1
|
Egbeyemi OI, Hatem WA, Kober UA, Lapitsky Y. Transforming the Stability, Encapsulation, and Sustained Release Properties of Calcium Alginate Beads through Gel-Confined Coacervation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11947-11958. [PMID: 38807458 DOI: 10.1021/acs.langmuir.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Calcium alginate (Ca2+/alginate) gel beads find use in diverse applications, ranging from drug delivery and tissue engineering to bioprocessing, food formulation, and agriculture. Unless modified, however, these gels have limited stability in alkaline media (including phosphate buffers), and their high solute permeability limits their ability to efficiently encapsulate and slowly release water-soluble small molecules. Here, we show how these limitations can be addressed by mixing the alginate solutions used in the bead preparation with the nontoxic anionic polymer polyphosphate (PP). Upon complexing Ca2+ ions, PP undergoes complex coacervation (i.e., liquid/liquid phase separation into a Ca2+/PP-rich coacervate phase and a dilute supernatant phase). At lower PP concentrations, the Ca2+/PP coacervate appears to simply remain dispersed within the beads. Though its presence makes the beads more stable in alkaline media (phosphate-buffered saline and seawater), it has little impact on the bead stiffness, morphology, and (at least in the absence of substantial payload/coacervate association) encapsulation and release properties. When the PP concentrations exceed a critical value, however, Ca2+/PP coacervation within the gelling Ca2+/alginate beads collapses the resulting beads into more compact, interpenetrating polymer networks. Besides their enhanced stability to alkaline environments, these hybrid beads exhibit irregular morphologies with wrinkled and dimpled surface structures and macroscopic (closed) internal pores, and their collapse into these polymer-rich networks also makes them significantly stiffer than their PP-free counterparts. Crucially, these beads also exhibit a much lower solute permeability, which enables highly efficient encapsulation and multiday release of water-soluble small molecules (with the beads encapsulating >90% of the added model payload and sustaining its release over 3-5 d). Collectively, these findings provide a mild and simple (single-step) pathway to generating ionically cross-linked alginate beads with significantly enhanced stability, encapsulation efficiency, and sustained release.
Collapse
Affiliation(s)
| | - Wesam A Hatem
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Umberto A Kober
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
2
|
Gopalakrishnan A, Mathew J, Thomas JM, Thankachan G, Aravindakumar CT, Aravind UK. Spectro-kinetic investigations on the release mechanism of lysozyme from layer-by-layer reservoirs. Colloids Surf B Biointerfaces 2023; 222:113135. [PMID: 36640537 DOI: 10.1016/j.colsurfb.2023.113135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The investigations of protein adsorption and release on interfaces aid in the elucidation of the protein-surface interaction mechanism, which has several applications in the biomedical area. The spectro-kinetic and morphological analysis of the release of lysozyme (Lyz) from chitosan/polystyrene sulphonate (CHI/PSS) multilayer immobilized at pHs 10.6, 8.8 and 5.0 shows that the extent of release strongly depends on the pH of Lyz loading and the ionic strength of the desorbing solution. When compared to pH 8.8, the release for pH 10.6 achieves equilibrium more rapidly. At loading pH 10.6, the release is surface-mediated, at pH 8.8, it is both surface- and bulk-mediated, while at pH 5.0 it is bulk mediated with minimal release. Lyz released for loading pH 10.6 retains its native secondary structure. Kinetic fitting suggests that high loading pH 8.8-10.6 and high release ionic strength (0.5-1.0 M NaCl) lead to burst release of Lyz from CHI/PSS multilayer. Surface morphology changes of multilayer interface upon Lyz loading and release are highlighted by SEM topography and AFM height distribution analysis. The present work indicates that CHI/PSS multilayer system can function as a reservoir for burst as well as controlled release of lysozyme by selecting the loading pH and ionic strength.
Collapse
Affiliation(s)
- Akhil Gopalakrishnan
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam 686560, India
| | - Jissy Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Jain Maria Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Greeshma Thankachan
- School of Environmental Studies, Cochin University of Science and Technology, Kochi 682022, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, India; Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam 686560, India
| | - Usha K Aravind
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam 686560, India; School of Environmental Studies, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
3
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Layer-by-Layer Biomimetic Microgels for 3D Cell Culture and Nonviral Gene Delivery. Biomacromolecules 2021; 23:1545-1556. [PMID: 34890507 DOI: 10.1021/acs.biomac.1c01130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Localized release of nucleic acid therapeutics is essential for many biomedical applications, including gene therapy, tissue engineering, and medical implant coatings. We applied the substrate-mediated transfection and layer-by-layer (LbL) technique to achieve an efficient local gene delivery. In the experiments presented herein, we embeded lipoplexes containing plasmid DNA encoding for enhanced green fluorescent protein (pEGFP) within polyelectrolyte alginate-based microgels composed of poly(allylamine hydrochloride) (PAH), chondroitin sulfate (CS), and poly-l-lysine (PLL) with diameters between 70 and 90 μm. Droplet-based microfluidics was used as the main process to produce the alginate (ALG)-based microgels with discrete size, shape, and low coefficient of variation. The physicochemical and morphological properties of the polyelectrolyte microgels were characterized via optical microscopy, scanning electron microscopy (SEM), and zeta potential analysis. We found that polyelectrolyte microgels provide low cytotoxicity and cell-material interactions (adhesion, spreading, and proliferation). In addition, the microsystem showed the ability to load lipoplexes and a loading efficiency equal to 83%, and it enabled in vitro surface-based transfection of MCF-7 cells. This approach provides a new suitable route for cell adhesion and local gene delivery.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Franciele F Vit
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil
| | - Lucimara G de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| |
Collapse
|
4
|
Bernasconi R, Pizzetti F, Rossetti A, Butler B, Levi M, Pané S, Rossi F, Magagnin L. Layer-by-Layer Fabrication of Hydrogel Microsystems for Controlled Drug Delivery From Untethered Microrobots. Front Bioeng Biotechnol 2021; 9:692648. [PMID: 34722474 PMCID: PMC8548779 DOI: 10.3389/fbioe.2021.692648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Targeted drug delivery from untethered microrobots is a topic of major interest in current biomedical research. The possibility to load smart materials able to administer active principles on remotely in vivo guidable microdevices constitutes one of the most attractive opportunities to overcome the drawbacks of classical untargeted delivery methodologies. Hydrogels, in particular, are ideal candidates as drug-carrying materials due to their biocompatibility, low cost, and ease of manufacturing. On the other hand, these polymers suffer from poor control over release rate and overall released amount. Starting from these premises, the present article demonstrates the possibility to tune the release of hydrogels applied on magnetically steerable microrobots by fabricating microsystems via layer-by-layer self-assembly. By doing this, the diffusion of chemicals from the hydrogel layers to the external environment can be optimized and the phenomenon of burst release can be strongly limited. The microrobotic platforms employed to transport the hydrogel active material are fabricated by employing 3D printing in combination with wet metallization and present a gold layer on their surface to enhance biocompatibility. The maneuverability of microdevices coated with both thin and thick multilayers is investigated, individuating optimized parameters for efficient actuation.
Collapse
Affiliation(s)
- Roberto Bernasconi
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Arianna Rossetti
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Brendan Butler
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Marinella Levi
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Salvador Pané
- Multi-Scale Robotics Laboratory, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Luca Magagnin
- Department of Chemistry, Materials and Chemical Engineering“Giulio Natta”, Politecnico di Milano, Milano, Italy
| |
Collapse
|
5
|
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, Reis RL, González-Fernández Á, Oliveira JM. Methacrylated Gellan Gum/Poly-l-lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomater Sci Eng 2021; 7:4898-4913. [PMID: 34533303 DOI: 10.1021/acsbiomaterials.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell encapsulation strategies using hydrogel beads have been considered as an alternative to immunosuppression in cell-based therapies. They rely on layer-by-layer (LbL) deposition of polymers to tune beads' permeability, creating a physical barrier to the host immune system. However, the LbL approach can also create diffusion barriers, hampering the flow of essential nutrients and therapeutic cell products. In this work, the polyelectrolyte complex (PEC) methodology was used to circumvent the drawbacks of the LbL strategy by inducing hydrogel bead formation through the interaction of anionic methacrylated gellan gum (GG-MA) with cationic poly-l-lysine (PLL). The interfacial complexation between both polymers resulted in beads with a cell-friendly GG-MA hydrogel core surrounded by a PEC semipermeable membrane. The beads showed great in vitro stability over time, a semi-permeable behavior, and supported human adipose-derived stem cell encapsulation. Additionally, and regarding immune recognition, the in vitro and in vivo studies pointed out that the hydrogel beads behave as an immunocompatible system. Overall, the engineered beads showed great potential for hydrogel-mediated cell therapies, when immunoprotection is required, as when treating different metabolic disorders.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Elina Garet
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| |
Collapse
|
6
|
Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update. Gels 2021; 7:gels7040153. [PMID: 34698125 PMCID: PMC8544468 DOI: 10.3390/gels7040153] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Delivering a drug to the target site with minimal-to-no off-target cytotoxicity is the major determinant for the success of disease therapy. While the therapeutic efficacy and cytotoxicity of the drug play the main roles, the use of a suitable drug delivery system (DDS) is important to protect the drug along the administration route and release it at the desired target site. Polysaccharides have been extensively studied as a biomaterial for DDS development due to their high biocompatibility. More usefully, polysaccharides can be crosslinked with various molecules such as micro/nanoparticles and hydrogels to form a modified DDS. According to IUPAC, hydrogel is defined as the structure and processing of sols, gels, networks and inorganic–organic hybrids. This 3D network which often consists of a hydrophilic polymer can drastically improve the physical and chemical properties of DDS to increase the biodegradability and bioavailability of the carrier drugs. The advancement of nanotechnology also allows the construction of hydrogel DDS with enhanced functionalities such as stimuli-responsiveness, target specificity, sustained drug release, and therapeutic efficacy. This review provides a current update on the use of hydrogel DDS derived from polysaccharide-based materials in delivering various therapeutic molecules and drugs. We also highlighted the factors that affect the efficacy of these DDS and the current challenges of developing them for clinical use.
Collapse
|
7
|
Witzler M, Vermeeren S, Kolevatov RO, Haddad R, Gericke M, Heinze T, Schulze M. Evaluating Release Kinetics from Alginate Beads Coated with Polyelectrolyte Layers for Sustained Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:6719-6731. [PMID: 35006974 DOI: 10.1021/acsabm.1c00417] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Current approaches in stem cell-based bone tissue engineering require a release of bioactive compounds over up to 2 weeks. This study presents a polyelectrolyte-layered system featuring sustained release of water-soluble drugs with decreased burst release. The bioactive compounds adenosine 5'-triphosphate (ATP), suramin, and A740003 (a less water-soluble purinergic receptor ligand) were incorporated into alginate hydrogel beads subsequently layered with different polyelectrolytes (chitosan, poly(allyl amine), alginate, or lignosulfonate). Drug release into aqueous medium was monitored over 14 days and evaluated using Korsmeyer-Peppas, Peppas-Sahlin, Weibull models, and a Langmuir-like "Two-Stage" model. Release kinetics strongly depended on both the drug and the polyelectrolyte system. For ATP, five alternating layers of poly(allyl amine) and alginate proved to be most effective in sustaining the release. Release of suramin could be prolonged best with lignosulfonate as polyanion. A740003 showed prolonged release even without layering. Applying polyelectrolyte layers significantly slowed down the burst release. Release curves could be best described with the Langmuir-like model.
Collapse
Affiliation(s)
- Markus Witzler
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany.,Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Sarah Vermeeren
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Roman O Kolevatov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Razan Haddad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Martin Gericke
- Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Thomas Heinze
- Institute of Organic and Macromolecular Chemistry, Center of Excellence of Polysaccharide Research, Friedrich-Schiller-University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| |
Collapse
|
8
|
Al Thaher Y. Tailored gentamicin release from silica nanocarriers coated with polyelectrolyte multilayers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Wang Q, Newby BMZ. Octadecyltrichlorosilane Incorporated Alginate Micro-granules as Sustained-Release Carriers for Small Hydrophilic Molecules. Curr Drug Deliv 2020; 17:333-342. [DOI: 10.2174/1567201817666200210123328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/29/2019] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
Background:
Hydrogels are excellent drug carriers, but their inability to retain hydrophilic
drugs for a prolonged period of time has greatly limited their usage. Research has mostly focused on
intricate designs and manipulations of hydrogels to expand their applications in drug delivery.
Objective:
In this study, a simple approach by incorporating a hydrophobic agent, octadecyltrichlorosilane
(OTS), to alginate hydrogel micro-granules (Alg-Ms), was investigated as an effective
technique to prolong the release of small hydrophilic drugs.
Methods:
Sodium Benzoate (SB), a highly water-soluble antimicrobial and anti-inflammatory compound,
was used as a model drug. The presence of hydrophobic OTS impeded swelling of these OTS
incorporated Alg-Ms (OTS-Alg-Ms), hence sustaining the release of SB.
Results:
The release data was fitted with Ritger-Peppas and Peppas-Sahlin models and the results showed
that SB released from OTS-Alg-Ms with higher OTS content was mainly controlled by Fickian diffusion;
with a lower OTS content, OTS-Alg-Ms swelled more easily, the combined diffusion and swelling
led to a faster SB release.
Conclusion:
Thus, by simply tuning the OTS concentration in the solution where Alg-Ms were briefly
submerged in a predefined release period, from hours to a few days, small hydrophilic drugs from these
OTS-Alg-Ms could be successfully achieved.
Collapse
Affiliation(s)
- Qing Wang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, United States
| | - Bi-min Zhang Newby
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, United States
| |
Collapse
|
10
|
Senturk Parreidt T, Müller K, Schmid M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018; 7:E170. [PMID: 30336642 PMCID: PMC6211027 DOI: 10.3390/foods7100170] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 01/08/2023] Open
Abstract
Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily.
Collapse
Affiliation(s)
- Tugce Senturk Parreidt
- Chair of Food Packaging Technology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany.
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany.
| | - Kajetan Müller
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany.
- Faculty of Mechanical Engineering, University of Applied Science Kempten, Bahnhofstraße 61, 87435 Kempten, Germany.
| | - Markus Schmid
- Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany.
| |
Collapse
|