Experimental and Clinical Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.
| | - Gabriele Brachtl
- Experimental and Clinical Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.
| | - Cornelia Schuh
- Experimental and Clinical Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany.
| | - Katharina Schallmoser
- Department of Transfusion Medicine and Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.
| | - Andreas Reinisch
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| | - Dirk Strunk
- Experimental and Clinical Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|