1
|
Konsue A, Lamtha T, Gleeson D, Jones DJL, Britton RG, Pickering JD, Choowongkomon K, Gleeson MP. Design, preparation and biological evaluation of new Rociletinib-inspired analogs as irreversible EGFR inhibitors to treat non-small-cell-lung cancer. Bioorg Med Chem 2024; 113:117906. [PMID: 39299082 DOI: 10.1016/j.bmc.2024.117906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Epidermal growth factor receptor (EGFR) kinase has been implicated in the uncontrolled cell growth associated with non-small cell lung cancer (NSCLC). This has prompted the development of 3 generations of EGFR inhibitors over the last 2 decades due to the rapid development of drug resistance issues caused by clinical mutations, including T790M, L858R and the double mutant T790M & L858R. In this work we report the design, preparation and biological assessment of new irreversible 2,4-diaminopyrimidine-based inhibitors of EGFR kinase. Twenty new compounds have been prepared and evaluated which incorporate a range of electrophilic moieties. These include acrylamide, 2-chloroacetamide and (2E)-3-phenylprop-2-enamide, to allow reaction with residue Cys797. In addition, more polar groups have been incorporated to provide a better balance of physical properties than clinical candidate Rociletinib. Inhibitory activities against EGFR wildtype (WT) and EGFR T790M & L858R have been evaluated along with cytotoxicity against EGFR-overexpressing (A549, A431) and normal cell lines (HepG2). Selectivity against JAK3 kinase as well as physicochemical properties determination (logD7.4 and phosphate buffer solubility) have been used to profile the compounds. We have identified 20, 21 and 23 as potent mutant EGFR inhibitors (≤20 nM), with comparable or better selectivity over WT EGFR, and lower activity at JAK3, than Osimertinib or Rociletinib. Compounds 21 displayed the best combination of EGFR mutant activity, JAK3 selectivity, cellular activity and physicochemical properties. Finally, kinetic studies on 21 were performed, confirming a covalent mechanism of action at EGFR.
Collapse
Affiliation(s)
- Adchata Konsue
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Thomanai Lamtha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Duangkamol Gleeson
- Department of Chemistry & Applied Computational Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Robert G Britton
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - James D Pickering
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
2
|
Sueyoshi S, Vitor Silva J, Guizze F, Giarolla J. Dendrimers as drug delivery systems for oncotherapy: Current status of promising applications. Int J Pharm 2024; 663:124573. [PMID: 39134292 DOI: 10.1016/j.ijpharm.2024.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Cancer affects millions of people worldwide, causing death and serious health problems. Despite significant investment in the development of new anticancer compounds, there are still several limitations that can still be found. Many compounds exhibit high levels of toxicity and low bioavailability. Therefore, it is urgent to design safer, more effective, and particularly more selective compounds for oncological treatment. Dendrimers are polymeric structures that have been shown to be potential drug nanocarriers to overcome physicochemical, pharmacokinetic, and indirect pharmacodynamic issues. Due to their versatility, they can be used in the design of nanovaccines, lipophilic complexes, amphiphilic complexes, smart nanocomplexes, and others. This work targets the use of dendrimers in oncological treatment and their importance and effectiveness as drug delivery systems for the development of new therapies. For this review, only publications from the last two years are considered in this review.
Collapse
Affiliation(s)
- Sophia Sueyoshi
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - João Vitor Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - Felipe Guizze
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
3
|
K Karunakar K, Cheriyan BV, R K, M G, B A. "Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles". BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:64-79. [PMID: 39416696 PMCID: PMC11446369 DOI: 10.1016/j.biotno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology has the advantages of enhanced bioactivity, reduced toxicity, target specificity, and sustained release and NPs can penetrate cell membranes. The small size of silver nanoparticles, AgNPs, large surface area, and unique physicochemical properties contribute to cell lysis and increased permeability of cell membranes used in the field of biomedicine. Functional precursors integrate with phytochemicals to create distinctive therapeutic properties and the stability of the nanoparticles can be enhanced by Surface coatings and encapsulation methods, The current study explores the various synthesis methods and characterization techniques of silver nanoparticles (AgNPs) and highlights their intrinsic activity in therapeutic applications, Anti-cancer activity noted at a concentration range of 5-50 μg/ml and angiogenesis is mitigated at a dosage range of 10-50 μg/ml, Diabetes is controlled within the same concentration. Wound healing is improved at concentrations of 10-50 μg/ml and with a typical range of 10-08 μg/ml for bacteria with antimicrobial capabilities. Advancement of silver nanoparticles with a focus on the future use of AgNPs-coated wound dressings and medical devices to decrease the risk of infection. Chemotherapeutic drugs can be administered by AgNPs, which reduces adverse effects and an improvement in treatment outcomes. AgNPs have been found to improve cell proliferation and differentiation, making them beneficial for tissue engineering and regenerative medicine. Our study highlights emerging patterns and developments in the field of medicine, inferring potential future paths.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Krithikeshvaran R
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Gnanisha M
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Abinavi B
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| |
Collapse
|
4
|
Korucu Aktas P, Baysal I, Yabanoglu-Ciftci S, Lamprecht A, Arica B. Recent progress in drug delivery systems for tyrosine kinase inhibitors in the treatment of lung cancer. Int J Pharm 2024; 650:123703. [PMID: 38092263 DOI: 10.1016/j.ijpharm.2023.123703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
Lung cancer ranks as the second most commonly diagnosed cancer in both men and women worldwide. Despite the availability of diverse diagnostic and treatment strategies, it remains the leading cause of cancer-related deaths globally. The current treatment approaches for lung cancer involve the utilization of first generation (e.g., erlotinib, gefitinib) and second generation (e.g., afatinib) tyrosine kinase inhibitors (TKIs). These TKIs exert their effects by inhibiting a crucial enzyme called tyrosine kinase, which is responsible for cell survival signaling. However, their clinical effectiveness is hindered by limited solubility and oral bioavailability. Nanotechnology has emerged as a significant application in modern cancer therapy. Nanoparticle-based drug delivery systems, including lipid, polymeric, hybrid, inorganic, dendrimer, and micellar nanoparticles, have been designed to enhance the bioavailability, stability, and retention of these drugs within the targeted lung area. Furthermore, these nanoparticle-based delivery systems offer several advantages, such as increased therapeutic efficacy and reduced side effects and toxicity. This review focuses on the recent advancements in drug delivery systems for some of the most important TKIs, shedding light on their potential in improving lung cancer treatment.
Collapse
Affiliation(s)
- Pelinsu Korucu Aktas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara,Turkey
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
5
|
Marforio TD, Carboni A, Calvaresi M. In Vivo Application of Carboranes for Boron Neutron Capture Therapy (BNCT): Structure, Formulation and Analytical Methods for Detection. Cancers (Basel) 2023; 15:4944. [PMID: 37894311 PMCID: PMC10605826 DOI: 10.3390/cancers15204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
Collapse
Affiliation(s)
| | - Andrea Carboni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
6
|
Fatani WK, Aleanizy FS, Alqahtani FY, Alanazi MM, Aldossari AA, Shakeel F, Haq N, Abdelhady H, Alkahtani HM, Alsarra IA. Erlotinib-Loaded Dendrimer Nanocomposites as a Targeted Lung Cancer Chemotherapy. Molecules 2023; 28:molecules28093974. [PMID: 37175381 PMCID: PMC10180382 DOI: 10.3390/molecules28093974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer is the main cause of cancer-related mortality globally. Erlotinib is a tyrosine kinase inhibitor, affecting both cancerous cell proliferation and survival. The emergence of oncological nanotechnology has provided a novel drug delivery system for erlotinib. The aims of this current investigation were to formulate two different polyamidoamine (PAMAM) dendrimer generations-generation 4 (G4) and generation 5 (G5) PAMAM dendrimer-to study the impact of two different PAMAM dendrimer formulations on entrapment by drug loading and encapsulation efficiency tests; to assess various characterizations, including particle size distribution, polydispersity index, and zeta potential; and to evaluate in vitro drug release along with assessing in situ human lung adenocarcinoma cell culture. The results showed that the average particle size of G4 and G5 nanocomposites were 200 nm and 224.8 nm, with polydispersity index values of 0.05 and 0.300, zeta potential values of 11.54 and 4.26 mV of G4 and G5 PAMAM dendrimer, respectively. Comparative in situ study showed that cationic G4 erlotinib-loaded dendrimer was more selective and had higher antiproliferation activity against A549 lung cells compared to neutral G5 erlotinib-loaded dendrimers and erlotinib alone. These conclusions highlight the potential effect of cationic G4 dendrimer as a targeting-sustained-release carrier for erlotinib.
Collapse
Affiliation(s)
- Wafa K Fatani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fadilah S Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fulwah Y Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam Abdelhady
- Department of Physiology & Pharmacology, College of Osteopathic Medicine, Sam Houston State University, 925 City Central Avenue, Conroe, TX 77304, USA
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Bhargave H, Nijhawan H, Yadav KS. PEGylated Erlotinib HCl Injectable Nanoformulation for Improved Bioavailability. AAPS PharmSciTech 2023; 24:101. [PMID: 37038015 DOI: 10.1208/s12249-023-02560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The present study was undertaken to synthesize PEGylated monomethoxy poly (ethylene glycol)-poly (ε-Caprolactone) (mPEG-PCL) block copolymer and formulate Erlotinib HCl-loaded mPEG-PCL nanoparticles for enhancing the bioavailability of the drug. Using the ring-opening polymerization technique, PEGylated mPEG-PCL block copolymer was synthesized, and the structure of the copolymer was characterized using FTIR, 1H-NMR, and DSC techniques. The solvent evaporation approach was used to effectively encapsulate Erlotinib HCl within block copolymeric nanoparticles. Erlotinib HCl-loaded mPEG-PCL nanoparticles had a mean particle size of 146.5 ± 2.37 nm and a zeta potential of -27.8 ± 2.77 mV. The nanoparticles had a percent entrapment efficiency of 80.78 ± 0.09%. The in vitro drug release of Erlotinib HCl-loaded copolymeric nanoparticles showed a slow and sustained release behavior which could be maintained for up to 72 h. The Korsmeyer-Peppas fitting findings indicated that the drug release process followed a non-Fickian diffusion mechanism. The pharmacokinetic (PK) behavior of the developed nanoformulation was studied in albino Wistar rats, and the relative bioavailability of the optimized NP formulation given by intravenous route was found to be 187.33%. The PK data suggested that Erlotinib HCl-loaded mPEG-PCL copolymeric nanoparticles can dramatically alter the PK behavior of Erlotinib HCl and greatly improve the drug's bioavailability by as much as three times when compared to the oral formulation. As a result, it was established that the block copolymeric nanoparticles have promise for the effective encapsulation of Erlotinib HCL for an injectable formulation with increased bioavailability.
Collapse
Affiliation(s)
- Hardik Bhargave
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India
| | - Harsh Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India.
| |
Collapse
|
8
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Gurbi B, Brauswetter D, Pénzes K, Varga A, Krenács T, Dános K, Birtalan E, Tamás L, Csala M. MEK Is a Potential Indirect Target in Subtypes of Head and Neck Cancers. Int J Mol Sci 2023; 24:ijms24032782. [PMID: 36769112 PMCID: PMC9917750 DOI: 10.3390/ijms24032782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The poor prognosis of head-and-neck squamous cell carcinoma (HNSCC) is partly due to the lack of reliable prognostic and predictive markers. The Ras/Raf/MEK/ERK signaling pathway is often activated by overexpressed epidermal growth factor receptor (EGFR) and stimulates the progression of HNSCCs. Our research was performed on three human papillomavirus (HPV)-negative HNSCC-cell lines: Detroit 562, FaDu and SCC25. Changes in cell viability upon EGFR and/or MEK inhibitors were measured by the MTT method. The protein-expression and phosphorylation profiles of the EGFR-initiated signaling pathways were assessed using Western-blot analysis. The EGFR expression and pY1068-EGFR levels were also studied in the patient-derived HNSCC samples. We found significant differences between the sensitivity of the tumor-cell lines used. The SCC25 line was found to be the most sensitive to the MEK inhibitors, possibly due to the lack of feedback Akt activation through EGFR. By contrast, this feedback activation had an important role in the FaDu cells. The observed insensitivity of the Detroit 562 cells to the MEK inhibitors might have been caused by their PIK3CA mutation. Among HNSCC cell lines, EGFR-initiated signaling pathways are particularly versatile. An ERK/EGFR feedback loop can lead to Akt-pathway activation upon MEK inhibition, and it is related not only to increased amounts of EGFR but also to the elevation of pY1068-EGFR levels. The presence of this mechanism may justify the combined application of EGFR and MEK inhibitors.
Collapse
Affiliation(s)
- Bianka Gurbi
- Department of Molecular Biology, Semmelweis University, H-1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
| | - Diána Brauswetter
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence: (D.B.); (M.C.)
| | - Kinga Pénzes
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
| | - Attila Varga
- Department of Molecular Biology, Semmelweis University, H-1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
| | - Tibor Krenács
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| | - Kornél Dános
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary
| | - Ede Birtalan
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary
| | - László Tamás
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary
- Department of Voice, Speech and Swallowing Therapy, Faculty of Health Sciences, Semmelweis University, H-1088 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence: (D.B.); (M.C.)
| |
Collapse
|
10
|
Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM. Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines 2022; 10:2792. [PMID: 36359308 PMCID: PMC9687463 DOI: 10.3390/biomedicines10112792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.
Collapse
Affiliation(s)
- Sohail Simon
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Health Platform Diagnostic Unit, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jamie Josephs
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
11
|
Khosravani F, Mir H, Mirzaei A, Kobarfard F, Bardania H, Hosseini E. Arsenic trioxide and Erlotinib loaded in RGD-modified nanoliposomes for targeted combination delivery to PC3 and PANC-1 cell lines. Biotechnol Appl Biochem 2022; 70:811-823. [PMID: 36070882 DOI: 10.1002/bab.2401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/09/2022] [Indexed: 12/27/2022]
Abstract
During the past few years, advances in drag delivery have provided many opportunities in the treatment of various diseases and cancer. Arsenic trioxide (ATO) and Erlotinib (Erlo) are two drugs, approved by the United States Food and Drug Administration to treat cancer, but their use is limited in terms of the toxicity of ATO and the low solubility of Erlo. This study aimed to prepare arginine-glycine-aspartic acid (RGD)-decorated nanoliposomes (NLPs) containing Erlo and ATO (NLPs-ATO-Erlo-RGD) to increase the solubility and reduce the toxicity of Erlo and ATO for cancer treatment. The results of transmission electron microscopy and dynamic light scattering showed that NLPs were synthesized uniformly, with spherical shape morphology and particle sizes between 140 and 160 nm. High-performance liquid chromatography and ICP-MS results showed that about 90% of the drug was loaded in the NLPs. In comparison with NLPs-ATO-Erlo, NLPs-ATO-Erlo-RGD demonstrated considerable toxicity against the αvβ3 overexpressing PC3 cell line in the MTT experiment. It had no effect on the PANC-1 cell line. In addition, apoptosis assays using Annexin V/PI demonstrated that NLPs-ATO-Erlo-RGD generated the highest apoptotic rates in PC3 cells when compared with NLPs-ATO-Erlo and the combination of free ATO and Erlo. Furthermore, treatment with NLPs-ATO-Erlo-RGD in (p < 0.05) PC3 cell line significantly reduced EGFR level. It is concluded NLPs-ATO-Erlo-RGD as a novel drug delivery system may be a promising platform for the treatment of cancer.
Collapse
Affiliation(s)
- Fatemeh Khosravani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Mir
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.,Department of Clinical Biochemistry, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Mirzaei
- Department of Biochemistry, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzad Kobarfard
- Department of Medical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Vali-e-Asr Ave, Tehran, Iran.,Phytochemistry Research Center, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Vali-e-Asr Ave, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
12
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
13
|
Hashemzadeh N, Aghanejad A, Dalir Abdolahinia E, Dolatkhah M, Barzegar-Jalali M, Omidi Y, Barar J, Adibkia K. Targeted combined therapy in 2D and 3D cultured MCF-7 cells using metformin and erlotinib-loaded mesoporous silica magnetic nanoparticles. J Microencapsul 2021; 38:472-485. [PMID: 34511038 DOI: 10.1080/02652048.2021.1979672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM This research aims to develop potential therapeutic nanostructures (NSs) encapsulating metformin (MET) and erlotinib (ER) for combinational therapy in breast cancer. METHODS The ER and MET, both were loaded on mesoporous silica magnetic nanoparticles conjugated with polyethylene glycol and methotrexate to achieve targeted NSs. The developed NSs were characterised using SEM, DLS, and FTIR. Afterward, MTT, Trypan blue, and DNA extraction assays were operated for biological evaluations in the 2D and 3D MCF-7 cells. RESULTS Physicochemical approaches indicated the mean diameter of 69.4 nm ± 9.5 (PDI = 0.64), and neutral charge (2 mv) for the developed NSs. MET and ER-loaded NSs exhibited 62.56% ± 4.41 and 67.73% ± 3.03 drug release amount in pH = 5.4, respectively. MTT assay revealed that ER- and MET-loaded NSs had less metabolic activity (≈ 20%) in comparison with non-targeted NSs. CONCLUSION Overall, our combined ER and MET-loaded targeted NSs result in a synergistic inhibitory impact on MCF-7 cells.
Collapse
Affiliation(s)
- Nastaran Hashemzadeh
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Dolatkhah
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Boulhaoua M, Pasinszki T, Torvisco A, Oláh-Szabó R, Bősze S, Csámpai A. Synthesis, structure and in vitro antiproliferative effects of alkyne-linked 1,2,4-thiadiazole hybrids including erlotinib- and ferrocene-containing derivatives. RSC Adv 2021; 11:28685-28697. [PMID: 35478544 PMCID: PMC9038148 DOI: 10.1039/d1ra05095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/15/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is an indispensable tool to treat cancer, therefore, the development of new drugs that can treat cancer with minimal side effects and lead to more favorable prognoses is of crucial importance. A series of eleven novel 1,2,4-thiadiazoles bearing erlotinib (a known anticancer agent), phenylethynyl, ferrocenyl, and/or ferrocenethynyl moieties were synthesized in this work and characterized by NMR, IR and mass spectroscopies. The solid-phase structures were determined by single-crystal X-ray diffraction. Partial isomerisation of bis(erlotinib)-1,2,4-thiadiazole into its 1,3,4-thiadiazole isomer, leading to the isolation of a 3 : 2 isomer mixture, was observed and a plausible mechanism for isomerisation is suggested. The in vitro cytostatic effect and the long-term cytotoxicity of these thiadiazole-hybrids, as well as that of erlotinib, 3,5-dichloro-1,2,4-thiadiazole and 3,5-diiodo-1,2,4-thiadiazole were investigated against A2058 human melanoma, HepG2 human hepatocellular carcinoma, U87 human glioma, A431 human epidermoid carcinoma, and PC-3 human prostatic adenocarcinoma cell lines. Interestingly, erlotinib did not exhibit a significant cytostatic effect against these cancer cell lines. 1,2,4-Thiadiazole hybrids bearing one erlotinib moiety or both an iodine and a ferrocenethynyl group, as well as 3,5-diiodo-1,2,4-thiadiazole demonstrated good to moderate cytostatic effects. Among the synthesized 1,2,4-thiadiazole hybrids, the isomer mixture of bis-erlotinib substituted 1,2,4- and 1,3,4-thiadiazoles showed the most potent activity. This isomer mixture was proven to be the most effective in long-term cytotoxicity, too. 3,5-Diiodo-1,2,4-thiadiazole and its hybrid with one erlotinib fragment were also highly active against A431 and PC-3 proliferation. These novel compounds may serve as new leads for further study of their antiproliferative properties.
Collapse
Affiliation(s)
- Mohammed Boulhaoua
- ELTE Eötvös Loránd University, Institute of Chemistry, Department of Inorganic Chemistry H-1117 Budapest Hungary
| | - Tibor Pasinszki
- Fiji National University, College of Engineering Science and Technology, Department of Chemistry P.O.Box 3722, Samabula Suva Fiji
| | - Ana Torvisco
- Graz University of Technology, Institute of Inorganic Chemistry Stremayrgasse 9/V 8010 Graz Austria
| | - Rita Oláh-Szabó
- MTA-ELTE Research Group of Peptide Chemistry Pázmány P. sétány 1/A H-1117 Budapest Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry Pázmány P. sétány 1/A H-1117 Budapest Hungary
| | - Antal Csámpai
- ELTE Eötvös Loránd University, Institute of Chemistry, Department of Organic Chemistry H-1117 Budapest Hungary
| |
Collapse
|
15
|
Alhalmi A, Beg S, Kohli K, Waris M, Singh T. Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting. Curr Drug Targets 2021; 22:779-792. [PMID: 33302831 DOI: 10.2174/1389450121999201209194524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high incidence and mortality rate worldwide among several types of cancers. A large variety of chemotherapeutic agents employed for the treatment have a limited success rate owing to their limited site-specific drug targeting ability. Thus, there is a demand to develop novel approaches for the treatment of HCC. With advancements in nanotechnology-based drug delivery approaches, the challenges of conventional chemotherapy have been continuously decreasing. Nanomedicines constituted of lipidic and polymeric composites provide a better platform for delivering and opening new pathways for HCC treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles, nanotubes, micelles, quantum dots, etc., has been investigated in the treatment of HCC. These nanocarriers are considered to be highly effective clinically for delivering chemotherapeutic drugs with high site-specificity ability and therapeutic efficiency. The present review highlights the current focus on the application of nanocarrier systems using various ligand-based receptor-specific targeting strategies for the treatment and management of HCC. Moreover, the article has also included information on the current clinically approved drug therapy for hepatocellular carcinoma treatment and updates of regulatory requirements for approval of such nanomedicines.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Waris
- Department of Botany, Thakur Prasad Singh College, Patna, Magadh University, Bodh Gaya, India
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| |
Collapse
|
16
|
Wang Y, Cheng J, Zhao D, Liu Y, Luo T, Zhong YF, Mo F, Kong XY, Song J. Designed DNA nanostructure grafted with erlotinib for non-small-cell lung cancer therapy. NANOSCALE 2020; 12:23953-23958. [PMID: 33244548 DOI: 10.1039/d0nr06945k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemotherapy for non-small-cell lung cancer (NSCLC) treatment has been employed over the past 20 years. However, poor water-solubility, low bioavailability and less drug accumulation of chemotherapeutic drugs restrict its antitumor activities in clinic. DNA nanostructures are proposed as drug carriers due to their intrinsic biocompatibility and programmability. In this work, we demonstrate a novel DNA nanocarrier grafted with erlotinib as an effective drug delivery system (DDS) for anti-cancer treatment. Specifically, erlotinib (Er), a hydrophobic small molecule drug targeting the epidermal growth factor receptor (EGFR), is covalently conjugated with azide (N3) modified DNA strands and subsequently self-assembled on spatially programmable erlotinib-grafted 6 × 6 × 64 nt DNA nanostructures. Thus, Er was successfully grafted on DNA carriers and transformed into a hydrophilic formulation. The antitumor efficacy was evaluated both in vitro and in vivo, and enhanced cytotoxicity toward A549 cells and the marked inhibition of tumor growth for non-small-cell lung cancer (NSCLC) were observed.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bruinsmann FA, Buss JH, Souto GD, Schultze E, de Cristo Soares Alves A, Seixas FK, Collares TV, Pohlmann AR, Guterres SS. Erlotinib-Loaded Poly(ε-Caprolactone) Nanocapsules Improve In Vitro Cytotoxicity and Anticlonogenic Effects on Human A549 Lung Cancer Cells. AAPS PharmSciTech 2020; 21:229. [PMID: 32778976 DOI: 10.1208/s12249-020-01723-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most frequent type of cancer and the leading cause of cancer-related mortality worldwide. This study aimed to develop erlotinib (ELB)-loaded poly(ε-caprolactone) nanocapsules (NCELB) and evaluated their in vitro cytotoxicity in A549 cells. The formulation was characterized in relation to hydrodynamic diameter (171 nm), polydispersity index (0.076), zeta potential (- 8 mV), drug content (0.5 mg.mL-1), encapsulation efficiency (99%), and pH (6.0). NCELB presented higher cytotoxicity than ELB in solution against A549 cells in the MTT and LIVE/DEAD cell viability assays after 24 h of treatment. The main mechanism of cytotoxicity of NCELB was the induction of apoptosis in A549 cells. Further, a significant decrease in A549 colony formation was verified after NCELB treatment in comparison with the unencapsulated drug treatment. The reduction in clonogenic capacity is very relevant as it can reduce the risk of tumor recurrence and metastasis. In conclusion, erlotinib-loaded PCL nanocapsules are promising nanoparticles carriers to increase the efficacy of ELB in lung cancer treatment.
Collapse
|