1
|
Abraham M, Shalom M, Gold J, Seaton M, Maleski Smith A, Gendreau J, Brandel MG, Ciacci J. Stem Cells in the Treatment of Spinal Cord Injury: A Review of Currently Registered Clinical Trials. World Neurosurg 2024; 191:e116-e125. [PMID: 39159672 DOI: 10.1016/j.wneu.2024.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) affects around 18,000 individuals annually, representing nearly one-third of all paralysis cases. Stem cell therapy, a focal point in contemporary neuroregeneration research for SCI treatment, holds potential in leveraging undifferentiated stem cells to regenerate damaged tissues. This study seeks to comprehensively analyze current clinical trials exploring the potential use of stem cells in treating spinal cord injuries. METHODS A data retrieval approach examined the ClinicalTrials.gov database using the terms "spinal cord injury" and "stem cells." Exclusion criteria eliminated studies not recruiting, terminated prematurely, suspended, withdrawn, or of unknown status. Data for each trial, including ClinicalTrial.gov NCT identifier, title, intervention details, initiation/completion dates, and sample size, were systematically collected. Literature searches on PubMed.gov were conducted for completed trials with results. RESULTS Thirty clinical trials were analyzed, with 20 completed and six with published results on PubMed.gov. Interventions included 20 biological (66.7%), 6 procedural (20%), and 4 drug interventions (13.3%). Stem cell sources varied, including bone marrow (46.7%), umbilical cells (20%), adipose tissue (20%), embryonic cells (6.7%), and neural cells (6.7%). Trials spanned 2005 to 2022, with 11 (36.7%) commencing in or after 2017. Among six trials with results, 50% used bone marrow-derived stem cells. CONCLUSIONS The promising potential of stem cells in neuroregenerative SCI treatment necessitates further exploration through large-scale, multicenter clinical trials to enhance understanding and guide wider adoption of this emerging treatment paradigm.
Collapse
Affiliation(s)
- Mickey Abraham
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA.
| | - Moshe Shalom
- Tel Aviv University Sackler School of Medicine, Tel Aviv, Israel
| | - Justin Gold
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Margaret Seaton
- University of California San Diego School of Medicine, San Diego, California, USA
| | | | - Julian Gendreau
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael G Brandel
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| | - Joseph Ciacci
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
El Masri J, Fadlallah H, Al Sabsabi R, Afyouni A, Al-Sayegh M, Abou-Kheir W. Adipose-Derived Stem Cell Therapy in Spinal Cord Injury. Cells 2024; 13:1505. [PMID: 39273075 PMCID: PMC11394073 DOI: 10.3390/cells13171505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Spinal cord injury (SCI) is a serious condition accompanied by severe adverse events that affect several aspects of the patient's life, such as motor, sensory, and functional impairment. Despite its severe consequences, definitive treatment for these injuries is still missing. Therefore, researchers have focused on developing treatment strategies aimed at ensuring full recovery post-SCI. Accordingly, attention has been drawn toward cellular therapy using mesenchymal stem cells. Considering their wide availability, decreased immunogenicity, wide expansion capacity, and impressive effectiveness in many therapeutic approaches, adipose-derived stem cell (ADSC) injections in SCI cases have been investigated and showed promising results. In this review, SCI pathophysiology and ADSC transplantation benefits are discussed independently, together with SCI animal models and adipose stem cell preparation and application techniques. The mechanisms of healing in an SCI post-ADSC injection, the outcomes of this therapeutic approach, and current clinical trials are also deliberated, in addition to the challenges and future perspectives, aiming to encourage further research in this field.
Collapse
Affiliation(s)
- Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Hiba Fadlallah
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Rahaf Al Sabsabi
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Ahmad Afyouni
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
3
|
Ou H, Yang Q, Zhang Y, Tang X, Xiao M, Li S, Lei L, Xie Z. The role of cells and their derivatives in otorhinolaryngologic diseases treatment. Life Sci 2024; 352:122898. [PMID: 38997061 DOI: 10.1016/j.lfs.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Otolaryngology is an important specialty in the field of surgery that deals with the diagnosis and treatment of the ear, nose, throat, trachea, as well as related anatomical structures. Various otolaryngological disorders are difficult to treat using established pharmacological and surgical approaches. The advent of molecular and cellular therapies led to further progress in this respect. This article reviews the therapeutic strategies of using stem cells, immune cells, and chondrocytes in otorhinolaryngology. As the most widely recognized cell derivatives, exosomes were also systematically reviewed for their therapeutic potential in head and neck cancer, otitis media, and allergic rhinitis. Finally, we summarize the limitations of stem cells, chondrocytes, and exosomes, as well as possible solutions, and provide an outlook on the future direction of cell- and derivative-based therapies in otorhinolaryngology, to offer a theoretical foundation for the clinical translation of this therapeutic modality.
Collapse
Affiliation(s)
- Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
4
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Zhang C, Zhang J, Xie D, Guo G, Jalili S. The effects of local delivery of laurus nobilis extract and adipose derived stem cells via electrospun gelatin scaffold on spinal cord injury inflammatoradscy response and its regeneration. Regen Ther 2024; 26:879-888. [PMID: 39444416 PMCID: PMC11497134 DOI: 10.1016/j.reth.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
When subjected to injury, the spinal cord's inherent complexity poses significant challenges for effective healing. In this study, gelatin nanofibers loaded with Laurus nobilis extract were developed to serve as a delivery system for adipose-derived stem cells (ADSCs), aiming to explore its potential immunomodulatory effects in a rat model of spinal cord injury. Through a series of in vitro assessments including scanning electron microscopy imaging, cell viability, anti-inflammatory, cell adhesion, biodegradation, and hemocompatibility assays, the characteristics of the delivery system were thoroughly evaluated. The in vitro studies revealed both the biocompatibility of the scaffolds and their notable anti-inflammatory properties, laying the groundwork for further investigation. Subsequent in vivo experiments demonstrated that rats treated with Laurus nobilis extract and ADSCs loaded scaffolds exhibited heightened functional recovery (BBB score of 14.66 ± 1.52 % and hot plate latency time of 8.33 0.26 s) and histological restoration at the 8-week mark post-injury. Notably, ELISA assay results revealed a significant reduction in tissue expression levels of key pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, suggesting a pronounced immunomodulatory effect of the Laurus nobilis extract-loaded scaffolds. The findings underscore the potential of this novel delivery system to improve clinical outcomes in spinal cord injury by enhancing functional recovery and reducing inflammation. This approach could lead to the development of new, natural-based therapeutic strategies for spinal cord injury, with potential extensions to other inflammatory or degenerative conditions. Future research should focus on optimizing this strategy in larger animal models and eventually translating these findings into human clinical trials.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jin Zhang
- Department of Emergency Traumatology, Gejiu People's Hospital, Yunnan, 661000, China
| | - Daotao Xie
- Norxin International Science and Technology Base, Xi'an, 710032, China
| | - Gang Guo
- Norxin International Science and Technology Base, Xi'an, 710032, China
| | - Saman Jalili
- Department of Materials Science, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
6
|
Shimizu Y, Ntege EH, Takahara E, Matsuura N, Matsuura R, Kamizato K, Inoue Y, Sowa Y, Sunami H. Adipose-derived stem cell therapy for spinal cord injuries: Advances, challenges, and future directions. Regen Ther 2024; 26:508-519. [PMID: 39161365 PMCID: PMC11331855 DOI: 10.1016/j.reth.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Spinal cord injury (SCI) has limited treatment options for regaining function. Adipose-derived stem cells (ADSCs) show promise owing to their ability to differentiate into multiple cell types, promote nerve cell survival, and modulate inflammation. This review explores ADSC therapy for SCI, focusing on its potential for improving function, preclinical and early clinical trial progress, challenges, and future directions. Preclinical studies have demonstrated ADSC transplantation's effectiveness in promoting functional recovery, reducing cavity formation, and enhancing nerve regrowth and myelin repair. To improve ADSC efficacy, strategies including genetic modification and combination with rehabilitation are being explored. Early clinical trials have shown safety and feasibility, with some suggesting motor and sensory function improvements. Challenges remain for clinical translation, including optimizing cell survival and delivery, determining dosing, addressing tumor formation risks, and establishing standardized protocols. Future research should focus on overcoming these challenges and exploring the potential for combining ADSC therapy with other treatments, including rehabilitation and medication.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Eisaku Takahara
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Rikako Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Kota Kamizato
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| |
Collapse
|
7
|
Ertlen C, Seblani M, Bonnet M, Brezun JM, Coyle T, Sabatier F, Fuentes S, Decherchi P, Serratrice N, Marqueste T. Efficacy of the immediate adipose-derived stromal vascular fraction autograft on functional sensorimotor recovery after spinal cord contusion in rats. Stem Cell Res Ther 2024; 15:29. [PMID: 38303017 PMCID: PMC10835949 DOI: 10.1186/s13287-024-03645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Spinal cord injuries (SCI) lead to functional alteration with important consequences such as motor and sensory disorders. The repair strategies developed to date remain ineffective. The adipose tissue-derived stromal vascular fraction (SVF) is composed of a cocktail of cells with trophic, pro-angiogenic and immunomodulatory effects. Numerous therapeutic benefits were shown for tissue reconstitution, peripheral neuropathy and for the improvement of neurodegenerative diseases. Here, the therapeutic efficacy of SVF on sensorimotor recovery after an acute thoracic spinal cord contusion in adult rats was determined. METHOD Male Sprague Dawley rats (n = 45) were divided into 3 groups: SHAM (without SCI and treatment), NaCl (animals with a spinal lesion and receiving a saline injection through the dura mater) and SVF (animals with a spinal lesion and receiving a fraction of fat removed from adipocytes through the dura mater). Some animals were sacrificed 14 days after the start of the experiment to determine the inflammatory reaction by measuring the interleukin-1β, interleukin-6 and Tumor Necrosis Factor-α in the lesion area. Other animals were followed once a week for 12 weeks to assess functional recovery (postural and locomotor activities, sensorimotor coordination). At the end of this period, spinal reflexivity (rate-dependent depression of the H-reflex) and physiological adjustments (ventilatory response to metabosensitive muscle activation following muscle fatigue) were measured with electrophysiological tools. RESULTS Compared to non-treated animals, results indicated that the SVF reduced the endogenous inflammation and increased the behavioral recovery in treated animals. Moreover, H-reflex depression and ventilatory adjustments to muscle fatigue were found to be comparable between SHAM and SVF groups. CONCLUSION Our results highlight the effectiveness of SVF and its high therapeutic potential to improve sensorimotor functions and to restore the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions after traumatic contusion.
Collapse
Affiliation(s)
- Céline Ertlen
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Mostafa Seblani
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Maxime Bonnet
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Jean-Michel Brezun
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Thelma Coyle
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Florence Sabatier
- Assistance Publique - Hôpitaux de Marseille (AP-HM), INSERM 1409 Centre d'Investigation Clinique en Biothérapies, Unité de Culture Et Thérapie Cellulaire, Hôpital de La Conception, 147, Boulevard Baille, 13385, Marseille Cedex 05, France
| | - Stéphane Fuentes
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Patrick Decherchi
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| | - Nicolas Serratrice
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
- Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de Neurochirurgie, Hôpital de La Timone, 264, Rue Saint-Pierre, 13005, Marseille, France
| | - Tanguy Marqueste
- Aix-Marseille Univ, CNRS, ISM UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe Plasticité Des Systèmes Nerveux Et Musculaire (PSNM), Parc Scientifique Et Technologique de Luminy, Aix Marseille Univ, CC910 - 163, Avenue de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
8
|
Astrelina TA, Brunchukov VA, Kodina GE, Bubenshchikov VB, Larenkov AA, Lunev AS, Petrosova KA, Rastorgueva AA, Kobzeva IV, Usupzhanova DY, Nikitina VA, Malsagova KA, Kulikova LI, Samoilov AS, Pustovoyt VI. Biodistribution of Mesenchymal Stromal Cells Labeled with [ 89Zr]Zr-Oxine in Local Radiation Injuries in Laboratory Animals. Molecules 2023; 28:7169. [PMID: 37894647 PMCID: PMC10609482 DOI: 10.3390/molecules28207169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Tracking the migration pathways of living cells after their introduction into a patient's body is a topical issue in the field of cell therapy. Questions related to studying the possibility of long-term intravital biodistribution of mesenchymal stromal cells in the body currently remain open. METHODS Forty-nine laboratory animals were used in the study. Modeling of local radiation injuries was carried out, and the dynamics of the distribution of mesenchymal stromal cells labeled with [89Zr]Zr-oxine in the rat body were studied. RESULTS the obtained results of the labelled cell distribution allow us to assume that this procedure could be useful for visualization of local radiation injury using positron emission tomography. However, further research is needed to confirm this assumption. CONCLUSIONS intravenous injection leads to the initial accumulation of cells in the lungs and their subsequent redistribution to the liver, spleen, and kidneys. When locally injected into tissues, mesenchymal stromal cells are not distributed systemically in significant quantities.
Collapse
Affiliation(s)
- Tatiana A. Astrelina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Vitaliy A. Brunchukov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Galina E. Kodina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Viktor B. Bubenshchikov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Anton A. Larenkov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Aleksandr S. Lunev
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Kristina A. Petrosova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Anna A. Rastorgueva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Irina V. Kobzeva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Daria Y. Usupzhanova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Victoria A. Nikitina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | | | - Ludmila I. Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 119121 Moscow, Russia;
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 119991 Pushchino, Russia
| | - Alexander S. Samoilov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123182 Moscow, Russia; (T.A.A.); (V.A.B.); (G.E.K.); (V.B.B.); (A.A.L.); (A.S.L.); (K.A.P.); (A.A.R.); (I.V.K.); (D.Y.U.); (V.A.N.); (A.S.S.); (V.I.P.)
| |
Collapse
|
9
|
Keikhaei R, Abdi E, Darvishi M, Ghotbeddin Z, Hamidabadi HG. Combined treatment of high-intensity interval training with neural stem cell generation on contusive model of spinal cord injury in rats. Brain Behav 2023; 13:e3043. [PMID: 37165750 PMCID: PMC10338768 DOI: 10.1002/brb3.3043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) leads to inflammation, axonal degeneration, and gliosis. A combined treatment of exercise and neural stem cells (NSC) has been proposed to improve neural repair. This study evaluated a combined treatment of high-intensity interval training (HIIT) with NSC generation from adipose-derived stem cells (ADSCs) on a contusive model of SCI in rats. MATERIALS AND METHODS In vitro, rat ADSCs were isolated from the perinephric regions of Sprague-Dawley rats using enzymatic digestion. The ADSCs were transdifferentiated into neurospheres using B27, EGF, and bFGF. After production of NSC, they were labeled using green fluorescent protein (GFP). For the in vivo study, rats were divided into eight groups: control group, sham operation group, sham operation + HIIT group, sham operation + NSC group, SCI group, SCI + HIIT group, SCI + NSC group, and SCI/HIIT/NSC group. Laminectomy was carried out at the T12 level using the impactor system. HIIT was performed three times per week. To assess behavioral function, the Basso-Beattie-Bresnahan (BBB) locomotor test and H-reflex was carried out once a week for 12 weeks. We examined glial fibrillary acidic protein (GFAP), S100β, and NF200 expression. RESULTS NSC transplantation, HIIT and combined therapy with NSC transplantation, and the HIIT protocol improved locomotor function with decreased maximum H to maximum M reflexes (H/M ratio) and increased the Basso-Beattie-Bresnahan score. CONCLUSION Combined therapy in contused rats using the HIIT protocol and neurosphere-derived NSC transplantation improves functional and histological outcomes.
Collapse
Affiliation(s)
- Reza Keikhaei
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Elahe Abdi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Marzieh Darvishi
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
- Department of Anatomy, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Zohreh Ghotbeddin
- Department of Physiology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
- Stem Cell and Transgenic Technology Research CenterShahid Chamran University of AhvazAhvazIran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Immunogenetic Research CenterDepartment of Anatomy & Cell Biology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
10
|
Jeong SY, Lee HL, Wee S, Lee H, Hwang G, Hwang S, Yoon S, Yang YI, Han I, Kim KN. Co-Administration of Resolvin D1 and Peripheral Nerve-Derived Stem Cell Spheroids as a Therapeutic Strategy in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2023; 24:10971. [PMID: 37446149 DOI: 10.3390/ijms241310971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.
Collapse
Affiliation(s)
- Seung-Young Jeong
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - GwangYong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SolLip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Il Yang
- Paik Imje Memorial Institute for Clinical Research, InJe University College of Medicine, Busan 47392, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Vialle EN, Fracaro L, Barchiki F, Dominguez AC, Arruda ADO, Olandoski M, Brofman PRS, Kuniyoshi Rebelatto CL. Human Adipose-Derived Stem Cells Reduce Cellular Damage after Experimental Spinal Cord Injury in Rats. Biomedicines 2023; 11:biomedicines11051394. [PMID: 37239065 DOI: 10.3390/biomedicines11051394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition without an effective therapy. Cellular therapies are among the promising treatment strategies. Adult stem cells, such as mesenchymal stem cells, are often used clinical research for their immunomodulatory and regenerative potential. This study aimed to evaluate the effect of human adipose tissue-derived stem cells (ADSC) infusion through the cauda equina in rats with SCI. The human ADSC from bariatric surgery was isolated, expanded, and characterized. Wistar rats were subjected to blunt SCI and were divided into four groups. Two experimental groups (EG): EG1 received one ADSC infusion after SCI, and EG2 received two infusions, the first one after SCI and the second infusion seven days after the injury. Control groups (CG1 and CG2) received infusion with a culture medium. In vivo, cell tracking was performed 48 h and seven days after ADSC infusion. The animals were followed up for 40 days after SCI, and immunohistochemical quantification of myelin, neurons, and astrocytes was performed. Cellular tracking showed cell migration towards the injury site. ADSC infusion significantly reduced neuronal loss, although it did not prevent the myelin loss or enhance the area occupied by astrocytes compared to the control group. The results were similar when comparing one or two cell infusions. The injection of ADSC distal to the injured area was shown to be a safe and effective method for cellular administration in spinal cord injury.
Collapse
Affiliation(s)
- Emiliano Neves Vialle
- Spine Surgery Group, Cajuru University Hospital, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Alejandro Correa Dominguez
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute-Fiocruz, Rio de Janeiro 21941-599, Brazil
| | - André de Oliveira Arruda
- Spine Surgery Group, Cajuru University Hospital, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
| | - Marcia Olandoski
- Department of Biostatistics, School of Medicine, Catholic University of Paraná, Curitiba 80215-030, Brazil
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-030, Brazil
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
12
|
Gál L, Bellák T, Marton A, Fekécs Z, Weissman D, Török D, Biju R, Vizler C, Kristóf R, Beattie MB, Lin PJ, Pardi N, Nógrádi A, Pajer K. Restoration of Motor Function through Delayed Intraspinal Delivery of Human IL-10-Encoding Nucleoside-Modified mRNA after Spinal Cord Injury. RESEARCH (WASHINGTON, D.C.) 2023; 6:0056. [PMID: 36930811 PMCID: PMC10013810 DOI: 10.34133/research.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Efficient in vivo delivery of anti-inflammatory proteins to modulate the microenvironment of an injured spinal cord and promote neuroprotection and functional recovery is a great challenge. Nucleoside-modified messenger RNA (mRNA) has become a promising new modality that can be utilized for the safe and efficient delivery of therapeutic proteins. Here, we used lipid nanoparticle (LNP)-encapsulated human interleukin-10 (hIL-10)-encoding nucleoside-modified mRNA to induce neuroprotection and functional recovery following rat spinal cord contusion injury. Intralesional administration of hIL-10 mRNA-LNP to rats led to a remarkable reduction of the microglia/macrophage reaction in the injured spinal segment and induced significant functional recovery compared to controls. Furthermore, hIL-10 mRNA treatment induced increased expression in tissue inhibitor of matrix metalloproteinase 1 and ciliary neurotrophic factor levels in the affected spinal segment indicating a time-delayed secondary effect of IL-10 5 d after injection. Our results suggest that treatment with nucleoside-modified mRNAs encoding neuroprotective factors is an effective strategy for spinal cord injury repair.
Collapse
Affiliation(s)
- László Gál
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Bellák
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Annamária Marton
- National Biotechnology Laboratory, Institute of Genetics, Biological Research Centre, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zoltán Fekécs
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dénes Török
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Rachana Biju
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csaba Vizler
- National Biotechnology Laboratory, Institute of Genetics, Biological Research Centre, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Rebeka Kristóf
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | | | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Therapeutic Potential of Exosomes Derived from Adipose Tissue-Sourced Mesenchymal Stem Cells in the Treatment of Neural and Retinal Diseases. Int J Mol Sci 2022; 23:ijms23094487. [PMID: 35562878 PMCID: PMC9105552 DOI: 10.3390/ijms23094487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Therapeutic agents that are able to prevent or attenuate inflammation and ischemia-induced injury of neural and retinal cells could be used for the treatment of neural and retinal diseases. Exosomes derived from adipose tissue-sourced mesenchymal stem cells (AT-MSC-Exos) are extracellular vesicles that contain neurotrophins, immunoregulatory and angio-modulatory factors secreted by their parental cells. AT-MSC-Exos are enriched with bioactive molecules (microRNAs (miRNAs), enzymes, cytokines, chemokines, immunoregulatory, trophic, and growth factors), that alleviate inflammation and promote the survival of injured cells in neural and retinal tissues. Due to the nano-sized dimension and bilayer lipid envelope, AT-MSC-Exos easily bypass blood–brain and blood–retinal barriers and deliver their cargo directly into the target cells. Accordingly, a large number of experimental studies demonstrated the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases. By delivering neurotrophins, AT-MSC-Exos prevent apoptosis of injured neurons and retinal cells and promote neuritogenesis. AT-MSC-Exos alleviate inflammation in the injured brain, spinal cord, and retinas by delivering immunoregulatory factors in immune cells, suppressing their inflammatory properties. AT-MSC-Exos may act as biological mediators that deliver pro-angiogenic miRNAs in endothelial cells, enabling re-vascularization of ischemic neural and retinal tissues. Herewith, we summarized current knowledge about molecular mechanisms which were responsible for the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases, emphasizing their therapeutic potential in neurology and ophthalmology.
Collapse
|
14
|
Sharma S, Jeyaraman M, Muthu S. Role of stem cell therapy in neurosciences. ESSENTIALS OF EVIDENCE-BASED PRACTICE OF NEUROANESTHESIA AND NEUROCRITICAL CARE 2022:163-179. [DOI: 10.1016/b978-0-12-821776-4.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Chen CC, Yang SF, Wang IK, Hsieh SY, Yu JX, Wu TL, Huong WJ, Su MH, Yang HL, Chang PC, Teng AC, Chia-Yi C, Liang SL. The Long-Term Efficacy Study of Multiple Allogeneic Canine Adipose Tissue-Derived Mesenchymal Stem Cells Transplantations Combined With Surgery in Four Dogs With Lumbosacral Spinal Cord Injury. Cell Transplant 2022; 31:9636897221081487. [PMID: 35225026 PMCID: PMC8894939 DOI: 10.1177/09636897221081487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Severe lumbosacral pain, paraparesis or paraplegia, and urinary incontinence are common but frustrating problems in dogs with lumbosacral spinal cord injury (SCI). The surgical interventions including stabilization and decompression may not restore satisfying neurological functions in severe SCI. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) show benefits in immunomodulation, anti-inflammation, and promotion of axonal growth and remyelination, and also display efficacy in several diseases in veterinary medicine. In this report, four dogs presented with fracture of sacrum vertebrae or fracture of seventh lumbar and lumbosacral displacement after road traffic accidents. The clinical signs include lumbosacral pain (4/4), paraparesis (3/4), paraplegia (1/4), and urinary incontinence (4/4). All dogs were treated by surgical decompression with or without stabilization 1 to 7 weeks after trauma. Allogeneic canine Ad-MSCs (cAd-MSCs) were injected locally on nerve roots through the surgical region in all dogs. One dose of intravenous transplantation and 4 doses of local transplantation were also performed within 8 weeks after the surgery separately. All dogs showed significant neurological improvements with normal ambulatory ability (4/4) and urinary control (3/4) 3 months after the surgery and the first cAd-MSCs transplantation. No side effect was related to multiple cAd-MSCs transplantations during 6 months monitoring in all dogs. In conclusion, multiple cAd-MSCs transplantations could be a recommended treatment combined with surgery in dogs with lumbosacral SCI.
Collapse
Affiliation(s)
| | | | - Ing-Kae Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | - Sing-Ying Hsieh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | - Jian-Xi Yu
- United Specialists Animal Hospital, Kaohsiung City
| | - Tze-Lien Wu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | - Wan-Jhen Huong
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | - Min-Hao Su
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu
| | | | | | - Ann-Chi Teng
- United Specialists Animal Hospital, Kaohsiung City
| | - Chen Chia-Yi
- United Specialists Animal Hospital, Kaohsiung City
| | | |
Collapse
|
16
|
Kim GU, Sung SE, Kang KK, Choi JH, Lee S, Sung M, Yang SY, Kim SK, Kim YI, Lim JH, Seo MS, Lee GW. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222413672. [PMID: 34948463 PMCID: PMC8703906 DOI: 10.3390/ijms222413672] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.
Collapse
Affiliation(s)
- Gang-Un Kim
- Department of Orthopedic Surgery, Hanil General Hospital, 308 Uicheon-ro, Dobong-gu, Seoul 01450, Korea;
| | - Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Sijoon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Minkyoung Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, 61Heolleungro 8-gil, Seocho-gu, Seoul 06800, Korea;
| | | | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| | - Gun Woo Lee
- Cellexobio, Co. Ltd., Daegu 42415, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| |
Collapse
|
17
|
Assunção Silva RC, Pinto L, Salgado AJ. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med Res Rev 2021; 42:850-896. [PMID: 34783046 DOI: 10.1002/med.21865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.
Collapse
Affiliation(s)
- Rita C Assunção Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Rafiei Alavi SN, Madani Neishaboori A, Hossein H, Sarveazad A, Yousefifard M. Efficacy of adipose tissue-derived stem cells in locomotion recovery after spinal cord injury: a systematic review and meta-analysis on animal studies. Syst Rev 2021; 10:213. [PMID: 34330329 PMCID: PMC8325264 DOI: 10.1186/s13643-021-01771-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Considerable disparities exist on the use of adipose tissue-derived stem cells (ADSCs) for treatment of spinal cord injury (SCI). Hence, the current systematic review aimed to investigate the efficacy of ADSCs in locomotion recovery following SCI in animal models. METHODS A search was conducted in electronic databases of MEDLINE, Embase, Scopus, and Web of Science until the end of July 2019. Reference and citation tracking and searching Google and Google Scholar search engines were performed to achieve more studies. Animal studies conducted on rats having SCI which were treated with ADSCs were included in the study. Exclusion criteria were lacking a non-treated control group, not evaluating locomotion, non-rat studies, not reporting the number of transplanted cells, not reporting isolation and preparation methods of stem cells, review articles, combination therapy, use of genetically modified ADSCs, use of induced pluripotent ADSCs, and human trials. Risk of bias was assessed using Hasannejad et al.'s proposed method for quality control of SCI-animal studies. Data were analyzed in STATA 14.0 software, and based on a random effect model, pooled standardized mean difference with a 95% confidence interval was presented. RESULTS Of 588 non-duplicated papers, data from 18 articles were included. Overall risk of bias was high risk in 8 studies, some concern in 9 studies and low risk in 1 study. Current evidence demonstrated that ADSCs transplantation could improve locomotion following SCI (standardized mean difference = 1.71; 95%CI 1.29-2.13; p < 0.0001). A considerable heterogeneity was observed between the studies (I2 = 72.0%; p < 0.0001). Subgroup analysis and meta-regression revealed that most of the factors like injury model, the severity of SCI, treatment phase, injury location, and number of transplanted cells did not have a significant effect on the efficacy of ADSCs in improving locomotion following SCI (pfor odds ratios > 0.05). CONCLUSION We conclude that any number of ADSCs by any prescription routes can improve locomotion recovery in an SCI animal model, at any phase of SCI, with any severity. Given the remarkable bias about blinding, clinical translation of the present results is tough, because in addition to the complexity of the nervous system and the involvement of far more complex motor circuits in the human, blinding compliance and motor outcome assessment tests in animal studies and clinical trials are significantly different.
Collapse
Affiliation(s)
| | - Arian Madani Neishaboori
- Physiology Research Center, Iran University of Medical Sciences, Hemmat Highway, P.O Box: 14665-354, Tehran, Iran
| | - Hasti Hossein
- Physiology Research Center, Iran University of Medical Sciences, Hemmat Highway, P.O Box: 14665-354, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Niayesh St, Satarkhan Av, P.O Box: 14665-354, 1449614535, Tehran, Iran. .,Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Hemmat Highway, P.O Box: 14665-354, Tehran, Iran.
| |
Collapse
|
19
|
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, Montero-Vílchez T, Sierra-Sánchez A, Molina-Leyva A, Arias-Santiago S. Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 2021; 10:jcm10132925. [PMID: 34210026 PMCID: PMC8268414 DOI: 10.3390/jcm10132925] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.
Collapse
Affiliation(s)
- Manuel Sanchez-Diaz
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Maria I. Quiñones-Vico
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- Correspondence:
| | - Raquel Sanabria de la Torre
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Trinidad Montero-Vílchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Alvaro Sierra-Sánchez
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Alejandro Molina-Leyva
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- School of Medicine, University of Granada, 18014 Granada, Spain
| |
Collapse
|
20
|
Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, 34753West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
21
|
Li F, Liu H, Zhang K, Xiao DJ, Wang C, Wang YS. Adipose-derived stromal cells improve functional recovery after spinal cord injury through TGF-β1/Smad3/PLOD2 pathway activation. Aging (Albany NY) 2021; 13:4370-4387. [PMID: 33495412 PMCID: PMC7906172 DOI: 10.18632/aging.202399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
Abstract
Transplantation of mesenchymal stromal cells (MSCs) improves functional recovery in experimental models of spinal cord injury (SCI), but the mechanism is not fully understood. Activation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), a collagen-modifying enzyme, reportedly follows MSC transplantation in an SCI animal model. We investigated the regulation of PLOD2 expression and its potential contribution to the neuroprotective effects of adipose-derived stromal cells (ADSCs) following mechanical injury to neurons in vitro and SCI in vivo. ADSCs enhanced wound healing in vitro and promoted functional recovery after their implantation near injury sites in a rat SCI model. These effects correlated with upregulation of PLOD2, MAP2, NSE and GAP43, and downregulation of GFAP, which is indicative of improved neuronal survival and axonal regeneration as well as reduced glial scar formation. The neurorestorative effect of ADSCs was weakened after inhibition of PLOD2 expression. ADSCs appeared to induce PLOD2 upregulation via TGF-β1 secretion, as ADSC-mediated PLOD2 expression, neuronal survival, and functional recovery after SCI were largely prevented by SB431542, a TGF-(1 receptor inhibitor. These findings indicate that ADSCs reduce lesion size and promote functional recovery after SCI mainly through activation of a TGF-β1/P-Samd3/PLOD2 pathway in spinal cord neurons.
Collapse
Affiliation(s)
- Fang Li
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Hua Liu
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Kun Zhang
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Dong-Jie Xiao
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Shandong Research Center of Transplantation and Tissue, Jinan 250013, China
| | - Chang Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.,Jinan Dien Forensic Judical Appraisal Institute, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Yun-Shan Wang
- Cell Therapy Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, China.,Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| |
Collapse
|
22
|
Bellák T, Fekécs Z, Török D, Táncos Z, Nemes C, Tézsla Z, Gál L, Polgári S, Kobolák J, Dinnyés A, Nógrádi A, Pajer K. Grafted human induced pluripotent stem cells improve the outcome of spinal cord injury: modulation of the lesion microenvironment. Sci Rep 2020; 10:22414. [PMID: 33376249 PMCID: PMC7772333 DOI: 10.1038/s41598-020-79846-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury results in irreversible tissue damage followed by a very limited recovery of function. In this study we investigated whether transplantation of undifferentiated human induced pluripotent stem cells (hiPSCs) into the injured rat spinal cord is able to induce morphological and functional improvement. hiPSCs were grafted intraspinally or intravenously one week after a thoracic (T11) spinal cord contusion injury performed in Fischer 344 rats. Grafted animals showed significantly better functional recovery than the control rats which received only contusion injury. Morphologically, the contusion cavity was significantly smaller, and the amount of spared tissue was significantly greater in grafted animals than in controls. Retrograde tracing studies showed a statistically significant increase in the number of FB-labeled neurons in different segments of the spinal cord, the brainstem and the sensorimotor cortex. The extent of functional improvement was inversely related to the amount of chondroitin-sulphate around the cavity and the astrocytic and microglial reactions in the injured segment. The grafts produced GDNF, IL-10 and MIP1-alpha for at least one week. These data suggest that grafted undifferentiated hiPSCs are able to induce morphological and functional recovery after spinal cord contusion injury.
Collapse
Affiliation(s)
- Tamás Bellák
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary.,BioTalentum Ltd., Gödöllő, Hungary
| | - Zoltán Fekécs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| | - Dénes Török
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| | | | - Csilla Nemes
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Diagnostic Laboratory, State Health Centre, Military Hospital, Budapest, Hungary
| | - Zsófia Tézsla
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| | - László Gál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| | | | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary.,HCEMM-USZ StemCell Research Group, Szeged, Hungary.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary.
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Kossuth Lajos sgt. 40., 6724, Szeged, Hungary
| |
Collapse
|
23
|
Serra T, Santos F, Coelho M, Silva C, Melo F, Souza A, Primo J, Rodrigues D, Gomez M, Glória J, Ocarino N, Serakides R, Melo E. ω-Conotoxina MVIIC e células-tronco mesenquimais promovem recuperação motora em ratos Wistar após trauma medular agudo. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO O objetivo deste estudo foi avaliar o efeito da ω-conotoxina MVIIC e das células-tronco mesenquimais (CTM) de forma isolada e sua associação nos ratos submetidos ao trauma medular agudo (TMA). Trinta Rattus novergicus, linhagem Wistar, três meses de idade, foram distribuídos igualmente em cinco grupos experimentais: controle negativo (CN), controle positivo (CP), ω-conotoxina MVIIC (MVIIC), células-tronco mesenquimais da medula óssea (CTM-MO) e associação (MVIIC + CTM-MO). O grupo CN foi submetido à laminectomia sem trauma medular, e os grupos CP, MVIIC, CTM-MO e MVIIC + CTM-MO foram submetidos ao trauma medular contusivo. O grupo CP recebeu, uma hora após o TMA, 10μL de PBS estéril, e os grupos MVIIC e MVIIC + CTM-MO receberam 10μL de PBS contendo 20pmol da ω-conotoxina MVIIC, todos por via intratecal. Os grupos CTM-MO e MVIIC + CTM-MO receberam, 24 horas após, 1x106 de CTM via intravenosa. Avaliou-se a recuperação da função locomotora até o sétimo dia pós-trauma. Os animais tratados com MVIIC + CTM-MO obtiveram recuperação motora após o trauma medular agudo (P<0,05). Conclui-se que essa associação apresentou efeito neuroprotetor com melhora na função locomotora em ratos Wistar.
Collapse
Affiliation(s)
- T.L. Serra
- Universidade Federal de Minas Gerais, Brazil
| | - F.E. Santos
- Universidade Federal de Minas Gerais, Brazil
| | | | - C.M.O. Silva
- Pontifícia Universidade Católica de Minas Gerais, Brazil
| | - F.G. Melo
- Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | - J.R. Glória
- Universidade Federal de Minas Gerais, Brazil
| | | | | | - E.G. Melo
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
24
|
Human mesenchymal stromal/stem cells recruit resident pericytes and induce blood vessels maturation to repair experimental spinal cord injury in rats. Sci Rep 2020; 10:19604. [PMID: 33177535 PMCID: PMC7658254 DOI: 10.1038/s41598-020-76290-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis is considered to mediate the beneficial effects of mesenchymal cell therapy in spinal cord injury. After a moderate balloon-compression injury in rats, injections of either human adipose tissue-derived stromal/stem cells (hADSCs) or their conditioned culture media (CM-hADSC) elicited angiogenesis around the lesion site. Both therapies increased vascular density, but the presence of hADSCs in the tissue was required for the full maturation of new blood vessels. Only animals that received hADSC significantly improved their open field locomotion, assessed by the BBB score. Animals that received CM-hADSC only, presented haemorrhagic areas and lack pericytes. Proteomic analyses of human angiogenesis-related factors produced by hADSCs showed that both pro- and anti-angiogenic factors were produced by hADSCs in vitro, but only those related to vessel maturation were detectable in vivo. hADSCs produced PDGF-AA only after insertion into the injured spinal cord. hADSCs attracted resident pericytes expressing NG2, α-SMA, PDGF-Rβ and nestin to the lesion, potentially contributing to blood vessel maturation. We conclude that the presence of hADSCs in the injured spinal cord is essential for tissue repair.
Collapse
|
25
|
Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020; 2020:2853650. [PMID: 33204276 PMCID: PMC7661146 DOI: 10.1155/2020/2853650] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the serious neurological diseases that occur in young people with high morbidity and disability. However, there is still a lack of effective treatments for it. Stem cell (SC) treatment of SCI has gradually become a new research hotspot over the past decades. This article is aimed at reviewing the research progress of SC therapy for SCI. Methods Review the literature and summarize the effects, strategies, related mechanisms, safety, and clinical application of different SC types and new approaches in combination with SC in SCI treatment. Results A large number of studies have focused on SC therapy for SCI, most of which showed good effects. The common SC types for SCI treatment include mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The modes of treatment include in vivo and in vitro induction. The pathways of transplantation consist of intravenous, transarterial, nasal, intraperitoneal, intrathecal, and intramedullary injections. Most of the SC treatments for SCI use a number of cells ranging from tens of thousands to millions. Early or late SC administration, application of immunosuppressant or not are still controversies. Potential mechanisms of SC therapy include tissue repair and replacement, neurotrophy, and regeneration and promotion of angiogenesis, antiapoptosis, and anti-inflammatory. Common safety issues include thrombosis and embolism, tumorigenicity and instability, infection, high fever, and even death. Recently, some new approaches, such as the pharmacological activation of endogenous SCs, biomaterials, 3D print, and optogenetics, have been also developed, which greatly improved the application of SC therapy for SCI. Conclusion Most studies support the effects of SC therapy on SCI, while a few studies do not. The cell types, mechanisms, and strategies of SC therapy for SCI are very different among studies. In addition, the safety cannot be ignored, and more clinical trials are required. The application of new technology will promote SC therapy of SCI.
Collapse
|
26
|
Effect of Systemic Adipose-derived Stem Cell Therapy on Functional Nerve Regeneration in a Rodent Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2953. [PMID: 32802651 PMCID: PMC7413771 DOI: 10.1097/gox.0000000000002953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Regardless of etiology, peripheral nerve injuries (PNI) result in disruption/loss of neuromuscular junctions, target muscle denervation, and poor sensorimotor outcomes with associated pain and disability. Adipose-derived stem cells (ASCs) have shown promise in neuroregeneration. However, there is a paucity of objective assessments reflective of functional neuroregeneration in experimental PNI. Here, we use a multimodal, static, and dynamic approach to evaluate functional outcomes after ASC therapy in a rodent PNI model.
Collapse
|
27
|
Zhong L, Zhang H, Ding ZF, Li J, Lv JW, Pan ZJ, Xu DX, Yin ZS. Erythropoietin-Induced Autophagy Protects Against Spinal Cord Injury and Improves Neurological Function via the Extracellular-Regulated Protein Kinase Signaling Pathway. Mol Neurobiol 2020; 57:3993-4006. [PMID: 32647973 DOI: 10.1007/s12035-020-01997-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The objective of this study was to explore the neuroprotective molecular mechanisms of erythropoietin (EPO) in rats following spinal cord injury (SCI). First, a standard SCI model was established. After drug or saline treatment was administered, locomotor function was evaluated in rats using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. H&E, Nissl, and TUNEL staining were performed to assess the ratio of cavities, number of motor neurons, and apoptotic cells in the damaged area. The relative protein and mRNA expressions were examined using western blot and qRT-PCR analyses, and the inflammatory markers, axon special protein, and neuromuscular junctions (NMJs) were detected by immunofluorescence. Both doses of EPO notably improved locomotor function, but high-dose EPO was more effective than low-dose EPO. Moreover, EPO reduced the cavity ratio, cell apoptosis, and motor neuron loss in the damaged area, but enhanced the autophagy level and extracellular-regulated protein kinase (ERK) activity. Treatment with an ERK inhibitor significantly prevented the effect of EPO on SCI, and an activator mimicked the benefits of EPO. Further investigation revealed that EPO promoted SCI-induced autophagy via the ERK signaling pathway. EPO activates autophagy to promote locomotor function recovery in rats with SCI via the ERK signaling pathway.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.,Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Zheng-Fei Ding
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Jian Li
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China.,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jin-Wei Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China.,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zheng-Jun Pan
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China. .,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
28
|
Stem Cell Therapy for Neurogenic Bladder After Spinal Cord Injury: Clinically Possible? Int Neurourol J 2020; 24:S3-10. [PMID: 32482052 PMCID: PMC7285699 DOI: 10.5213/inj.2040150.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022] Open
Abstract
Neurogenic bladder (NB) after spinal cord injury (SCI) is a common complication that inhibits normal daily activities and reduces the quality of life. Regrettably, the current therapeutic methods for NB are inadequate. Therefore, numerous studies have been conducted to develop new treatments for NB associated with SCI. Moreover, a myriad of preclinical and clinical trials on the effects and safety of stem cell therapy in patients with SCI have been performed, and several studies have demonstrated improvements in urodynamic parameters, as well as in sensory and motor function, after stem cell therapy. These results are promising; however, further high-quality clinical studies are necessary to compensate for a lack of randomized trials, the modest number of participants, variation in the types of stem cells used, and inconsistency in routes of administration.
Collapse
|
29
|
Jin MC, Medress ZA, Azad TD, Doulames VM, Veeravagu A. Stem cell therapies for acute spinal cord injury in humans: a review. Neurosurg Focus 2020; 46:E10. [PMID: 30835679 DOI: 10.3171/2018.12.focus18602] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Recent advances in stem cell biology present significant opportunities to advance clinical applications of stem cell-based therapies for spinal cord injury (SCI). In this review, the authors critically analyze the basic science and translational evidence that supports the use of various stem cell sources, including induced pluripotent stem cells, oligodendrocyte precursor cells, and mesenchymal stem cells. They subsequently explore recent advances in stem cell biology and discuss ongoing clinical translation efforts, including combinatorial strategies utilizing scaffolds, biogels, and growth factors to augment stem cell survival, function, and engraftment. Finally, the authors discuss the evolution of stem cell therapies for SCI by providing an overview of completed (n = 18) and ongoing (n = 9) clinical trials.
Collapse
|
30
|
Ashja-Arvan M, Dehbashi M, Eslami A, Salehi H, Yoosefi M, Ganjalikhani-Hakemi M. Impact of IFN-β and LIF overexpression on human adipose-derived stem cells properties. J Cell Physiol 2020; 235:8736-8746. [PMID: 32324266 DOI: 10.1002/jcp.29717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 02/05/2023]
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells that their therapeutic effects in various diseases make them an interesting tool in cell therapy. In the current study, we aimed to overexpress interferon-β (IFN-β) and leukemia inhibitory factor (LIF) cytokines in human ADSCs to evaluate the impact of this overexpression on human ADSCs properties. Here, we designed a construct containing IFN-β and LIF and then, transduced human adipose-derived stem cells (hADSCs) by this construct via a lentiviral vector (PCDH-513B). We assessed the ability of long-term expression of the transgene in transduced cells by western blot analysis and enzyme-linked immunosorbent assay techniques on Days 15, 45, and 75 after transduction. For the evaluation of stem cell properties, flow cytometry and differentiation assays were performed. Finally, the MTT assay was done to assess the proliferation of transduced cells compares to controls. Our results showed high-efficiency transduction with highest expression rates on Day 75 after transduction which were 70 pg/ml for IFN-β and 77.9 pg/ml for LIF in comparison with 25.60 pg/ml and 27.63 pg/ml, respectively, in untransduced cells (p = .0001). Also, transduced cells expressed a high level of ADSCs surface markers and successfully differentiated into adipocytes, chondrocytes, neural cells, and osteocytes besides the preservation rate of proliferation near untreated cells (p = .88). All in all, we successfully constructed an hADSC population stably overexpressed IFN-β and LIF cytokines. Considering the IFN-β and LIF anti-inflammatory and neuroprotective effects as well as immune-regulatory properties of hADSCs, the obtained cells of this study could be subjected for further evaluations in experimental autoimmune encephalomyelitis mice model.
Collapse
Affiliation(s)
- Mehnoosh Ashja-Arvan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiyeh Yoosefi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
31
|
Ji WC, Li M, Jiang WT, Ma X, Li J. Protective effect of brain-derived neurotrophic factor and neurotrophin-3 overexpression by adipose-derived stem cells combined with silk fibroin/chitosan scaffold in spinal cord injury. Neurol Res 2020; 42:361-371. [PMID: 32149594 DOI: 10.1080/01616412.2020.1735819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives: Spinal cord injury (SCI) is a most debilitating traumatic injury, and cytotherapy is a promising alternative treatment strategy. Here we investigated the effect and mechanism of adipose-derived stem/stromal cells (ASCs) with overexpressing brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) (BDNF-NT3) in combination with silk fibroin/chitosan scaffold (SFCS) in SCI.Methods: Female Sprague-Dawley rats were used as an SCI model. SFCS,SFCS and ASCs, or ASCs overexpressing NT3, BDNF, and BDNF-NT3 were implanted into SCI rats. Basso, Beattie, and Bresnahan score, pathological changes, and spinal cord tissue and nerve fiber morphology were observed and assayed. GAP-43, GFAP, and caspase-3 expression was determined using immunohistochemistry and western blotting.Results: Smoother spinal cords, less scar tissue, and lower inflammatory activity were found in the SFCS, SFCS and ASCs, ASCs with NT3, BDNF, and BDNF-NT3 overexpression treatment than in the untreated SCI rat groups. Increasing formation of nerve fibers was observed in the above groups in order. GAP-43 expression significantly increased, while GFAP and caspase-3 expression significantly decreased. These results indicated obvious alleviation in pathological changes and BDNF-NT3 overexpression in ASCs combined with SFCS treatment in SCI rats.Conclusion: Thus, BDNF-NT3 overexpression from ASCs with SFCS had synergistic neuroprotective effects on SCI and may be a treatment option for SCI.
Collapse
Affiliation(s)
- Wen-Chen Ji
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wan-Ting Jiang
- Department of Ultrasound Diagnosis, The Fourth Hospital of Xi'an, Xi'an, China
| | - Xing Ma
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Therapeutic Effects of Intravenous Injection of Fresh and Frozen Thawed HO-1-Overexpressed Ad-MSCs in Dogs with Acute Spinal Cord Injury. Stem Cells Int 2019; 2019:8537541. [PMID: 31481975 PMCID: PMC6701425 DOI: 10.1155/2019/8537541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Owing to the antioxidant and anti-inflammatory functions of hemeoxygenase-1 (HO-1), HO-1-expressing canine adipose-derived mesenchymal stem cells (Ad-MSCs) could be efficacious in treating spinal cord injury (SCI). Further, frozen thawed HO-1 Ad-MSCs could be instantly available as an emergency treatment for SCI. We compared the effects of intravenous treatment with freshly cultured HO-1 Ad-MSCs (HO-1 MSCs), only green fluorescent protein-expressing Ad-MSCs (GFP MSCs), and frozen thawed HO-1 Ad-MSCs (FT-HO-1 MSCs) in dogs with acute SCI. For four weeks, dogs were evaluated for improvement in hind limb locomotion using a canine Basso Beattie Bresnahan (cBBB) score. Upon completion of the study, injured spinal cord segments were harvested and used for western blot and histopathological analyses. All cell types had migrated to the injured spinal cord segment. The group that received HO-1 MSCs showed significant improvement in the cBBB score within four weeks. This group also showed significantly higher expression of NF-M and reduced astrogliosis. There was reduced expression of proinflammatory cytokines (IL6, TNF-α, and IL-1β) and increased expression of anti-inflammatory markers (IL-10, HO-1) in the HO-1 MSC group. Histopathological assessment revealed decreased fibrosis at the epicenter of the lesion and increased myelination in the HO-1 MSC group. Together, these data suggest that HO-1 MSCs could improve hind limb function by increasing the anti-inflammatory reaction, leading to neural sparing. Further, we found similar results between GFP MSCs and FT-HO-1 MSCs, which suggest that FT-HO-1 MSCs could be used as an emergency treatment for SCI.
Collapse
|
33
|
Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH, Thi Nga V. Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med 2019; 8:E917. [PMID: 31247996 PMCID: PMC6678927 DOI: 10.3390/jcm8070917] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue stem cells (ASCs), known as multipotent stem cells, are most commonly used in the clinical applications in recent years. Adipose tissues (AT) have the advantage in the harvesting, isolation, and expansion of ASCs, especially an abundant amount of stem cells compared to bone marrow. ASCs can be found in stromal vascular fractions (SVF) which are easily obtained from the dissociation of adipose tissue. Both SVFs and culture-expanded ASCs exhibit the stem cell characteristics such as differentiation into multiple cell types, regeneration, and immune regulators. Therefore, SVFs and ASCs have been researched to evaluate the safety and benefits for human use. In fact, the number of clinical trials on ASCs is going to increase by years; however, most trials are in phase I and II, and lack phase III and IV. This systemic review highlights and updates the process of the harvesting, characteristics, isolation, culture, storage, and application of ASCs, as well as provides further directions on the therapeutic use of ASCs.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
34
|
Sarveazad A, Janzadeh A, Taheripak G, Dameni S, Yousefifard M, Nasirinezhad F. Co-administration of human adipose-derived stem cells and low-level laser to alleviate neuropathic pain after experimental spinal cord injury. Stem Cell Res Ther 2019; 10:183. [PMID: 31234929 PMCID: PMC6591829 DOI: 10.1186/s13287-019-1269-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Evidence has suggested that human adipose-derived stem cells (hADSCs) and low-level laser has neuroprotective effects on spinal cord injury (SCI). Therefore, the combined effect of the hADSCs and laser on neuregeneration and neuropathic pain after SCI was investigated. METHODS Forty-eight adult male Wistar rats with 200-250 g weight were used. Thirty minutes after compression, injury with laser was irritated, and 1 week following SCI, about 1 × 106 cells were transplanted into the spinal cord. Motor function and neuropathic pain were assessed weekly. Molecular and histological studies were done at the end of the fourth week. RESULTS The combined application of hADSCs and laser has significantly improved motor function recovery (p = 0.0001), hyperalgesia (p < 0.05), and allodynia (p < 0.05). GDNF mRNA expression was significantly increased in hADSCs and laser+hADSC-treated animals (p < 0.001). Finally, co-administration of hADSCs and laser has enhanced the number of axons around cavity more than other treatments (p < 0.001). CONCLUSIONS The results showed that the combination of laser and ADSCs could significantly improve the motor function and alleviate SCI-induced allodynia and hyperalgesia. Therefore, using a combination of laser and hADSCs in future experimental and translational clinical studies is suggested.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Dameni
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| |
Collapse
|
35
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
36
|
Abstract
Recently, adipose-derived stem cells (ASCs), obtained from fresh human lipoaspirate, have shown promise as immunomodulatory agents having demonstrated immunosuppressive functionality both in vitro and in vivo. A number of researchers have described the isolation of ASCs through the enzymatic digestion of fat samples, followed by a number of purification steps, involving centrifugation and filtration. Here, we utilize a standard isolation technique, with the added purification of putative ASCs by fluorescence activated cell sorting (FACS). ASCs are an extremely valuable resource in clinical applications, including reconstruction, regeneration, and investigations into immune activity. This method could be used to isolate and purify ASCs for such downstream applications.
Collapse
|
37
|
Zhang Z, Wang F, Song M. The cell repair research of spinal cord injury: a review of cell transplantation to treat spinal cord injury. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Through retrospective analysis of the literature on the cell repair of spinal cord injury worldwide, it is found that the mechanism of cell transplantation repairing spinal cord injury is mainly to replace damaged neurons, protect host neurons, prevent apoptosis, promote axonal regeneration and synapse formation, promote myelination, and secrete trophic factors or growth factors to improve microenvironment. A variety of cells are used to repair spinal cord injury. Stem cells include multipotent stem cells, embryonic stem cells, and induced pluripotent stem cells. The multipotent stem cells are mainly various types of mesenchymal stem cells and neural stem cells. Non-stem cells include olfactory ensheathing cells and Schwann cells. Transplantation of inhibitory interneurons to alleviate neuropathic pain in patients is receiving widespread attention. Different types of cell transplantation have their own advantages and disadvantages, and multiple cell transplantation may be more helpful to the patient’s functional recovery. These cells have certain effects on the recovery of neurological function and the improvement of complications, but further exploration is needed in clinical application. The application of a variety of cell transplantation, gene technology, bioengineering and other technologies has made the prospect of cell transplantation more extensive. There is a need to find a safe and effective comprehensive treatment to maximize and restore the patient’s performance.
Collapse
|
38
|
Ohta Y, Takenaga M, Hamaguchi A, Ootaki M, Takeba Y, Kobayashi T, Watanabe M, Iiri T, Matsumoto N. Isolation of Adipose-Derived Stem/Stromal Cells from Cryopreserved Fat Tissue and Transplantation into Rats with Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19071963. [PMID: 29976859 PMCID: PMC6073880 DOI: 10.3390/ijms19071963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue contains multipotent cells known as adipose-derived stem/stromal cells (ASCs), which have therapeutic potential for various diseases. Although the demand for adipose tissue for research use remains high, no adipose tissue bank exists. In this study, we attempted to isolate ASCs from cryopreserved adipose tissue with the aim of developing a banking system. ASCs were isolated from fresh and cryopreserved adipose tissue of rats and compared for proliferation (doubling time), differentiation capability (adipocytes), and cytokine (hepatocyte growth factor and vascular endothelial growth factor) secretion. Finally, ASCs (2.5 × 106) were intravenously infused into rats with spinal cord injury, after which hindlimb motor function was evaluated. Isolation and culture of ASCs from cryopreserved adipose tissue were possible, and their characteristics were not significantly different from those of fresh tissue. Transplantation of ASCs derived from cryopreserved tissue significantly promoted restoration of hindlimb movement function in injured model rats. These results indicate that cryopreservation of adipose tissue may be an option for clinical application.
Collapse
Affiliation(s)
- Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan.
| | - Akemi Hamaguchi
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan.
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| |
Collapse
|