1
|
Mehta T, Najafian S, Patel K, Lacombe J, Chaudhuri B. Optimization of Carrier-Based Dry Powder Inhaler Performance: A Review. Pharmaceutics 2025; 17:96. [PMID: 39861744 PMCID: PMC11768101 DOI: 10.3390/pharmaceutics17010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug. Carrier-based DPI formulations usually consist of micronized drugs, a coarse carrier, and additional components, such as micronized lactose and force control agents, including magnesium stearate or leucine. Additionally, the manufacturing process of DPIs relies heavily on powder processing technologies, such as the micronization of API, blending, and powder filling. The aerosol performance of a DPI is significantly affected by the selection of formulation components and the processing of the formulation and, therefore, it is crucial to evaluate these parameters. This review will discuss different factors influencing the aerosol performance of carrier-based DPIs, including formulation components, device considerations, and manufacturing parameters. Additionally, novel technologies pertaining to the optimization of DPI performance are also discussed.
Collapse
Affiliation(s)
- Tanu Mehta
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; (T.M.)
| | - Saeed Najafian
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; (T.M.)
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Komalkumar Patel
- Pharmaceutical Development & Engineering Department, Experic, Cranbury, NJ 08512, USA
| | - Justin Lacombe
- Pharmaceutical Development & Engineering Department, Experic, Cranbury, NJ 08512, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; (T.M.)
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Material Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Moon C, Sahakijpijarn S, Maier EY, Taft DR, Jara MO, Praphawatvet T, Manandhar R, Shetty N, Lubach J, Narang A, Nagapudi K, Williams RO. Inhaled JAK Inhibitor GDC-0214 Nanoaggregate Powder Exhibits Improved Pharmacokinetic Profile in Rats Compared to the Micronized Form: Benefits of Thin Film Freezing. Mol Pharm 2024; 21:564-580. [PMID: 38215042 DOI: 10.1021/acs.molpharmaceut.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC0-24h in the lungs with the lowest AUC0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.
Collapse
Affiliation(s)
- Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sawittree Sahakijpijarn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- TFF Pharmaceuticals, Inc., Austin, Texas 78753, United States
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78723, United States
| | - David R Taft
- Division of Pharmaceutical Sciences, Long Island University, Brooklyn, New York 11201, United States
| | - Miguel O Jara
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tuangrat Praphawatvet
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Nivedita Shetty
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Joseph Lubach
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Ajit Narang
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Xu H, Moon C, Sahakijpijarn S, Dao HM, Alzhrani RF, Wang JL, Williams RO, Cui Z. Aerosolizable Plasmid DNA Dry Powders Engineered by Thin-film Freezing. Pharm Res 2023; 40:1141-1152. [PMID: 36703028 PMCID: PMC9879621 DOI: 10.1007/s11095-023-03473-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE This study was designed to test the feasibility of using thin-film freezing (TFF) to prepare aerosolizable dry powders of plasmid DNA (pDNA) for pulmonary delivery. METHODS Dry powders of pDNA formulated with mannitol/leucine (70/30, w/w) with various drug loadings, solid contents, and solvents were prepared using TFF, their aerosol properties (i.e., mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF)) were determined, and selected powders were used for further characterization. RESULTS Of the nine dry powders prepared, their MMAD values were about 1-2 µm, with FPF values (delivered) of 40-80%. The aerosol properties of the powders were inversely correlated with the pDNA loading and the solid content in the pDNA solution before TFF. Powders prepared with Tris-EDTA buffer or cosolvents (i.e., 1,4-dioxane or tert-butanol in water), instead of water, showed slightly reduced aerosol properties. Ultimately, powders prepared with pDNA loading at 5% (w/w), 0.25% of solid content, with or without Tris-EDTA were selected for further characterization due to their overall good aerosol performance. The pDNA powders exhibited a porous matrix structure, with a moisture content of < 2% (w/w). Agarose gel electrophoresis confirmed the chemical integrity of the pDNA after it was subjected to TFF and after the TFF powder was actuated. A cell transfection study confirmed that the activity of the pDNA did not change after it was subjected to TFF. CONCLUSION It is feasible to use TFF to produce aerosolizable pDNA dry powder for pulmonary delivery, while preserving the integrity and activity of the pDNA.
Collapse
Affiliation(s)
- Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | | | - Huy M. Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Riyad F. Alzhrani
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jie-liang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Robert O. Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
4
|
Praphawatvet T, Cui Z, Williams RO. Pharmaceutical dry powders of small molecules prepared by thin-film freezing and their applications – A focus on the physical and aerosol properties of the powders. Int J Pharm 2022; 629:122357. [DOI: 10.1016/j.ijpharm.2022.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
|
5
|
Pardeshi SR, Kole EB, Kapare HS, Chandankar SM, Shinde PJ, Boisa GS, Salgaonkar SS, Giram PS, More MP, Kolimi P, Nyavanandi D, Dyawanapelly S, Junnuthula V. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics 2022; 14:pharmaceutics14122632. [PMID: 36559129 PMCID: PMC9784462 DOI: 10.3390/pharmaceutics14122632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The surface drying process is an important technology in the pharmaceutical, biomedical, and food industries. The final stage of formulation development (i.e., the drying process) faces several challenges, and overall mastering depends on the end step. The advent of new emerging technologies paved the way for commercialization. Thin film freezing (TFF) is a new emerging freeze-drying technique available for various treatment modalities in drug delivery. TFF has now been used for the commercialization of pharmaceuticals, food, and biopharmaceutical products. The present review highlights the fundamentals of TFF along with modulated techniques used for drying pharmaceuticals and biopharmaceuticals. Furthermore, we have covered various therapeutic applications of TFF technology in the development of nanoformulations, dry powder for inhalations and vaccines. TFF holds promise in delivering therapeutics for lung diseases such as fungal infection, bacterial infection, lung dysfunction, and pneumonia.
Collapse
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Eknath B. Kole
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, India
| | - Harshad S. Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
| | - Sachin M. Chandankar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Prashant J. Shinde
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Ganesh S. Boisa
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Sanjana S. Salgaonkar
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Mahesh P. More
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Buldhana 443101, India
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA
| | - Dinesh Nyavanandi
- Product Development, Continuus Pharmaceuticals, 25 Olympia Ave, Woburn, MA 01801, USA
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| |
Collapse
|
6
|
Jiang J, Peng HH, Yang Z, Ma X, Sahakijpijarn S, Moon C, Ouyang D, Williams Iii RO. The applications of Machine learning (ML) in designing dry powder for inhalation by using thin-film-freezing technology. Int J Pharm 2022; 626:122179. [PMID: 36084876 DOI: 10.1016/j.ijpharm.2022.122179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/19/2022]
Abstract
Dry powder inhalers (DPIs) are one of the most widely used devices for treating respiratory diseases. Thin--film--freezing (TFF) is a particle engineering technology that has been demonstrated to prepare dry powder for inhalation with enhanced physicochemical properties. Aerosol performance, which is indicated by fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD), is an important consideration during the product development process. However, the conventional approach for formulation development requires many trial-and-error experiments, which is both laborious and time consuming. As a state-of-the art technique, machine learning has gained more attention in pharmaceutical science and has been widely applied in different settings. In this study, we have successfully built a prediction model for aerosol performance by using both tabular data and scanning electron microscopy (SEM) images. TFF technology was used to prepare 134 dry powder formulations which were collected as a tabular dataset. After testing many machine learning models, we determined that the Random Forest (RF) model was best for FPF prediction with a mean absolute error of ± 7.251%, and artificial neural networks (ANNs) performed the best in estimating MMAD with a mean absolute error of ± 0.393 μm. In addition, a convolutional neural network was employed for SEM image classification and has demonstrated high accuracy (>83.86%) and adaptability in predicting 316 SEM images of three different drug formulations. In conclusion, the machine learning models using both tabular data and image classification were successfully established to evaluate the aerosol performance of dry powder for inhalation. These machine learning models facilitate the product development process of dry powder for inhalation manufactured by TFF technology and have the potential to significantly reduce the product development workload. The machine learning methodology can also be applied to other formulation design and development processes in the future.
Collapse
Affiliation(s)
- Junhuang Jiang
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - Han-Hsuan Peng
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - Zhenpei Yang
- Department of Computer Science, The University of Texas at Austin, TX, USA
| | - Xiangyu Ma
- Global Investment Research, Goldman Sachs, NY, USA
| | | | - Chaeho Moon
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, USA
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Robert O Williams Iii
- Department of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, TX, USA.
| |
Collapse
|
7
|
Dao HM, Sahakijpijarn S, Chrostowski RR, Moon C, Mangolini F, Cui Z, Williams RO. Aggregation of Lactoferrin Caused by Droplet Atomization Process via a Two-Fluid Nozzle: The Detrimental Effect of Air-Water Interfaces. Mol Pharm 2022; 19:2662-2675. [PMID: 35639017 DOI: 10.1021/acs.molpharmaceut.2c00358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological macromolecules, especially therapeutic proteins, are delicate and highly sensitive to denaturation from stresses encountered during the manufacture of dosage forms. Thin-film freeze-drying (TFFD) and spray freeze-drying (SFD) are two processes used to convert liquid forms of protein into dry powders. In the production of inhalable dry powders that contain proteins, these potential stressors fall into three categories based on their occurrence during the primary steps of the process: (1) droplet formation (e.g., the mechanism of droplet formation, including spray atomization), (2) freezing, and (3) frozen water removal (e.g., sublimation). This study compares the droplet formation mechanism used in TFFD and SFD by investigating the effects of spraying on the stability of proteins, using lactoferrin as a model. This study considers various perspectives on the denaturation (e.g., conformation) of lactoferrin after subjecting the protein solution to the atomization process using a pneumatic two-fluid nozzle (employed in SFD) or a low-shear drop application through the nozzle. The surface activity of lactoferrin was examined to explore the interfacial adsorption tendency, diffusion, and denaturation process. Subsequently, this study also investigates the secondary and tertiary structure of lactoferrin and the quantification of monomers, oligomers, and, ultimately, aggregates. The spraying process affected the tertiary structure more negatively than the tightly woven secondary structure, resulting in the peak position corresponding to the tryptophan (Trp) residues red-shifting by 1.5 nm. This conformational change can either (a) be reversed at low concentrations via relaxation or (b) proceed to form irreversible aggregates at higher concentrations. Interestingly, when the sample was allowed to progress into micrometer-sized aggregates, such a dramatic change was not detected using methods such as size-exclusion chromatography, polyacrylamide gel electrophoresis, and dynamic light scattering at 173°. A more complete understanding of the heterogeneous protein sample was achieved only through a combination of 173 and 13° backward and forward scattering, a combination of derived count rate measurements, and microflow imaging (MFI). After studying the impact of droplet formation mechanisms on aggregation tendency of lactoferrin, we further investigated two additional model proteins with different surface activity: bovine IgG (serving as a non surface-active negative reference), and β-galactosidase (another surface-active protein). The results corroborated the lactoferrin findings that spray-atomization-related stress-induced protein aggregation was much more pronounced for proteins that are surface active (lactoferrin and β-galactosidase), but it was minimal for non-surface-active protein (bovine IgG). Finally, compared to the low-shear dripping used in the TFFD process, lactoferrin underwent a relatively fast conformational change upon exposure to the high air-water interface of the two-fluid atomization nozzle used in the SFD process as compared to the low shear dripping used in the TFFD process. The interfacial-induced denaturation that occurred during spraying was governed primarily by the size of the atomized droplets, regardless of the duration of exposure to air. The percentage of denatured protein population and associated activity loss, in the case of β-galactosidase, was determined to range from 2 to 10% depending on the air-flow rate of the spraying process.
Collapse
Affiliation(s)
- Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | | | - Robert R Chrostowski
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas78712, United States
- Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas78712, United States
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
8
|
Xu H, Bhowmik T, Gong K, Huynh TNA, Williams RO, Cui Z. Thin-film freeze-drying of a bivalent Norovirus vaccine while maintaining the potency of both antigens. Int J Pharm 2021; 609:121126. [PMID: 34560208 DOI: 10.1016/j.ijpharm.2021.121126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
A bivalent Norovirus vaccine candidate has been developed that contains Norovirus strain GI.1 Norwalk-virus like particles (VLP) and strain GII.4 Consensus VLP adsorbed on aluminum (oxy)hydroxide. The Norwalk and Consensus antigens have different stability profiles, making it challenging to prepare a dry powder form of the Norovirus vaccine while maintaining the potency of both antigens. In the present study, we tested the feasibility of converting the vaccine from a liquid suspension to dry powders by thin-film freeze-drying (TFFD). With the proper amount of trehalose and/or sucrose as cryoprotectant (i.e. sucrose alone at 4.55% or 5.55%, w/v, or trehalose at 3-4% with 0.55% of sucrose), TFFD can be applied to successfully convert the Norovirus vaccine candidate into dry powders without causing antigen loss or particle aggregation, while maintaining the relative potency of both antigens within a specified acceptable range. In an accelerated stability study, the potency of the antigens was also maintained in the specified acceptable range after the dry powders prepared by TFFD in the presence of 5.55% (w/v) of sucrose were stored for eight weeks at 40 °C, 75% relative humidity. It is concluded that it is feasible to apply TFFD to convert the Norovirus vaccine from a liquid suspension to stable dry powders.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | | | | | - Thu Ngoc Anh Huynh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
9
|
Jara MO, Warnken ZN, Sahakijpijarn S, Moon C, Maier EY, Christensen DJ, Koleng JJ, Peters JI, Hackman Maier SD, Williams Iii RO. Niclosamide inhalation powder made by thin-film freezing: Multi-dose tolerability and exposure in rats and pharmacokinetics in hamsters. Int J Pharm 2021; 603:120701. [PMID: 33989748 PMCID: PMC8112893 DOI: 10.1016/j.ijpharm.2021.120701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In this work, we have developed and tested a dry powder form of niclosamide made by thin-film freezing (TFF) and administered it by inhalation to rats and hamsters to gather data about its toxicology and pharmacokinetics. Niclosamide, a poorly water-soluble drug, is an interesting drug candidate because it was approved over 60 years ago for use as an anthelmintic medication, but recent studies demonstrated its potential as a broad-spectrum antiviral with pharmacological effect against SARS-CoV-2 infection. TFF was used to develop a niclosamide inhalation powder composition that exhibited acceptable aerosol performance with a fine particle fraction (FPF) of 86.0% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 1.11 µm and 2.84, respectively. This formulation not only proved to be safe after an acute three-day, multi-dose tolerability and exposure study in rats as evidenced by histopathology analysis, and also was able to achieve lung concentrations above the required IC90 levels for at least 24 h after a single administration in a Syrian hamster model. To conclude, we successfully developed a niclosamide dry powder inhalation that overcomes niclosamide’s limitation of poor oral bioavailability by targeting the drug directly to the primary site of infection, the lungs.
Collapse
Affiliation(s)
- Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Zachary N Warnken
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Sawittree Sahakijpijarn
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Chaeho Moon
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Jay I Peters
- UT- Health San Antonio Department of Medicine, Division of Pulmonary/Critical Care Medicine, San Antonio, TX 78229, USA
| | | | - Robert O Williams Iii
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Almansour K, Alfagih IM, Ali R, Elsayed MM. Inhalable microparticles containing terbinafine for management of pulmonary fungal infections: Spray drying process engineering using lactose vs. mannitol as excipients. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sahakijpijarn S, Moon C, Koleng JJ, Christensen DJ, Williams RO. Development of Remdesivir as a Dry Powder for Inhalation by Thin Film Freezing. Pharmaceutics 2020; 12:pharmaceutics12111002. [PMID: 33105618 PMCID: PMC7690377 DOI: 10.3390/pharmaceutics12111002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Remdesivir exhibits in vitro activity against SARS-CoV-2 and was granted approval for emergency use. To maximize delivery to the lungs, we formulated remdesivir as a dry powder for inhalation using thin film freezing (TFF). TFF produces brittle matrix nanostructured aggregates that are sheared into respirable low-density microparticles upon aerosolization from a passive dry powder inhaler. In vitro aerodynamic testing demonstrated that drug loading and excipient type affected the aerosol performance of remdesivir. Remdesivir combined with optimal excipients exhibited desirable aerosol performance (up to 93.0% FPF< 5 µm; 0.82 µm mass median aerodynamic diameter). Remdesivir was amorphous after the TFF process, which benefitted drug dissolution in simulated lung fluid. TFF remdesivir formulations are stable after one month of storage at 25 °C/60% relative humidity. An in vivo pharmacokinetic evaluation showed that TFF remdesivir–leucine was poorly absorbed into systemic circulation while TFF remdesivir-Captisol® demonstrated increased systemic uptake compared to leucine. Remdesivir was hydrolyzed to the nucleoside analog GS-441524 in the lung, and levels of GS-441524 were greater in the lung with leucine formulation compared to Captisol®. In conclusion, TFF technology produces high-potency remdesivir dry powder formulations for inhalation that are suitable to treat patients with COVID-19 on an outpatient basis and earlier in the disease course where effective antiviral therapy can reduce related morbidity and mortality.
Collapse
Affiliation(s)
- Sawittree Sahakijpijarn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; (S.S.); (C.M.)
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; (S.S.); (C.M.)
| | - John J. Koleng
- TFF Pharmaceuticals, Inc., Austin, TX 78746, USA; (J.J.K.); (D.J.C.)
| | | | - Robert O. Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA; (S.S.); (C.M.)
- Correspondence: ; Tel.: +1-512-471-4681
| |
Collapse
|
12
|
Inhaled nanoparticles-An updated review. Int J Pharm 2020; 587:119671. [PMID: 32702456 DOI: 10.1016/j.ijpharm.2020.119671] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022]
Abstract
We are providing an update to our previously published review paper on inhaled nanoparticles, thus updating with the most recent reports in the literature. The field of nanotechnology may hold the promise of significant improvements in the health and well-being of patients, as well as in manufacturing technologies. The knowledge of the impact of nanomaterials on public health is limited so far. This paper reviews the unique size-controlled properties of nanomaterials, their disposition in the body after inhalation, and the factors influencing the fate of inhaled nanomaterials. The physiology of the lungs makes it an ideal target organ for non-invasive local and systemic drug delivery, especially for protein and poorly water-soluble drugs that have low oral bioavailability via oral administration. More recently, inhaled nanoparticles have been reported to improve therapeutic efficacies and decrease undesirable side effects via pulmonary delivery. The potential application of pulmonary drug delivery of nanoparticles to the lungs, specifically in context of published results reported on nanomaterials in environmental epidemiology and toxicology is reviewed in this paper. This article presents updated delivery systems, process technologies, and potential of inhaled nanoparticles for local and systemic therapies administered to the lungs. The authors acknowledge the contributions of Wei Yang in our 2008 paper published in this journal.
Collapse
|
13
|
Sahakijpijarn S, Moon C, Ma X, Su Y, Koleng JJ, Dolocan A, Williams RO. Using thin film freezing to minimize excipients in inhalable tacrolimus dry powder formulations. Int J Pharm 2020; 586:119490. [PMID: 32603840 DOI: 10.1016/j.ijpharm.2020.119490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/09/2023]
Abstract
We investigated the feasibility of preparing high-potency tacrolimus dry powder for inhalation using thin film freezing (TFF). We found that using ultra-rapid freezing can increase drug loading up to 95% while maintaining good aerosol performance. Drug loading affected the specific surface area and moisture sorption of TFF formulations, but it did not affect the chemical stability, physical stability, and dissolution of tacrolimus. Tacrolimus remained amorphous after storage at 40 °C/75% RH, and 25 °C/60% RH for up to 6 months. Lactose functioned as a bulking agent, and it had little to no effect as a stabilizer for amorphous tacrolimus due to a lack of interaction between the drug and excipient. Additionally, the aerosol performance of TFF tacrolimus/lactose (95/5) did not significantly change after six months of storage at 25 °C/60% RH. For processing parameters, the solids content and the processing temperature did not affect the aerosol performance of tacrolimus. Furthermore, both low- and high-resistance RS01 showed optimal and consistent aerosol performance over the 1-4 kPa pressure drop range. In conclusion, TFF is a suitable technology for producing inhalable powder that contain high drug loading and have less flow rate dependence.
Collapse
Affiliation(s)
- Sawittree Sahakijpijarn
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA; TFF Pharmaceuticals, Inc., Austin, TX, USA
| | - Xiangyu Ma
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Yongchao Su
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Andrei Dolocan
- The University of Texas at Austin, Texas Materials Institute, Austin, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|