1
|
Pachocki J, Verter F. Polish regulatory system regarding ATMP hospital exemptions. Front Immunol 2024; 15:1379134. [PMID: 38803487 PMCID: PMC11128580 DOI: 10.3389/fimmu.2024.1379134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction This article explains the current regulatory system in Poland regarding Advanced Therapy Medicinal Products given under Hospital Exemptions (ATMP-HE). Methods The relevant sections of Polish legislation are translated into English and their interaction is described. Results We analyze the impact of these regulations from the perspective of three stakeholder groups: manufacturers, physicians, and patients. Amendments enacted between 2018 and 2023 have substantially changed Polish implementation of the ATMP-HE pathway. In Poland, most ATMP-HE treatments have been therapies employing Mesenchymal Stromal Cells (MSC). Discussion Comparison to other European countries shows that Poland is within the mainstream of EU practices regarding ATMP-HE implementation. One notable issue is that Poland has relatively low per capita spending on healthcare, and ATMP-HE in Poland must be funded from outside the government healthcare system. Conclusions. The original intention of the legislation that created ATMP-HE was to allow access to experimental therapies for patients with unmet needs. It remains to be seen if that mission can be fulfilled amidst conflicting pressures from various stakeholder groups.
Collapse
Affiliation(s)
| | - Frances Verter
- Parent’s Guide to Cord Blood Foundation, Brookeville, MD, United States
| |
Collapse
|
2
|
Gómez-Outes A, Sancho-López A, Carcas Sansuan AJ, Avendaño-Solá C. Clinical research and drug regulation in the challenging times of individualized therapies: A pivotal role of clinical pharmacology. Pharmacol Res 2024; 199:107045. [PMID: 38157999 DOI: 10.1016/j.phrs.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Since the 1980s, medical specialists in Clinical Pharmacology have been playing a crucial role in the development of drug regulation in Spain. In this article we report on the activities carried out and the prospects for development in three very relevant areas from the regulatory perspective: 1) the development of stable public infrastructures to facilitate non-commercial clinical research with medicines, 2) the regulatory aspects of individual access to medicines in special situations, beyond their regular access after marketing approval and funding by the National Health System, and 3) the challenges of development and access to advanced therapies, with special reference to the figure of the hospital exemption.
Collapse
Affiliation(s)
- Antonio Gómez-Outes
- Division of Pharmacology and Clinical Drug Evaluation, Medicines for Human Use, Spanish Agency for Medicines and Healthcare Products (AEMPS), Madrid, Spain
| | - Aránzazu Sancho-López
- Clinical Pharmacology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Cristina Avendaño-Solá
- Clinical Pharmacology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
3
|
Fürst-Ladani S, Bührer A, Fürst W, Schober-Ladani N. Regulatory Aspects for Approval of Advanced Therapy Medicinal Products in the EU. Handb Exp Pharmacol 2024; 284:367-387. [PMID: 37017789 DOI: 10.1007/164_2023_648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
In the European Union (EU), advanced therapy medicinal products (ATMPs) undergo evaluation by the European Medicines Agency's (EMA) Committee for Advanced Therapies (CAT) to obtain marketing authorization under the centralized procedure. Because of the diversity and complexity of ATMPs, a tailored approach to the regulatory process is required that needs to ensure the safety and efficacy of each product. Since ATMPs often target serious diseases with unmet medical need, the industry and authorities are interested in providing treatment to patients in a timely manner through optimized and expedited regulatory pathways. EU legislators and regulators have implemented various instruments to support the development and authorization of innovative medicines by offering scientific guidance at early stages, incentives for small developers and products for rare diseases, accelerated evaluation of marketing authorization applications, different types of marketing authorizations, and tailored programs for medicinal products with the orphan drug designation (ODD) and the Priority Medicines (PRIME) scheme. Since the regulatory framework for ATMPs was established, 20 products have been licenced, 15 with orphan drug designation, and 7 supported by PRIME. This chapter discusses the specific regulatory framework for ATMPs in the EU and highlights previous successes and remaining challenges.
Collapse
Affiliation(s)
| | - Anja Bührer
- SFL Regulatory Affairs and Scientific Communication GmbH, Basel, Switzerland
| | - Walter Fürst
- SFL Regulatory Affairs and Scientific Communication GmbH, Basel, Switzerland
| | | |
Collapse
|
4
|
Elsallab M, Maus MV. Expanding access to CAR T cell therapies through local manufacturing. Nat Biotechnol 2023; 41:1698-1708. [PMID: 37884746 DOI: 10.1038/s41587-023-01981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/05/2023] [Indexed: 10/28/2023]
Abstract
Chimeric antigen receptor (CAR) T cells are changing the therapeutic landscape for hematological malignancies. To date, all six CAR T cell products approved by the US Food and Drug Administration (FDA) are autologous and centrally manufactured. As the numbers of approved products and indications continue to grow, new strategies to increase cell-manufacturing capacity are urgently needed to ensure patient access. Distributed manufacturing at the point of care or at other local manufacturing sites would go a long way toward meeting the rising demand. To ensure successful implementation, it is imperative to harness novel technologies to achieve uniform product quality across geographically dispersed facilities. This includes the use of automated cell-production systems, in-line sensors and process simulation for enhanced quality control and efficient supply chain management. A comprehensive effort to understand the critical quality attributes of CAR T cells would enable better definition of widely attainable release criteria. To supplement oversight by national regulatory agencies, we recommend expansion of the role of accreditation bodies. Moreover, regulatory standards may need to be amended to accommodate the unique characteristics of distributed manufacturing models.
Collapse
Affiliation(s)
- Magdi Elsallab
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, USA
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Delgadillo J, Kerkelä E, Waters A, Akker EVD, Lechanteur C, Baudoux E, Gardiner N, De Vos J, Vives J. A management model in blood, tissue and cell establishments to ensure rapid and sustainable patient access to advanced therapy medicinal products in Europe. Cytotherapy 2023; 25:1259-1264. [PMID: 37737767 DOI: 10.1016/j.jcyt.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023]
Abstract
Blood, tissue and cell establishments (BTCs) stand out in the management of donor selection, procurement and processing of all types of substances of human origin (SoHO). In the last decades, the framework created around BTCs, including hospitals and national health system networks, and their links to research, development and innovation organizations and agencies have spurred their involvement in the study of groundbreaking advanced therapy medicinal products (ATMP). To further improve strategic synergies in the development of ATMPs, it will be required to promote intra- and inter-European collaborations by creating an international network involving BTCs and major stakeholders (i.e., research organizations, hospitals, universities, patient associations, public agencies). This vision is already shared with the European Blood Alliance, the association of non-profit blood establishments, with 26 member states throughout the European Union and European Free Trade Association states. Herein we present and analyze the "BTC for ATMP Development And Manufacture" (BADAM) model, an ethically responsible business model based on the values and missions of BTCs and their commitment to health equity, patient access and education (based on voluntary donation of SoHO to address unmet clinical needs, while contributing to training professionals and scientific literacy of our Society).
Collapse
Affiliation(s)
- Joaquín Delgadillo
- Banc de Sang i Teixits (BST), Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain; Transfusion Medicine Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Vantaa, Finland
| | - Allison Waters
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Emile van den Akker
- Department of Hematopoiesis and Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chantal Lechanteur
- University of Liège, Laboratory of Cell and Gene Therapy LTCG, Liège, Belgium
| | - Etienne Baudoux
- University of Liège, Laboratory of Cell and Gene Therapy LTCG, Liège, Belgium
| | - Nicola Gardiner
- Cryobiology Laboratory Stem Cell Facility, St. James's Hospital, Dublin, Ireland
| | - John De Vos
- Département d'ingénierie Cellulaire et Tissulaire, Unité de Thérapie Cellulaire, Hôpital Saint-Eloi, Montpellier, France
| | - Joaquim Vives
- Banc de Sang i Teixits (BST), Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain; Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Dulak J, Pecyna M. Unproven cell interventions in Poland and the exploitation of European Union law on advanced therapy medicinal products. Stem Cell Reports 2023; 18:1610-1620. [PMID: 37390824 PMCID: PMC10444563 DOI: 10.1016/j.stemcr.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023] Open
Abstract
The global threat of unproven "stem cell therapies" develops despite the repeated statements of scientific organizations and regulatory agencies warning about the improper rationale, lack of effectiveness, and potential health risks of such commercial activities. Here, this problem is discussed from Poland's perspective, where unjustified "stem cell medical experiments" have raised the concern of responsible scientists and physicians. The paper describes how the European Union law on advanced therapy medicinal products and the hospital exemption rule have been used improperly and unlawfully on a mass scale. The article indicates serious scientific, medical, legal, and social issues of these activities.
Collapse
Affiliation(s)
- Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Marlena Pecyna
- Chair of Civil Law, Faculty of Law and Administration, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
7
|
Bellino S, La Salvia A, Cometa MF, Botta R. Cell-based medicinal products approved in the European Union: current evidence and perspectives. Front Pharmacol 2023; 14:1200808. [PMID: 37583902 PMCID: PMC10424920 DOI: 10.3389/fphar.2023.1200808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) are innovative clinical treatments exploiting the pharmacological, immunological, or metabolic properties of cells and/or gene(s) with the aim to restore, correct, or modify a biological function in the recipient. ATMPs are heterogeneous medicinal products, developed mainly as individualized and patient-specific treatments, and represent new opportunities for diseases characterized by a high-unmet medical need, including rare, genetic and neurodegenerative disorders, haematological malignancies, cancer, autoimmune, inflammatory and orthopaedic conditions. Into the European Union (EU) market, the first ATMP has been launched in 2009 and, to date, a total of 24 ATMPs have been approved. This review aims at reporting on current evidence of cell-based therapies authorized in the EU, including Somatic Cell Therapies, Tissue Engineering Products, and Cell-based Gene Therapy Products as Chimeric Antigen Receptor (CAR) T-cells, focusing on the evaluation of efficacy and safety in clinical trials and real-world settings. Despite cell-based therapy representing a substantial promise for patients with very limited treatment options, some limitations for its widespread use in the clinical setting remain, including restricted indications, highly complex manufacturing processes, elevated production costs, the lability of cellular products over time, and the potential safety concerns related to the intrinsic characteristics of living cells, including the risk of severe or life-threatening toxicities, such as CAR-T induced neurotoxicity and cytokine release syndrome (CRS). Although encouraging findings support the clinical use of ATMPs, additional data, comparative studies with a long-term follow-up, and wider real-world evidences are needed to provide further insights into their efficacy and safety profiles.
Collapse
Affiliation(s)
- Stefania Bellino
- National Center for Drug Research and Evaluation, National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| | | | | | | |
Collapse
|
8
|
Aguilera-Cobos L, Rosario-Lozano MP, Ponce-Polo A, Blasco-Amaro JA, Epstein D. Barriers for the evaluation of advanced therapy medicines and their translation to clinical practice: Umbrella review. Health Policy 2022; 126:1248-1255. [DOI: 10.1016/j.healthpol.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
|
9
|
Lopez-Navas L, Torrents S, Sánchez-Pernaute R, Vives J. Compliance in Non-Clinical Development of Cell-, Gene-, and Tissue-Based Medicines: Good Practice for Better Therapies. Stem Cells Transl Med 2022; 11:805-813. [PMID: 35830540 PMCID: PMC9397649 DOI: 10.1093/stcltm/szac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
The development of cell-, gene- and tissue engineering (CGT)-based therapies must adhere to strict pharmaceutical quality management standards, as for any other biological or small-molecule drug. However, early developments often failed to fully comply with good laboratory practices (GLP) in non-clinical safety studies. Despite an upward trend of positive opinions in marketing authorization applications, evidence of adherence to the principles of GLP is not openly reported; therefore, their relative impact on the overall quality of the product development program is unknown. Herein we investigated the actual degree of GLP implementation and the underlying factors impeding full compliance in non-clinical developments of CGT-based marketed medicines in the EU and USA, including (i) the co-existence of diverse quality management systems of more strategic value for small organizations, particularly current Good Manufacturing Practices n(GMP); (ii) lack of regulatory pressure to pursue GLP certification; and (iii) the involvement of public institutions lacking a pharmaceutical mindset and resources. As a final reflection, we propose conformity to good research practice criteria not as a doctrinaire impediment to scientific work, but as a facilitator of efficient clinical translation of more effective and safer innovative therapies.
Collapse
Affiliation(s)
- Luis Lopez-Navas
- Andalusian Network for the Design and Translation of Advanced Therapies, Andalusian Health Ministry, Sevilla, Spain
| | | | - Rosario Sánchez-Pernaute
- Andalusian Network for the Design and Translation of Advanced Therapies, Andalusian Health Ministry, Sevilla, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Patient access to and ethical considerations of the application of the European Union hospital exemption rule for advanced therapy medicinal products. Cytotherapy 2022; 24:686-690. [DOI: 10.1016/j.jcyt.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/21/2022]
|
11
|
Viljoen I, Hendricks C, Malherbe H, Pepper M. Regenerative medicines: A new regulatory paradigm for South Africa. Biochimie 2022; 196:123-130. [DOI: 10.1016/j.biochi.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023]
|
12
|
Trias E, Juan M, Urbano-Ispizua A, Calvo G. The hospital exemption pathway for the approval of advanced therapy medicinal products: an underused opportunity? The case of the CAR-T ARI-0001. Bone Marrow Transplant 2022; 57:156-159. [PMID: 35046545 PMCID: PMC8821008 DOI: 10.1038/s41409-021-01463-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
In February 2021, the ‘Advanced Therapy Medicinal Product’ (ATMP) ARI-0001 (CART19-BE-01), developed at Hospital Clínic de Barcelona (Spain), received authorization from the Spanish Agency of Medicines and Medical Devices (AEMPS) under the ‘hospital exemption’ (HE) approval pathway for the treatment of patients aged >25 years with relapsed/refractory (RR) acute lymphoblastic leukemia (ALL). The HE pathway foreseen by the European Regulation establishing the legal framework for ATMPs intended to be placed on the market in the EU, allows access to ATMPs prepared on a non-routine basis, according to quality standards, like a custom-made product for an individual patient. Its use is limited to the same Member State where it was developed, in a hospital under the responsibility of a medical practitioner. HE-ATMPs must comply with national traceability and pharmacovigilance requirements and specific quality standards. HE offers an opportunity to develop ATMPs in close contact with clinical practice, with the quality and rapid access needed by patients and at a lower cost compared to regular market authorization. However, many barriers need to be overcome. Here we discuss relevant aspects of the development and authorization of ARI-0001 in the context of the heterogeneous frame of the European Regulation implementation across the Member States.
Collapse
|
13
|
Lee JS, Shim DW, Kang KY, Chae DS, Lee WS. Method Categorization of Stem Cell Therapy for Degenerative Osteoarthritis of the Knee: A Review. Int J Mol Sci 2021; 22:ijms222413323. [PMID: 34948119 PMCID: PMC8704290 DOI: 10.3390/ijms222413323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Current clinical applications of mesenchymal stem cell therapy for osteoarthritis lack consistency because there are no established criteria for clinical processes. We aimed to systematically organize stem cell treatment methods by reviewing the literature. The treatment methods used in 27 clinical trials were examined and reviewed. The clinical processes were separated into seven categories: cell donor, cell source, cell preparation, delivery methods, lesion preparation, concomitant procedures, and evaluation. Stem cell donors were sub-classified as autologous and allogeneic, and stem cell sources included bone marrow, adipose tissue, peripheral blood, synovium, placenta, and umbilical cord. Mesenchymal stem cells can be prepared by the expansion or isolation process and attached directly to cartilage defects using matrices or injected into joints under arthroscopic observation. The lesion preparation category can be divided into three subcategories: chondroplasty, microfracture, and subchondral drilling. The concomitant procedure category describes adjuvant surgery, such as high tibial osteotomy. Classification codes were assigned for each subcategory to provide a useful and convenient method for organizing documents associated with stem cell treatment. This classification system will help researchers choose more unified treatment methods, which will facilitate the efficient comparison and verification of future clinical outcomes of stem cell therapy for osteoarthritis.
Collapse
Affiliation(s)
- Jae Sun Lee
- Stem Cell Therapy Center, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Dong Woo Shim
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Kyung-Yil Kang
- Department of Medicine, Catholic Kwandong Graduate School, Gangneung-si 25601, Korea;
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| | - Woo-Suk Lee
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06276, Korea
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| |
Collapse
|
14
|
Qiu T, Liang S, Wang Y, Dussart C, Borissov B, Toumi M. Reinforcing Collaboration and Harmonization to Unlock the Potentials of Advanced Therapy Medical Products: Future Efforts Are Awaited From Manufacturers and Decision-Makers. Front Public Health 2021; 9:754482. [PMID: 34900902 PMCID: PMC8655837 DOI: 10.3389/fpubh.2021.754482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Some advanced therapy medicinal products (ATMPs) hold great promises for life-threatening diseases with high unmet needs. However, ATMPs are also associated with significant challenges in market access, which necessitates the joint efforts between all relevant stakeholders to navigate. In this review, we will elaborate on the importance of collaborations and harmonization across different stakeholders, to expedite the market access of promising ATMPs. Manufacturers of ATMPs should proactively establish collaborations with other stakeholders throughout the whole lifecycle of ATMPs, from early research to post-market activities. This covered engagements with (1) external developers (i.e., not-for-profit organizations and commercial players) to obtain complementary knowledge, technology, or infrastructures, (2) patient groups and healthcare providers to highlight their roles as active contributors, and (3) decision-makers, such as regulators, health technology assessment (HTA) agencies, and payers, to communicate the uncertainties in evidence package, where parallel consultation will be a powerful strategy. Harmonization between decision-makers is desired at (1) regulatory level, in terms of strengthening the international standardization of regulatory framework to minimize discrepancies in evidence requirements for market authorization, and (2) HTA level, in terms of enhancing alignments between regional and national HTA agencies to narrow inequity in patient access, and cross-border HTA cooperation to improve the quality and efficiency of HTA process. In conclusion, manufacturers and decision-makers shared the common goals to safeguard timely patient access to ATMPs. Collaboration and harmonization will be increasingly leveraged to enable the value delivery of ATMPs to all stakeholders.
Collapse
Affiliation(s)
- Tingting Qiu
- Département de Santé Publique, Aix-Marseille Université, Marseille, France
| | - Shuyao Liang
- Département de Santé Publique, Aix-Marseille Université, Marseille, France
| | - Yitong Wang
- Département de Santé Publique, Aix-Marseille Université, Marseille, France
| | - Claude Dussart
- Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Mondher Toumi
- Département de Santé Publique, Aix-Marseille Université, Marseille, France
| |
Collapse
|
15
|
Algorri M, Abernathy MJ, Cauchon NS, Christian TR, Lamm CF, Moore CMV. Re-Envisioning Pharmaceutical Manufacturing: Increasing Agility for Global Patient Access. J Pharm Sci 2021; 111:593-607. [PMID: 34478754 DOI: 10.1016/j.xphs.2021.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
The traditional paradigm for pharmaceutical manufacturing is focused primarily upon centralized facilities that enable mass production and distribution. While this system reliably maintains high product quality and reproducibility, its rigidity imposes limitations upon new manufacturing innovations that could improve efficiency and support supply chain resiliency. Agile manufacturing methodologies, which leverage flexibility through portability and decentralization, allow manufacturers to respond to patient needs on demand and present a potential solution to enable timely access to critical medicines. Agile approaches are particularly applicable to the production of small-batch, personalized therapies, which must be customized for each individual patient close to the point-of-care. However, despite significant progress in the advancement of agile-enabling technologies across several different industries, there are substantial global regulatory challenges that encumber the adoption of agile manufacturing techniques in the pharmaceutical industry. This review provides an overview of regulatory barriers as well as emerging opportunities to facilitate the use of agile manufacturing for the production of pharmaceutical products. Future-oriented approaches for incorporating agile methodologies within the global regulatory framework are also proposed. Collaboration between regulators and manufacturers to cohesively navigate the regulatory waters is ultimately needed to best serve patients in the rapidly-changing healthcare environment.
Collapse
Affiliation(s)
- Marquerita Algorri
- Department of Global Regulatory Affairs and Strategy-CMC, Amgen Inc, Thousand Oaks, California 91320, USA
| | - Michael J Abernathy
- Department of Global Regulatory Affairs and Strategy-CMC, Amgen Inc, Thousand Oaks, California 91320, USA
| | - Nina S Cauchon
- Department of Global Regulatory Affairs and Strategy-CMC, Amgen Inc, Thousand Oaks, California 91320, USA.
| | | | | | | |
Collapse
|
16
|
García-Muñoz E, Vives J. Towards the standardization of methods of tissue processing for the isolation of mesenchymal stromal cells for clinical use. Cytotechnology 2021; 73:513-522. [PMID: 33994662 PMCID: PMC8109215 DOI: 10.1007/s10616-021-00474-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are currently the most extensively studied type of adult stem cells in advanced stages of development in the field of regenerative medicine. The biological properties of MSCs have generated great hope for their therapeutic use in degenerative and autoimmune conditions that, at present, lack effective treatment options. Over the last decades, MSCs have been typically obtained from adult bone marrow, but the extraction process is highly invasive and the quality and numbers of isolated cells is drastically influenced by patient age, medication and associated comorbidities. Therefore, there is currently an open discussion on the convenience of allogeneic over autologous treatments, despite potential disadvantages such as rejection by the host. This shift to the allogeneic setting entails the need for high production of MSCs to ensure availability of sufficient cell numbers for transplantation, and therefore making the search for alternative tissue sources of highly proliferative MSC cultures with low levels of senescence occurrence, which is one of the greatest current challenges in the scale up of therapeutic cell bioprocessing. Herein we (i) present the main isolation protocols of MSCs from bone marrow, adipose tissue and Wharton’s jelly of the umbilical cord; and (ii) compare their qualities from a bioprocess standpoint, addressing both quality and regulatory aspects, in view of their anticipated clinical use.
Collapse
Affiliation(s)
- Elisabeth García-Muñoz
- Banc de Sang iTeixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang iTeixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain
| |
Collapse
|