1
|
Sacourbaravi R, Ansari-Asl Z, Hoveizi E, Darabpour E. Poly(vinyl alcohol)/Chitosan Hydrogel Containing Gallic Acid-Modified Fe, Cu, and Zn Metal-Organic Frameworks (MOFs): Preparation, Characterization, and Biological Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61609-61620. [PMID: 39476423 DOI: 10.1021/acsami.4c11053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogel composites are water-swollen and three-dimensional materials that have been investigated for various biological applications, including controlled drug delivery and tissue engineering, owing to the similarity between their mechanical, electrical, and chemical properties with biological tissues. The hydrogel composites can provide a superior replication of living tissue compared to their single components. In this regard, Fe-BTC, Cu-BTC, and Zn-BTC MOFs were synthesized and modified with gallic acid (GA). The MOFs-based hydrogel composites (M-BTC-GA@PVA-CS) were finally fabricated by freezing-thawing the as-synthesized MOFs, gallic acid, chitosan, and poly(vinyl alcohol) mixture. The obtained hydrogels were characterized using techniques such as FTIR, XRD, UV-vis, SEM, EDS, and TEM. Additionally, their antibacterial activity against E. coli and S. aureus and biocompatibility were investigated. The results showed that the surface modification of M-BTC MOFs with GA improves the antibacterial performance of hydrogels and increases their biocompatibility and cell viability. Among the as-prepared M-BTC MOF-based composites, the Cu-BTC MOF-loaded hydrogels showed the highest antibacterial activity. In contrast, the lowest antibacterial effect was observed for the hydrogels with Fe-BTC MOFs. Furthermore, the H&E staining exhibited improved vascularization in Zn-BTC-GA@PVA-CS and Cu-BTC-GA@PVA-CS scaffolds compared to the Fe-BTC-GA@PVA-CS hydrogel. These MOFs-loaded hydrogels may be suitable for utilization in biological applications such as skin treatment, drug delivery, and cosmetics owing to their excellent antibacterial activity and low cytotoxicity.
Collapse
Affiliation(s)
- Reza Sacourbaravi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Esmaeil Darabpour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| |
Collapse
|
2
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
3
|
Iosageanu A, Stefan LM, Craciunescu O, Cimpean A. Anti-Inflammatory and Wound Healing Properties of Different Honey Varieties from Romania and Correlations to Their Composition. Life (Basel) 2024; 14:1187. [PMID: 39337969 PMCID: PMC11432766 DOI: 10.3390/life14091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The complex composition of honey plays a crucial role in wound healing, exhibiting varying effects at different stages of the healing process. This study investigated seven honey varieties sourced from different regions of Romania using in vitro experimental models developed in macrophage-like, fibroblast, and keratinocyte cell lines to explore the mechanisms by which honey promoted the healing process. This study assessed the impact of honey on inflammatory cytokine production in macrophage-like cells, cell proliferation and collagen synthesis in fibroblasts, and cell proliferation and migration in keratinocytes. Additionally, correlation analysis was conducted to examine the relationship between honey composition and its biological properties. Honey varieties presented both anti- and pro-inflammatory effects. Moreover, they displayed dose-dependent pro-proliferative effects, stimulating collagen synthesis and cell migration, thereby enhancing the re-epithelialization process. The Pearson coefficient analysis indicated a strong positive correlation between biological activities and phenolic content. Additionally, there was a medium positive correlation with the ascorbic acid content and a medium negative correlation with the glucose content in the different honey varieties. Romanian honey varieties rich in phenolics showed potential in modulating inflammation, proliferation, collagen synthesis, and cell migration, suggesting their suitability for further evaluation and development of innovative dressings for skin tissue regeneration.
Collapse
Affiliation(s)
- Andreea Iosageanu
- Faculty of Biology, University of Bucharest, 91-95, Splaiul Independentei, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Laura Mihaela Stefan
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Anisoara Cimpean
- Faculty of Biology, University of Bucharest, 91-95, Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Al-Hadi MAA. Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study. BDJ Open 2024; 10:21. [PMID: 38480735 PMCID: PMC10937720 DOI: 10.1038/s41405-024-00197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Bone diseases have a profound global impact, especially when the body's innate regenerative capacity falls short in the face of extensive damage. Stem cells from human exfoliated deciduous teeth (SHEDs), discovered in 2003, offer a promising solution for tissue repair, as they self-renew naturally and are easily obtainable. Mesenchymal stem cells (MSCs), including SHEDs, are believed to promote tissue regeneration by releasing growth factors, collectively known as the secretome. AIMS This study explored the potential of combining SHED-derived secretome with Yemeni Sidr honey to improve osteoblast and fibroblast cell viability and migration. MATERIALS AND METHODS The experiment involved treating cell cultures of two types of rat cell lines - 7F2 osteoblast and BHK-21 fibroblast immortalized cells - with SHED-derived secretome and Yemeni Sidr honey. After the treatment, cell viability was measured using the MTT assay, which calculates OD at 590 nm. Additionally, the scratch assay was conducted to evaluate cell migration, and ImageJ software was used for data processing. RESULTS The findings indicated that combining SHED-derived secretome and Yemeni Sidr honey enhanced osteoblast and fibroblast cell viability and migration. Furthermore, the study highlighted the difference in the stimulative potential of SHED-derived secretome, Yemeni Sidr honey, and their combination, on the viability and migration of the cultured cells. CONCLUSION The research concludes that combining SHED-derived secretome with Yemeni Sidr honey has the potential to promote cell viability and migration in in-vitro settings. The synergistic application of these substances has been found to be more effective -when combined in a dose-dependent manner- than their counterparts. Overall, the current study serves as a foundation for further investigations to establish if the explored substance has any useful clinical applications.
Collapse
Affiliation(s)
- Mona Abdulrahman Abdullah Al-Hadi
- Faculty of Dentistry, Airlangga University, Surabaya, Indonesia.
- Faculty of Dentistry, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|
5
|
Nilawati Usman A, Sartini S, Yulianti R, Kamsurya M, Oktaviana A, Nulandari Z, Agustin DI, Fendi F. Turmeric extract gel and honey in post-cesarean section wound healing: A preliminary study. F1000Res 2024; 12:1095. [PMID: 38817411 PMCID: PMC11137484 DOI: 10.12688/f1000research.134011.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 06/01/2024] Open
Abstract
Background Delivery by cesarean section (SC) increases the risk of a surgical site infection (SSI). Therapy from health services and complementary therapy reduce the risk of infection and accelerate the wound-healing process. This study compared wound healing after SC with a turmeric extract gel and original Trigona honey. Methods Female white rats ( Rattus novergicus) with pre- and post-testing and a control group were included in this experiment, which was conducted in June-July 2022. The test animals were 56 female white rats, 2-4 months old, weighing 150-350 g. The treatment group was divided into three subgroups with application of 50% and 75% turmeric extract gel and Trigona honey. The turmeric was given twice daily, and the honey was divided into two applications of twice a day and once a day. Wounds were assessed using the Reeda Scale. Results The fastest wound healing occurred in the group given Trigona honey twice daily. Redness, ecchymosis, and edema disappeared in this group on day 9 (score 0), and granulation tissue formed on day 9. The group that was administered 50% and 75% turmeric gel extract and Trigona honey once a day healed by days 12 and 15, respectively; all three of these interventions were better than the control group. Conclusions Administering Trigona honey twice daily was more effective for accelerating wound healing than the 50% or 75% turmeric extract gel. Original Trigona honey has the potential to be a post-SC wound healing agent.
Collapse
Affiliation(s)
- Andi Nilawati Usman
- Midwifery, graduate school, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Indonesia, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Risfah Yulianti
- Faculty of Pharmacy, Hasanuddin University, Indonesia, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Melani Kamsurya
- Midwifery, graduate school, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Agriyaningsih Oktaviana
- Midwifery, graduate school, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Zafitri Nulandari
- Midwifery, graduate school, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Dinah Inrawati Agustin
- Midwifery, graduate school, Universitas Hasanuddin, Makassar, South Sulawesi, 90245, Indonesia
| | - Fendi Fendi
- Research Institute and Community Service, Wuna Agricultural Sciences Univerisity, Wuna, Indonesia
| |
Collapse
|
6
|
Ahmed M, Amirat M. FTIR, 1H, and 13C NMR Characterization and Antibacterial Activity of the Combination of Euphorbia Honey and Potato Starch. Comb Chem High Throughput Screen 2024; 27:1913-1918. [PMID: 38031781 DOI: 10.2174/0113862073243939231031064916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
AIM AND OBJECTIVE In recent years, natural biopolymer (potato starch) hydrogels have been widely used in the field of wound dressing material. This study aimed to develop and characterize a novel antibacterial hydrogel made from potato starch and natural honey. METHODS The structure of the composite films was evaluated by Fourier transform infrared (FTIR) and 1H,13C nuclear magnetic resonance (NMR) spectroscopy, and the antibacterial activities were tested by agar diffusion method. FTIR analysis showed chemical interaction between the components of Euphorbia honey (EH) and potato starch hydrogel (PSH). RESULTS The 1H-13C NMR and FTIR analyses of EH/PSH confirmed their structure and showed the presence of glucose and hydrocarbon derivatives. After 24 h of incubation, the EH/PSH hydrogel showed good antibacterial activity against three bacterial strains (K.pneumonia, P.mirabilis, and P. aeruginosa) by producing clear inhibition zones of 12.33 ± 1.88 mm, 15.33 ± 0.94, and 10 ± 0 mm, respectively. In addition, K. pneumonia, P. mirabilis, and P. aeruginosa were sensitive to the EH/SPH with a minimum inhibitory concentration (MIC) of 1 %. CONCLUSION These results suggest that EH-PS has potential as an alternative candidate to conventional antibiotics.
Collapse
Affiliation(s)
- Moussa Ahmed
- Institute of Veterinary Sciences, Ibn-Khaldoun of Tiaret University, Tiaret, Algeria
| | - Mokhtar Amirat
- Institute of Veterinary Sciences, Ibn-Khaldoun of Tiaret University, Tiaret, Algeria
| |
Collapse
|
7
|
Şalva E, Akdağ AE, Alan S, Arısoy S, Akbuğa FJ. Evaluation of the Effect of Honey-Containing Chitosan/Hyaluronic Acid Hydrogels on Wound Healing. Gels 2023; 9:856. [PMID: 37998945 PMCID: PMC10670847 DOI: 10.3390/gels9110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
The 3D polymeric network structure of hydrogels imitates the extracellular matrix, thereby facilitating cell growth and differentiation. In the current study, chitosan/hyaluronic acid/honey coacervate hydrogels were produced without any chemicals or crosslinking agents and investigated for their wound-healing abilities. Chitosan/hyaluronic acid/honey hydrogels were characterized by FTIR, SEM, and rheology analysis. Moreover, their water content, water uptake capacities, and porosity were investigated. In FT-IR spectra, it was discovered that the characteristic band placement of chitosan with hyaluronic acid changed upon interacting with honey. The porosity of the honey-containing hydrogels (12%) decreased compared to those without honey (17%). Additionally, the water-uptake capacity of honey-containing hydrogels slightly decreased. Also, it was observed that hydrogels' viscosity increased with the increased hyaluronic acid amount and decreased with the amount of honey. The adhesion and proliferation of fibroblast cells on the surface of hydrogel formulations were highest in honey-containing hydrogels (144%). In in vivo studies, wound healing was accelerated by honey addition. It has been demonstrated for the first time that honey-loaded chitosan-hyaluronic acid hydrogels, prepared without the use of toxic covalent crosslinkers, have potential for use in wound healing applications.
Collapse
Affiliation(s)
- Emine Şalva
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University, Battalgazi, Malatya 44210, Türkiye
| | - Ahmet Enes Akdağ
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Başıbüyük, İstanbul 34854, Türkiye;
| | - Saadet Alan
- Department of Medical Pathology, Faculty of Medicine, Inonu University, Battalgazi, Malatya 44210, Türkiye;
| | - Sema Arısoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Selçuk University, Selçuklu, Konya 42250, Türkiye;
| | - Fatma Jülide Akbuğa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medipol University, Beykoz, İstanbul 34815, Türkiye;
| |
Collapse
|
8
|
Mehmood Y, Shahid H, Arshad N, Rasul A, Jamshaid T, Jamshaid M, Jamshaid U, Uddin MN, Kazi M. Amikacin-Loaded Chitosan Hydrogel Film Cross-Linked with Folic Acid for Wound Healing Application. Gels 2023; 9:551. [PMID: 37504430 PMCID: PMC10379863 DOI: 10.3390/gels9070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
PURPOSE Numerous carbohydrate polymers are frequently used in wound-dressing films because they are highly effective materials for promoting successful wound healing. In this study, we prepared amikacin (AM)-containing hydrogel films through the cross-linking of chitosan (CS) with folic acid along with methacrylic acid (MA), ammonium peroxodisulfate (APS), and methylenebisacrylamide (MBA). In the current studies, an effort has been made to look at the possibilities of these materials in developing new hydrogel film wound dressings meant for a slow release of the antibiotic AM and to enhance the potential for wound healing. METHODS Free-radical polymerization was used to generate the hydrogel film, and different concentrations of the CS polymer were used. Measurements were taken of the film thickness, weight fluctuation, folding resistance, moisture content, and moisture uptake. HPLC, FTIR, SEM, DSC, and AFM analyses were some of the different techniques used to confirm that the films were successfully developed. RESULTS The AM release profile demonstrated regulated release over a period of 24 h in simulated wound media at pH 5.5 and 7.4, with a low initial burst release. The antibacterial activity against gram-negative bacterial strains exhibited substantial effectiveness, with inhibitory zones measuring approximately 20.5 ± 0.1 mm. Additionally, in vitro cytocompatibility assessments demonstrated remarkable cell viability, surpassing 80%, specifically when evaluated against human skin fibroblast (HFF-1) cells. CONCLUSIONS The exciting findings of this study indicate the promising potential for further development and testing of these hydrogel films, offering effective and controlled antibiotic release to enhance the process of wound healing.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Numera Arshad
- Department of Pharmacy, COMSAT University Islamabad, Lahore Campus, Lahore P.O. Box 54000, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore P.O. Box 54000, Pakistan
| | - Usama Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore P.O. Box 54000, Pakistan
| | - Mohammad N Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Bal-Öztürk A, Torkay G, İdil N, Özkahraman B, Özbaş Z. Gellan gum/guar gum films incorporated with honey as potential wound dressings. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Brites A, Ferreira M, Bom S, Grenho L, Claudio R, Gomes PS, Fernandes MH, Marto J, Santos C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int J Pharm 2023; 632:122541. [PMID: 36566824 DOI: 10.1016/j.ijpharm.2022.122541] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability. It was demonstrated the antibacterial activity of Manuka-Gelatin 3D patches against both gram-positive bacteria (S. epidermidis and S. aureus) and gram-negative (E. coli), common in wound infection. The 3D Manuka-Gelatin base patches demonstrated antibacterial activity, and moreover enhanced the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and promotion of angiogenesis. Moreover, the ease of printing achieved by the addition of honey, coupled with the interesting biological response obtained, makes this 3D patch a good candidate for wound healing applications.
Collapse
Affiliation(s)
- Ana Brites
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal
| | - Marta Ferreira
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal
| | - Sara Bom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Ricardo Claudio
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro S Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| | - Catarina Santos
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal; ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
11
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
12
|
Kazeminava F, Javanbakht S, Nouri M, Gholizadeh P, Nezhad-Mokhtari P, Ganbarov K, Tanomand A, Kafil HS. Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing. J Biol Eng 2022; 16:36. [PMID: 36544213 PMCID: PMC9773523 DOI: 10.1186/s13036-022-00318-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To provide effective healing in the wound, various carbohydrate polymers are commonly utilized that are highly potent platforms as wound dressing films. In this work, novel antibacterial flexible polymeric hydrogel films were designed via crosslinking polymeric chitosan (CS) with folic acid-based carbon quantum dots (CQDs). To end this, folic acid as a bio-precursor is used to synthesize CQDs through the hydrothermal technique. The synthesized CQDs as a crosslinking agent was performed at different concentrations to construct nanocomposite hydrogel films via the casting technique. Also, gentamicin (GM), L-Arginine and glycerol were supplemented in the formulation of nanocomposite since their antibiotic, bioactivity and plasticizing ability, respectively. RESULTS The successful construction of films were verified with different methods (FT-IR, UV-Vis, PL, SEM, and AFM analyses). The GM release profile displayed a controlled release manner over 48 h with a low initial burst release in the simulated wound media (PBS, pH 7.4). Antibacterial and in vitro cytotoxicity results showed a significant activity toward different gram-positive and negative bacterial strains (about 2.5 ± 0.1 cm inhibition zones) and a desired cytocompatibility against Human skin fibroblast (HFF-1) cells (over 80% cell viability), respectively. CONCLUSION The obtained results recommend CQDs-crosslinked CS (CS/CQD) nanocomposite as a potent antimicrobial wound dressing.
Collapse
Affiliation(s)
- Fahimeh Kazeminava
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Javanbakht
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- grid.412888.f0000 0001 2174 8913Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Nezhad-Mokhtari
- grid.412888.f0000 0001 2174 8913Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- grid.37600.320000 0001 1010 9948Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Asghar Tanomand
- grid.449862.50000 0004 0518 4224Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Hossein Samadi Kafil
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Jaldin-Crespo L, Silva N, Martínez J. Nanomaterials Based on Honey and Propolis for Wound Healing-A Mini-Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4409. [PMID: 36558262 PMCID: PMC9785851 DOI: 10.3390/nano12244409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wound healing is a public health concern worldwide, particularly in chronic wounds due to delayed healing and susceptibility to bacterial infection. Nanomaterials are widely used in wound healing treatments due to their unique properties associated with their size and very large surface-area-to-volume ratio compared to the same material in bulk. The properties of nanomaterials can be expanded and improved upon with the addition of honey and propolis, due to the presence of bioactive molecules such as polyphenols, flavonoids, peptides, and enzymes. These bionanomaterials can act at different stages of wound healing and through different mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulation, cell proliferation, and angiogenic effects. Biomaterials, at the nanoscale, show new alternatives for wound therapy, allowing for targeted and continuous delivery of beekeeping products at the injection site, thus avoiding possible systemic adverse effects. Here, we summarize the most recent therapies for wound healing based on bionanomaterials assisted by honey and propolis, with a focus on in vitro and in vivo studies. We highlight the type, composition (honey, propolis, and polymeric scaffolds), biological, physicochemical/mechanical properties, potential applications and patents related of the last eight years. Furthermore, we discuss the challenges, advantages, disadvantages and stability of different bionanomaterials related to their clinical translation and insight into the investigation and development of new treatments for wound healing.
Collapse
Affiliation(s)
- Limberg Jaldin-Crespo
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Nataly Silva
- Faculty of Design, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Jessica Martínez
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
14
|
Pleeging CCF, de Rooster H, Van Wijk B, Wagener FADTG, Cremers NAJ. Intra-socket application of medical-grade honey after tooth extraction attenuates inflammation and promotes healing in cats. J Feline Med Surg 2022; 24:e618-e627. [PMID: 36315457 PMCID: PMC9743079 DOI: 10.1177/1098612x221125772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Dental diseases are a major problem in cats and often necessitate tooth extraction. Medical-grade honey (MGH) has antimicrobial and wound-healing properties, and therefore the aim of this study was to investigate whether intra-socket application improved healing after tooth extraction. It was postulated that applying MGH would reduce inflammation, improve the viability of the surgical flap and enhance healing following tooth extraction. METHODS A prospective randomised controlled trial was performed in client-owned cats undergoing bilateral tooth extractions of the same element of the canine or (pre)molar tooth. A split-mouth design was used in which every animal served as its own control. After surgical extraction of the elements, the sockets on one side were filled with an MGH-based ointment (L-Mesitran Soft), whereas the contralateral side received no treatment (control). A mucoperiosteal flap was used on both sides, and simple interrupted monofilament sutures were placed. No antimicrobial drugs were administered. Clinical parameters (inflammation/redness, flap viability and wound healing) were subjectively analysed on days 3 and 7 post-extraction by a veterinarian blinded to the treatment. RESULTS Twenty-one cats were included. MGH significantly decreased signs of inflammation (P <0.01), improved mucoperiosteal flap viability (P <0.01) and promoted wound healing (P = 0.01), at both time points. MGH was easy to apply and there were no adverse events. CONCLUSIONS AND RELEVANCE Intra-socket application of MGH after tooth extraction positively affects the surgical wound, as it reduces redness, improves flap viability and enhances wound healing. Applying MGH represents a potent adjuvant therapy to support intra-oral wound healing after tooth extraction.
Collapse
Affiliation(s)
- Carlos CF Pleeging
- Dierenkliniek Hoogveld, Echt, The Netherlands
- Department of Dentistry – Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bas Van Wijk
- Department of Dentistry – Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank ADTG Wagener
- Department of Dentistry – Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niels AJ Cremers
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, Maastricht, The Netherlands
- Triticum Exploitatie BV, Maastricht, The Netherlands
| |
Collapse
|
15
|
Do NH, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr Polym 2022; 294:119726. [DOI: 10.1016/j.carbpol.2022.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
16
|
Nezhad-Mokhtari P, Asadi N, Rahmani Del Bakhshayesh A, Milani M, Gama M, Ghorbani M, Akbarzadeh A. Honey-Loaded Reinforced Film Based on Bacterial Nanocellulose/Gelatin/Guar Gum as an Effective Antibacterial Wound Dressing. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, the use of bacterial nanocellulose (BNC) produced by Acetobacter, which has suitable properties for tissue engineering application as a perfect wound dressing, has attracted considerable attention. For this purpose, we successfully developed honey loaded BNC-reinforced gelatin/dialdehyde-modified
guar gum films (H/BNC/Ge/D-GG). Prepared films were studied for their morphological, thermal stability, mechanical, water solubility and degradability properties. The physicochemical properties of the developed films with or without honey loading were studied. The results indicated that by
enhancing the honey content of the film, the degradation behavior, adhesion and proliferation of NIH-3T3 fibroblast cells were improved. The films with 15 wt% of honey revealed inhibition activity against S. aureus (13.0±0.1 mm) and E. coli (15.0±1.0 mm) bacteria.
Cell culture results demonstrated that the prepared films had good cytocompatibility. Based on the results, the prepared H/BNC/Ge/D-GG films appear to have high potential for antibacterial wound dressings.
Collapse
Affiliation(s)
- Parinaz Nezhad-Mokhtari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| | - Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4715057, Braga, Portugal
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 5166653431, Iran
| |
Collapse
|
17
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Mirhaj M, Labbaf S, Tavakoli M, Seifalian A. An Overview on the Recent Advances in the Treatment of Infected Wounds: Antibacterial Wound Dressings. Macromol Biosci 2022; 22:e2200014. [PMID: 35421269 DOI: 10.1002/mabi.202200014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
A wound can be surgical, cuts from an operation or due to accident and trauma. The infected wound, as a result of bacteria growth within the damaged skin, interrupts the natural wound healing process and significantly impacts the quality of life. Wound dressing is an important segment of the skincare industry with its economic burden estimated at $ 20.4 billion (in 2021) in the global market. The results of recent clinical trials suggest that the use of modern dressings can be the easiest, most accessible, and most cost-effective way to treat chronic wounds and, hence, holds significant promise. With the sheer number of dressings in the market, the selection of correct dressing is confusing for clinicians and healthcare workers. The aim of this research was to review widely used types of antibacterial wound dressings, as well as emerging products, for their efficiency and mode of action. In this review, we focus on introducing antibiotics and antibacterial nanoparticles as two important and clinically widely used categories of antibacterial agents. The perspectives and challenges for paving the way for future research in this field are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Amelia Seifalian
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Dumitru CD, Neacsu IA, Grumezescu AM, Andronescu E. Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering. Pharmaceutics 2022; 14:750. [PMID: 35456584 PMCID: PMC9030501 DOI: 10.3390/pharmaceutics14040750] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Skin tissue regeneration is one of the population's most common problems, and the complications that may appear in the healing process can have detrimental consequences. An alternative to conventional treatments could be represented by sustainable materials based on natural products, such as honey and its derivates (propolis, royal jelly, bee pollen, beeswax, and bee venom). They exhibit significant inhibitory activities against bacteria and have great potential in dermal tissue regeneration. Research in the pharmaceutical field demonstrates that conventional medication combined with bee products can deliver better results. The advantages include minimizing side effects and maintaining the same effectiveness by using low concentrations of antibiotic, anti-inflammatory, or chemotherapy drugs. Several studies suggested that bee products can replace the antimicrobial activity and efficiency of antibiotics, but further investigation is needed to establish a topical mixture's potential, including honey, royal jelly, and propolis. Bee products seem to complete each other's deficiencies, and their mixture may have a better impact on the wound healing process. The topic addressed in this paper highlights the usefulness of honey, propolis, royal jelly, bee pollen, beeswax, and bee venom in the re-epithelization process and against most common bacterial infections.
Collapse
Affiliation(s)
- Corina Dana Dumitru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
20
|
Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR. Membranous Extracellular Matrix-Based Scaffolds for Skin Wound Healing. Pharmaceutics 2021; 13:1796. [PMID: 34834211 PMCID: PMC8620109 DOI: 10.3390/pharmaceutics13111796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor mechanical properties, the uncontrollable degradation, and other factors after implantation. To highlight the feasible strategies to overcome the limitations, in this review, we first outline the current clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce the possible repair mechanisms; then, we discuss their potential limitations and further summarize recent advances in the scaffold modification and fabrication technologies that have been applied to engineer new ECM-based membranes. With the development of scaffold modification approaches, nanotechnology and material manufacturing techniques, various types of advanced ECM-based membranes have been reported in the literature. Importantly, they possess much better properties for skin wound healing, and would become promising candidates for future clinical translation.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| |
Collapse
|