1
|
Arjun S, Kulhari U, Padakanti AP, Sahu BD, Chella N. Colon-targeted delivery of niclosamide from solid dispersion employing a pH-dependent polymer via hotmelt extrusion for the treatment of ulcerative colitis in mice. J Drug Target 2024; 32:186-199. [PMID: 38133596 DOI: 10.1080/1061186x.2023.2298849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Niclosamide (NCL) is repurposed to treat inflammatory bowel disease due to its anti-inflammatory properties and potential to reduce oxidative stress. This therapeutic activity remains challenging if administered directly due to its low solubility and high recrystallization tendency in gastric pH. Solid dispersions using pH-dependent polymer will be a better idea to improve the solubility, dissolution and targeted delivery at the colon. Hot melt extrusion was used to formulate a solid dispersion with 30% NCL utilising hydroxypropyl methylcellulose acetate succinate as a pH-dependent polymer. In vitro drug release studies revealed formulation (F1) containing 10%w/w Tween 80 showed minimal release (2.06%) at the end of 2 h, followed by 47.87% and 82.15% drug release at 6 h and 14 h, respectively, indicating the maximum amount of drug release in the colon. The drug release from the formulations containing no plasticiser and 5%w/w plasticiser was comparable to the pure crystalline drug (approximately 25%). Solid-state analysis confirmed particle conversion of crystalline NCL to amorphous form, and the optimised formulation was stable for 6 months without significant changes in dissolution profile. In contrast to pure NCL, the F1 formulation substantially reduced the disease activity index, colonic inflammation, histological alterations and oxidative damage in colitis mice. These findings reveal that the prepared formulation can potentially deliver the drug locally at the colon, making it an effective tool in treating ulcerative colitis.
Collapse
Affiliation(s)
- Sakshi Arjun
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Amruta Prabhakar Padakanti
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
2
|
Alshammari ND, Elkanayati R, Vemula SK, Al Shawakri E, Uttreja P, Almutairi M, Repka MA. Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies. AAPS PharmSciTech 2024; 25:236. [PMID: 39379609 DOI: 10.1208/s12249-024-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
This review investigates the progression and effectiveness of colon-targeted drug delivery systems, offering a comprehensive understanding of the colon's anatomy and physiological environment. Recognizing the distinctive features of the colon is crucial for successfully formulating oral dosage forms that precisely target specific areas in the gastrointestinal tract (GIT) while minimizing side effects through mitigating off-target sites. This understanding forms the basis for designing effective targeted drug delivery systems. The article extensively examines diverse approaches to formulating drugs for colonic targeting, highlighting key polymers and excipients in their production. Special emphasis is given to innovative approaches such as hot-melt extrusion (HME) and three-dimensional printing (3D-P), renowned for their accuracy in drug release kinetics and intricate dosage form geometry. However, challenges arise regarding material standardization and the complex network of regulatory clearances required to confirm safety and effectiveness. The review provides insights into each application's advantages and potential challenges. Furthermore, it sheds light on the local diseases that necessitate colon targeting and the available marketed products, providing an overview of the current state of colon-targeted drug delivery systems. Additionally, the review emphasizes the importance of testing drugs in a controlled in vitro environment during the development phase. It also discusses the future directions for successful development in this field. By integrating knowledge across anatomy, formulation techniques, and assessment methodologies, this review is a valuable resource for researchers navigating the dynamic field of colonic drug delivery.
Collapse
Affiliation(s)
- Nouf D Alshammari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, 91431, Arar, Saudi Arabia
| | - Rasha Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India.
| | - Esraa Al Shawakri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
3
|
Almutairi M, Hefnawy A, Almotairy A, Alobaida A, Alyahya M, Althobaiti A, Adel Ali Youssef A, Elkanayati RM, Ashour EA, Smyth HDC, Repka MA. Formulation and evaluation of inhaled Sildenafil-loaded PLGA microparticles for treatment of pulmonary arterial hypertension (PAH): A novel high drug loaded formulation and scalable process via hot melt extrusion technology (Part Ⅰ). Int J Pharm 2024; 655:124044. [PMID: 38527563 DOI: 10.1016/j.ijpharm.2024.124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 03/27/2024]
Abstract
In recent years, several techniques were employed to develop a local sustained pulmonary delivery of sildenafil citrate (SC) as an alternative for the intravenous and oral treatment of pulmonary arterial hypertension (PAH). Most of these methods, however, need to be improved due to limitations of scalability, low yield production, low drug loading, and stability issues. In this study, we report the use of hot-melt extrusion (HME) as a scalable process for making Poly (lactic-co-glycolic acid) (PLGA) microparticles with high SC load. The prepared particles were tested in vitro for local drug delivery to the lungs by inhalation. Sodium bicarbonate was included as a porogen in the formulation to make the particles more brittle and to impart favorable aerodynamic properties. Six formulations were prepared with different formulation compositions. Laser diffraction analysis was used to estimate the geometric particle size distribution of the microparticles. In-vitro aerodynamic performance was evaluated by the next-generation cascade impactor (NGI). It was reported in terms of an emitted dose (ED), an emitted fraction (EF%), a respirable fraction (RF%), a fine particle fraction (FPF%), a mass median aerodynamic diameter (MMAD), and geometric standard deviation (GSD). The formulations have also been characterized for surface morphology, entrapment efficiency, drug load, and in-vitro drug release. The results demonstrated that PLGA microparticles have a mean geometric particle size between 6 and 14 µm, entrapment efficiency of 77 to 89 %, and SC load between 17 and 33 % w/w. Fifteen percent of entrapped sildenafil was released over 24 h from the PLGA microparticles, and seventy percent over 7 days. The aerodynamic properties included fine particle fraction ranging between 19 and 33 % and an average mass median aerodynamic diameter of 6-13 µm.
Collapse
Affiliation(s)
- Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Amr Hefnawy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| | - Ahmed Almotairy
- Pharmaceutics and Pharmaceutical Industry Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia.
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Mohammed Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia.
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Rasha M Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
4
|
Macedo J, Vanhoorne V, Vervaet C, Pinto JF. Influence of formulation variables on the processability and properties of tablets manufactured by fused deposition modelling. Int J Pharm 2023; 637:122854. [PMID: 36948473 DOI: 10.1016/j.ijpharm.2023.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023]
Abstract
The present work studied the influence of different formulation variables (defined also as factors), namely, different polymers (HPC EF, PVA and HPMC-AS LG), drugs with different water solubilities (paracetamol, hydrochlorothiazide and celecoxib) and drug loads (10 or 30 %) on their processability by HME and FDM. Both filaments and tablets were characterized for physic and chemical properties (DSC, XRPD, FTIR) and performance properties (drug content, in vitro drug release). Experiments were designed to highlight relationships between the 3 factors selected and the mechanical properties of filaments, tablet mass and dissolution profiles of the model drugs from printed tablets. While the combination of hydrochlorothiazide and HPMC-AS LG could not be extruded, the combination of paracetamol with HPC EF turned the filaments too ductile and not stiff enough hampering the process of printing. All other polymer and drug combinations could be successfully extruded and printed. Models reflected the influence of the solubility of the drug considered but not the drug load in formulations. The ranking of the drug release rates was in good agreement with their solubilities. Furthermore, PVA presenting the fastest swelling rate, promoted the fastest drugs' releases in comparison with the other polymers studied. Overall, the study enabled the identification of the key factors affecting the properties of printed tablets, with the proposal of a model that has valued the relative contribution of each factor to the overall performance of tablets.
Collapse
Affiliation(s)
- Joana Macedo
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - João F Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Almotairy A, Almutairi M, Althobaiti A, Alyahya M, Sarabu S, Zhang F, Bandari S, Ashour E, Repka MA. Investigation of hot melt extrusion process parameters on solubility and tabletability of atorvastatin calcium in presence of Neusilin ® US2. J Drug Deliv Sci Technol 2023; 79:104075. [PMID: 37811318 PMCID: PMC10557465 DOI: 10.1016/j.jddst.2022.104075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reports in the literature indicate that hot-melt extrusion (HME) processing techniques could alter the mechanical properties of the pharmaceutical physical blend, which may alter successful processing during tableting. The aim of this study was to evaluate whether HME processing conditions have an impact on the tabletability of Atorvastatin calcium trihydrate (ATR) in the presence of Neusilin® US2 (NUS2). ATR drug load of 25% was mixed with 75% of NUS2 and extruded using two screw configurations, screw speeds, and feed rates. Solid-state thermal analysis showed that ATR transformed to an amorphous form which led to improved solubility. ATR tabletability was affected positively by screw configuration that had no shearing and mixing force. SEM analysis indicated that a conveying screw configuration preserved the spherical nature of NUS2, thus improving ATR tabletability. This novel study demonstrates the significance of changing and monitoring the HME process parameters, which impact the materials' mechanical properties and may prevent adverse outcomes during tableting.
Collapse
Affiliation(s)
- Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mohammed Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, TX, 78712, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Eman Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
6
|
Almutairi M, Srinivasan P, Zhang P, Austin F, Butreddy A, Alharbi M, Bandari S, Ashour EA, Repka MA. Hot-Melt Extrusion Coupled with Pressurized Carbon Dioxide for Enhanced Processability of Pharmaceutical Polymers and Drug Delivery Applications – An Integrated Review. Int J Pharm 2022; 629:122291. [DOI: 10.1016/j.ijpharm.2022.122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
7
|
Zhang P, Xu P, Chung S, Bandari S, Repka MA. Fabrication of bilayer tablets using hot melt extrusion-based dual-nozzle fused deposition modeling 3D printing. Int J Pharm 2022; 624:121972. [PMID: 35787460 DOI: 10.1016/j.ijpharm.2022.121972] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022]
Abstract
The objective of this study was to fabricate bilayer tablets using hot-melt extrusion (HME)-based dual-nozzle fused deposition modeling (FDM) three-dimensional (3D) printing techniques. Acetaminophen (APAP) and caffeine citrate (CC) were used as the model drugs. Five bilayer tablets with different formulations were developed and two different structures were printed for each formulation. Three-point bending, Hooke's law, and resistance and stiffness tests were conducted to determine the mechanical properties of the filaments. A novel method, 3D printed tablet retention rate, was developed and used for the first time to compare the printing quality of different filaments. The 3D printed tablets were evaluated to derive the drug release rates using a USP-II dissolution apparatus. HPMC HME 15LV and HPMCAS-LG were identified as good printing materials; however, HPMC HME 100LV was not suitable for printing under frequent nozzle switching conditions. Although mechanical characterization tests can be used to determine whether filaments can be printed, they cannot specifically distinguish the quality of printing between the filaments. Overall, this study revealed the successful fabrication of bilayer tablets via HME paired with dual-nozzle FDM 3D printing.
Collapse
Affiliation(s)
- Peilun Zhang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Pengchong Xu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Sooyeon Chung
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677; Pii Center for Pharmaceutical Technology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
8
|
Alzahrani A, Nyavanandi D, Mandati P, Adel Ali Youssef A, Narala S, Bandari S, Repka M. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: Theoretical prediction to practical implementation. Int J Pharm 2022; 624:121951. [PMID: 35753536 DOI: 10.1016/j.ijpharm.2022.121951] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Amorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs. The HME technique has been established as a faster scale-up production strategy for formulation evaluation and has the potential to minimize the time to market. Thermodynamic evaluation and theoretical predictions of drug-polymer solubility and miscibility may assist to reduce the product development cost by HME. This review article highlights robust and established prediction theories and experimental approaches for the selection of polymeric carriers for the development of hot melt extrusion based stable amorphous solid dispersions (ASDs). In addition, this review makes a significant contribution to the literature as a pilot guide for ASD assessment, as well as to confirm the drug-polymer compatibility and physical stability of HME-based formulations.
Collapse
Affiliation(s)
- Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmacy, East Jeddah Hospital, Ministry of Health, Jeddah 22253, Saudi Arabia
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
9
|
Almotairy A, Almutairi M, Althobaiti A, Alyahya M, Sarabu S, Alzahrani A, Zhang F, Bandari S, Repka MA. Effect of pH Modifiers on the Solubility, Dissolution Rate, and Stability of Telmisartan Solid Dispersions Produced by Hot-melt Extrusion Technology. J Drug Deliv Sci Technol 2021; 65. [PMID: 34552669 DOI: 10.1016/j.jddst.2021.102674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the current study was to investigate the dual effect of an amorphous solid dispersion generated by hot melt extrusion and the addition of pH modifiers on the solubility and stability of telmisartan. Hydroxypropyl methylcellulose acetate succinate L grade was used as a polymeric carrier and recrystallization inhibitor, and meglumine, sodium carbonate, or Neusilin S2 were incorporated as pH modifiers to generate a desirable microenvironmental pH in the solid dispersions. Differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy were incorporated to obtain the solid-state characterizations of telmisartan, and the results confirm a partial transformation of telmisartan to an amorphous state. An in vitro release study revealed that the transformation of telmisartan to an amorphous material improved its dissolution rate by 2-fold compared to pure drug and by up to 5-fold with the incorporation of pH modifiers. Results of the stability studies demonstrated that the samples have no significant degradation under accelerated stability conditions at 40 °C/75% RH.
Collapse
Affiliation(s)
- Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Department of Pharmaceutics,College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mohammed Alyahya
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, TX, 78712, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
10
|
Simões MF, Pinto RMA, Simões S. Hot-Melt Extrusion: a Roadmap for Product Development. AAPS PharmSciTech 2021; 22:184. [PMID: 34142250 DOI: 10.1208/s12249-021-02017-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Hot-melt extrusion has found extensive application as a feasible pharmaceutical technological option over recent years. HME applications include solubility enhancement, taste masking, and sustained drug release. As bioavailability enhancement is a hot topic of today's science, one of the main applications of HME is centered on amorphous solid dispersions. This review describes the most significant aspects of HME technology and its use to prepare solid dispersions as a drug formulation strategy to enhance the solubility of poorly soluble drugs. It also addresses molecular and thermodynamic features critical for the physicochemical properties of these systems, mainly in what concerns miscibility and physical stability. Moreover, the importance of applying the Quality by Design philosophy in drug development is also discussed, as well as process analytical technologies in pharmaceutical HME monitoring, under the current standards of product development and regulatory guidance. Graphical Abstract.
Collapse
|
11
|
|
12
|
Rahimi SK, O'Donnell K, Haight B, Machado A, Martin C, Meng F, Listro T, Zhang F. Supercritical-CO 2 Foam Extrusion of Hydroxypropyl Methyl Cellulose Acetate Succinate/Itraconazole Amorphous Solid Dispersions: Processing-Structure-Property Relations. J Pharm Sci 2020; 110:1444-1456. [PMID: 33285183 DOI: 10.1016/j.xphs.2020.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023]
Abstract
This study investigates the effects of supercritical CO2 as a foaming agent on structure and physical properties of hot melt extruded hydroxypropyl methylcellulose acetate succinate (HPMCAS)-itraconazole (ITZ) amorphous solid dispersions (ASDs) with the aim of improving the milling efficiency and tabletability of these ASDs. Two different grades of AFFINISOLTM HPMCAS, the standard grade (Std) and the High Productivity grade (HP) were used. The HP-grade has a lower molecular weight, melt viscosity and wider processing temperature range. Extrudates with different ITZ concentrations (0%, 20% and 40%) and CO2 injection pressure of 100 and 200 bar were prepared. The cellular microstructure of the foams showed that HP-grade HPMCAS had better affinity with the CO2 resulting in better distribution of CO2. The results of DSC and X-ray diffraction analysis revealed that the supercritical CO2 did not affect the amorphous state of the API in the extrudates. Milling efficiency of the ASDs was significantly improved up to around 90% increase in the mass recovery. The tabletability of the milled extrudates showed a considerable increase in tablet tensile strength. In addition, foaming considerably improved the supersaturation of HP-grade ASD while showing minimal improvement in dissolution behavior of the Std-grade material.
Collapse
Affiliation(s)
- Shahab Kashani Rahimi
- College of Pharmacy, University of Texas at Austin, 2409 University Ave, Austin TX 78712
| | - Kevin O'Donnell
- DuPont Nutrition & Biosciences, Pharma Solutions, 1801 Larkin Center Drive, Midland MI 48674
| | - Brian Haight
- Leistritz Extrusion, 175 Mesiter Ave, Somerville NJ 08876
| | - Augie Machado
- Leistritz Extrusion, 175 Mesiter Ave, Somerville NJ 08876
| | - Charlie Martin
- Leistritz Extrusion, 175 Mesiter Ave, Somerville NJ 08876
| | - Fan Meng
- College of Pharmacy, University of Texas at Austin, 2409 University Ave, Austin TX 78712
| | - Tony Listro
- Foster Delivery Sciences, 45 Ridge Road, Putnam CT 06260
| | - Feng Zhang
- College of Pharmacy, University of Texas at Austin, 2409 University Ave, Austin TX 78712.
| |
Collapse
|
13
|
Zhang P, Shadambikar G, Almutairi M, Bandari S, Repka MA. Approaches for developing acyclovir gastro-retentive formulations using hot melt extrusion technology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P, Bandari S, Repka MA. Manufacturing strategies to develop amorphous solid dispersions: An overview. J Drug Deliv Sci Technol 2019; 55. [PMID: 32863891 DOI: 10.1016/j.jddst.2019.101459] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the past several decades, poor water solubility of existing and new drugs in the pipeline have remained a challenging issue for the pharmaceutical industry. Literature describes several approaches to improve the overall solubility, dissolution rate, and bioavailability of drugs with poor water solubility. Moreover, the development of amorphous solid dispersion (SD) using suitable polymers and methods have gained considerable importance in the recent past. In the present review, we attempt to discuss the important and industrially scalable thermal strategies for the development of amorphous SD. These include both solvent (spray drying and fluid bed processing) and fusion (hot melt extrusion and KinetiSol®) based techniques. The current review also provides insights into the thermodynamic properties of drugs, their polymer miscibility and solubility, and their molecular dynamics to develop stable and more efficient amorphous SD.
Collapse
Affiliation(s)
- Nicole Mendonsa
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Bjad Almutairy
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Venkata Raman Kallakunta
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Priyanka Thipsay
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, The University of Mississippi, Oxford, MS, 38677, United States.,Pii Center for Pharmaceutical Innovation & Instruction, The University of Mississippi, Oxford, MS, 38677, United States
| |
Collapse
|
15
|
Tang B, Liu Z, Tian Z, Zhang J, Chen X, Fang G, Song H. Development and evaluation of synchronized and sustained release Tripergium Wilfordii tablets based hot-melt extrusion and direct powder compression. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|