1
|
Alharamlah F, AlTuwaijri F, AlQuorain H, Khan AS, Alonaizan F, Alsahafi R, Weir MD, Xu HHK, Balhaddad AA. The impact of dimethylaminohexadecyl methacrylates on the physical and antibacterial properties of endodontic sealers. FRONTIERS IN ORAL HEALTH 2025; 6:1524541. [PMID: 39959356 PMCID: PMC11825804 DOI: 10.3389/froh.2025.1524541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Objective This study aims to incorporate contact-killing quaternary ammonium into two root canal sealers, AH Plus (DentSply Sirona, New York City, NY, USA) and BC (FKG, Le Crêt-du-Locle Switzerland) sealers to improve their antibacterial properties. Methods Dimethylaminohexadecyl Methacrylates (DMAHDM) were synthesized and incorporated into AH Plus and BC sealers at 5 weight percent (wt.%). The physical properties were assessed via film thickness, flow, contact angle, and solubility. The antibacterial properties were assessed by determining the number of colony-forming units (CFUs) of Enterococcus faecalis and scanning electron microscopy (SEM). Two-way ANOVA and Tukey tests were used to analyze the data. Results Incorporating DMAHDM at 5 wt.% increased the film thickness and reduced the flow of the AH Plus and BC sealers (P < 0.05), but the values were within clinically acceptable limits. Simultaneously, DMAHDM incorporation increased the contact angle of the sealers (P < 0.001). DMAHDM incorporation significantly (P < 0.001) inhibited the E. faecalis biofilms and resulted in complete eradication. In contrast, the AH Plus and BC control sealers had approximately 105 and 104 CFUs of bacteria, respectively. The SEM images revealed no E. faecalis colonies over the AH Plus sealers containing 5 wt.% DMAHDM, while the AH Plus control sealers were covered with a thick layer of biofilms. Conclusions The results of this study suggest that DMAHDM, as a contact-killing agent, could be used as an approach to prevent endodontic reinfections. Clinical Relevance Integrating DMAHDM into commercial sealers may enhance their antibacterial properties. These findings indicate a need for further investigation using more clinically relevant models to validate this approach.
Collapse
Affiliation(s)
- Faisal Alharamlah
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fawaz AlTuwaijri
- Ministry of Defense Health Services, King Fahd Military Medical Complex, Dhahran, Saudi Arabia
| | - Haitham AlQuorain
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Alonaizan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rashed Alsahafi
- Department of Restorative Dental Sciences, College of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Abdulrahman A. Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
AlAzzam NF, Bajunaid SO, Baras BH, Mitwalli HA, Weir MD, Xu HHK. Microbial Adhesion and Cytotoxicity of Heat-Polymerized and 3D-Printed Denture Base Materials when Modified with Dimethylaminohexadecyl Methacrylate and/or 2-Methacryloyloxyethyl Phosphorylcholine as Antimicrobial and Protein-Repellent Materials. Polymers (Basel) 2025; 17:228. [PMID: 39861306 PMCID: PMC11768527 DOI: 10.3390/polym17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Polymethyl methacrylate (PMMA) is ideal for denture bases but is prone to biofilm accumulation, leading to denture stomatitis (DS), often involving Candida albicans. Dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are introduced into dental materials for their antimicrobial and protein-repellent properties. This study investigates the effects of incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) into heat-polymerized (HP) and 3D-printed (3DP) denture base resins on microbial adhesion and cytotoxicity. METHODS HP and 3DP denture base specimens were prepared using varying concentrations of DMAHDM and MPC. Microbial adhesion was quantified using CFU counts of C. albicans, and cytotoxicity was assessed via an MTT assay using fibroblast cells after 24 h, 3 days, and 7 days. RESULTS Both DMAHDM and MPC significantly reduced the CFU counts in both HP and 3DP materials; the combination of 1.5% DMAHDM and 3% MPC exhibited the most substantial antimicrobial effects. Cytotoxicity results varied between materials and time points; however, all treated groups maintained cell viability above the 70% threshold, indicating no significant cytotoxic effects. CONCLUSION Incorporating DMAHDM and MPC into denture base resins can effectively reduce microbial adhesion while maintaining acceptable cytotoxicity levels.
Collapse
Affiliation(s)
- Njood F. AlAzzam
- Department of Prosthetic Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia;
| | - Salwa O. Bajunaid
- Department of Prosthetic Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia;
| | - Bashayer H. Baras
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia (H.A.M.)
| | - Heba A. Mitwalli
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia (H.A.M.)
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (M.D.W.); (H.H.K.X.)
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (M.D.W.); (H.H.K.X.)
| |
Collapse
|
3
|
AlAzzam NF, Bajunaid SO, Mitwalli HA, Baras BH, Weir MD, Xu HHK. The Effect of Incorporating Dimethylaminohexadecyl Methacrylate and/or 2-Methacryloyloxyethyl Phosphorylcholine on Flexural Strength and Surface Hardness of Heat Polymerized and 3D-Printed Denture Base Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4625. [PMID: 39336366 PMCID: PMC11433138 DOI: 10.3390/ma17184625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND A major disadvantage of polymethyl methacrylate (PMMA) acrylic resins is susceptibility to biofilm accumulation. The incorporation of antimicrobial agents is a reliable prevention technique. The purpose of this study is to investigate the effect of incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and/or 2-methacryloyloxyethyl phosphorylcholine (MPC) into heat-polymerized (HP) and 3D-printed (3DP) denture base materials on the flexural strength, modulus of elasticity, and surface hardness. METHODS DMAHDM and/or MPC were mixed with the acrylic resin liquid of a heat-polymerized (ProBase Hot) and a 3D printed (NextDent Denture 3D) material at mass fractions of 1.5% and 3% and a combination of 3% MPC and 1.5% DMAHDM. RESULTS Significant differences in mechanical properties between the control and experimental groups have been detected (p-value < 0.0001). In HP materials, the addition of DMAHDM and/or MPC generally decreased the flexural strength, from (151.18 MPa) in G1 down to (62.67 MPa) in G5, and surface hardness, from (18.05 N/mm2) down to (10.07 N/mm2) in G5. Conversely, in 3DP materials, flexural strength was slightly enhanced, from (58.22 MPa) in G1 up to (62.76 MPa) in G6, although surface hardness was consistently reduced, from (13.57 N/mm2) down to (5.29 N/mm2) in G5. CONCLUSION It is recommended to carefully optimize the concentrations of DMAHDM and/or MPC to maintain mechanical integrity.
Collapse
Affiliation(s)
- Njood F AlAzzam
- Department of Prosthetic Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia
| | - Salwa O Bajunaid
- Department of Prosthetic Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia
| | - Heba A Mitwalli
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia
| | - Bashayer H Baras
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 60169-15, Saudi Arabia
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Bian C, Guo Y, Zhu M, Liu M, Xie X, Weir MD, Oates TW, Masri R, Xu HHK, Zhang K, Bai Y, Zhang N. New generation of orthodontic devices and materials with bioactive capacities to improve enamel demineralization. J Dent 2024; 142:104844. [PMID: 38253119 DOI: 10.1016/j.jdent.2024.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE The article reviewed novel orthodontic devices and materials with bioactive capacities in recent years and elaborated on their properties, aiming to provide guidance and reference for future scientific research and clinical applications. DATA, SOURCES AND STUDY SELECTION Researches on remineralization, protein repellent, antimicrobial activity and multifunctional novel bioactive orthodontic devices and materials were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS The new generation of orthodontic devices and materials with bioactive capacities has broad application prospects. However, most of the current studies are limited to in vitro studies and cannot explore the true effects of various bioactive devices and materials applied in oral environments. More research, especially in vivo researches, is needed to assist in clinical application. CLINICAL SIGNIFICANCE Enamel demineralization (ED) is a common complication in orthodontic treatments. Prolonged ED can lead to dental caries, impacting both the aesthetics and health of teeth. It is of great significance to develop antibacterial orthodontic devices and materials that can inhibit bacterial accumulation and prevent ED. However, materials with only preventive effect may fall short of addressing actual needs. Hence, the development of novel bioactive orthodontic materials with remineralizing abilities is imperative. The article reviewed the recent advancements in bioactive orthodontic devices and materials, offering guidance and serving as a reference for future scientific research and clinical applications.
Collapse
Affiliation(s)
- Ce Bian
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yiman Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Mengyao Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Miao Liu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
5
|
Xie Y, Chen R, Yao W, Ma L, Li B. Synergistic effect of ion-releasing fillers on the remineralization and mechanical properties of resin-dentin bonding interfaces. Biomed Phys Eng Express 2023; 9:062001. [PMID: 37832527 DOI: 10.1088/2057-1976/ad0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In modern restorative dentistry, adhesive resin materials are vital for achieving minimally invasive, esthetic, and tooth-preserving restorations. However, exposed collagen fibers are found in the hybrid layer of the resin-dentin bonding interface due to incomplete resin penetration. As a result, the hybrid layer is susceptible to attack by internal and external factors such as hydrolysis and enzymatic degradation, and the durability of dentin bonding remains limited. Therefore, efforts have been made to improve the stability of the resin-dentin interface and achieve long-term clinical success. New ion-releasing adhesive resin materials are synthesized by introducing remineralizing ions such as calcium and phosphorus, which continuously release mineral ions into the bonding interface in resin-bonded restorations to achieve dentin biomimetic remineralization and improve bond durability. As an adhesive resin material capable of biomimetic mineralization, maintaining excellent bond strength and restoring the mechanical properties of demineralized dentin is the key to its function. This paper reviews whether ion-releasing dental adhesive materials can maintain the mechanical properties of the resin-dentin bonding interface by supplementing the various active ingredients required for dentin remineralization from three aspects: phosphate, silicate, and bioactive glass.
Collapse
Affiliation(s)
- Yimeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Ruhua Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Wei Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Liang Ma
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| |
Collapse
|
6
|
Yu K, Zhang Q, Dai Z, Zhu M, Xiao L, Zhao Z, Bai Y, Zhang K. Smart Dental Materials Intelligently Responding to Oral pH to Combat Caries: A Literature Review. Polymers (Basel) 2023; 15:2611. [PMID: 37376255 DOI: 10.3390/polym15122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Smart dental materials are designed to intelligently respond to physiological changes and local environmental stimuli to protect the teeth and promote oral health. Dental plaque, or biofilms, can substantially reduce the local pH, causing demineralization that can then progress to tooth caries. Progress has been made recently in developing smart dental materials that possess antibacterial and remineralizing capabilities in response to local oral pH in order to suppress caries, promote mineralization, and protect tooth structures. This article reviews cutting-edge research on smart dental materials, their novel microstructural and chemical designs, physical and biological properties, antibiofilm and remineralizing capabilities, and mechanisms of being smart to respond to pH. In addition, this article discusses exciting and new developments, methods to further improve the smart materials, and potential clinical applications.
Collapse
Affiliation(s)
- Kan Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qinrou Zhang
- School of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Zixiang Dai
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Minjia Zhu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Le Xiao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zeqing Zhao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
7
|
Bin-Jardan LI, Almadani DI, Almutairi LS, Almoabid HA, Alessa MA, Almulhim KS, AlSheikh RN, Al-Dulaijan YA, Ibrahim MS, Al-Zain AO, Balhaddad AA. Inorganic Compounds as Remineralizing Fillers in Dental Restorative Materials: Narrative Review. Int J Mol Sci 2023; 24:ijms24098295. [PMID: 37176004 PMCID: PMC10179470 DOI: 10.3390/ijms24098295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Secondary caries is one of the leading causes of resin-based dental restoration failure. It is initiated at the interface of an existing restoration and the restored tooth surface. It is mainly caused by an imbalance between two processes of mineral loss (demineralization) and mineral gain (remineralization). A plethora of evidence has explored incorporating several bioactive compounds into resin-based materials to prevent bacterial biofilm attachment and the onset of the disease. In this review, the most recent advances in the design of remineralizing compounds and their functionalization to different resin-based materials' formulations were overviewed. Inorganic compounds, such as nano-sized amorphous calcium phosphate (NACP), calcium fluoride (CaF2), bioactive glass (BAG), hydroxyapatite (HA), fluorapatite (FA), and boron nitride (BN), displayed promising results concerning remineralization, and direct and indirect impact on biofilm growth. The effects of these compounds varied based on these compounds' structure, the incorporated amount or percentage, and the intended clinical application. The remineralizing effects were presented as direct effects, such as an increase in the mineral content of the dental tissue, or indirect effects, such as an increase in the pH around the material. In some of the reported investigations, inorganic remineralizing compounds were combined with other bioactive agents, such as quaternary ammonium compounds (QACs), to maximize the remineralization outcomes and the antibacterial action against the cariogenic biofilms. The reviewed literature was mainly based on laboratory studies, highlighting the need to shift more toward testing the performance of these remineralizing compounds in clinical settings.
Collapse
Affiliation(s)
- Leena Ibraheem Bin-Jardan
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Dalal Ibrahim Almadani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Leen Saleh Almutairi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hadi A Almoabid
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed A Alessa
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid S Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rasha N AlSheikh
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yousif A Al-Dulaijan
- Department of Substitute Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Maria S Ibrahim
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Afnan O Al-Zain
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University Jeddah, P.O. Box 80209, Jeddah 21589, Saudi Arabia
| | - Abdulrahman A Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
He J, Lassila L, Garoushi S, Vallittu P. Tailoring the monomers to overcome the shortcomings of current dental resin composites - review. Biomater Investig Dent 2023; 10:2191621. [PMID: 37090482 PMCID: PMC10120559 DOI: 10.1080/26415275.2023.2191621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Dental resin composites (DRCs) have become the first choice among different restorative materials for direct anterior and posterior restorations in the clinic. Though the properties of DRCs have been improved greatly in recent years, they still have several shortcomings, such as volumetric shrinkage and shrinkage stress, biofilm development, lack of radio-opacity for some specific DRCs, and estrogenicity, which need to be overcome. The resin matrix, composed of different monomers, constitutes the continuous phase and determine the performance of DRCs. Thus, the chemical structure of the monomers plays an important role in modifying the properties of DRCs. Numerous researchers have taken to design and develop novel monomers with specific functions for the purpose of fulfilling the needs in dentistry. In this review, the development of monomers in DRCs were highlighted, especially focusing on strategies aimed at reducing volumetric shrinkage and shrinkage stress, endowing bacteriocidal and antibacterial adhesion activities as well as protein-repelling activity, increasing radio-opacity, and replacing Bis-GMA. The influences of these novel monomers on the properties of DRCs were also discussed.
Collapse
Affiliation(s)
- Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- CONTACT Jingwei He College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of South-West Finland, Turku, Finland
| |
Collapse
|
9
|
Yang H, Xie X, Li X, Bai Y. Polymethyl methacrylate resin containing ε-poly-L-lysine and 2-methacryloyloxyethyl phosphorylcholine with antimicrobial effects. J Prosthet Dent 2023; 129:228.e1-228.e8. [PMID: 36476985 DOI: 10.1016/j.prosdent.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 12/08/2022]
Abstract
STATEMENT OF PROBLEM Polymethyl methacrylate (PMMA) is commonly used in dentistry, including as a denture base material. However, the colonization of a PMMA surface by microbial microorganisms could increase the risk of oral diseases such as denture stomatitis and gingivitis. The development of PMMA with antibacterial properties should improve its clinical application, but whether adding ε-poly-L-lysine (ε-PL) and 2-methacryloyloxyethyl phosphorylcholine (MPC) provides antimicrobial effects is unclear. PURPOSE This in vitro study aimed to develop a novel antibacterial PMMA resin containing the natural nontoxic antibacterial agent ε-PL and the protein repellent agent MPC. The mechanical properties, protein repellency, and antimicrobial activities of the resin were then evaluated. MATERIAL AND METHODS Different mass fractions of ε-PL and MPC were mixed into PMMA as the experimental groups, with unaltered PMMA as the control group. The flexural strength (n=10) and surface roughness (n=6) of the resulting mixtures were measured to determine their mechanical properties. The antiprotein properties were measured by using the micro bicinchoninic acid method (n=6). The antimicrobial effect of the resin was assessed using live/dead staining (n=6) and methyltransferase (MTT) assays (n=10). According to the variance homogeneity and normal distribution results, 1-way analysis of variance followed by the Tukey honestly significant difference test or the Welch test and the Games-Howell test were used (α=.05 for all tests). RESULTS No significant differences were found in the flexural strength values and surface roughness of the specimens containing 1.5% MPC and 1.5% ε-PL compared with those of the control (P>.05). The addition of ε-PL to the PMMA resin alone significantly increased its bactericidal properties (P<.05). Adding both ε-PL and MPC further increased the antibacterial activity of the PMMA resin without increasing protein adhesion more than in the control group. CONCLUSIONS The incorporation of both ε-PL and MPC into PMMA improved its antibacterial capacity without affecting its mechanical properties and did not increase protein adhesion. Therefore, the novel PMMA fabricated in this study shows promise for dental applications.
Collapse
Affiliation(s)
- Hao Yang
- Dental student, Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Xianju Xie
- Associate Professor, Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Xiaowei Li
- Assistant Professor, Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yuxing Bai
- Professor, Dean, Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
10
|
Dual-functional adhesive containing amorphous calcium phosphate nanoparticles and dimethylaminohexadecyl methacrylate promoted enamel remineralization in a biofilm-challenged environment. Dent Mater 2022; 38:1518-1531. [PMID: 35907751 DOI: 10.1016/j.dental.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/13/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The cariogenic biofilm on enamel, restoration, and bonding interface is closely related to dental caries and composite restoration failure. Enamel remineralization at adhesive interface is conducive to protecting bonding interface and inhibiting secondary caries. This study intended to assess the remineralization efficiency of adhesive with dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on initial caries lesion of biofilm-coated enamel. METHODS Artificial initial carious lesion was created via 72-hour immersion in demineralization solution and cariogenic biofilm was formed after 24-hour culture of Streptococcus mutans (S. mutans). Specimens were then divided into 4 groups: enamel control, enamel treated with NACP, DMAHDM and NACP+DMAHDM respectively. Samples next underwent 7-day cycling, 4 h in BHIS (brain heart infusion broth containing 1 % sucrose) and 20 h in AS (artificial saliva) per day. The pH of BHIS was tested daily. So did the concentration of calcium and phosphate in BHIS and AS. Live/dead staining, colony-forming unit (CFU) count, and lactic acid production of biofilms were measured 7 days later. The enamel remineralization efficiency was evaluated by microhardness testing and transverse microradiography (TMR) quantitatively. RESULTS Enamel of NACP+DMAHDM group demonstrated excellent remineralization effectiveness. And the NACP+DMAHDM adhesive released a great number of Ca2+ and PO43- ions, increased pH to 5.81 via acid neutralization, decreased production of lactic acid, and reduced CFU count of S. mutans (P < 0.05). SIGNIFICANCE The NACP+DMAHDM adhesive would be applicable to preventing secondary caries, strengthening enamel-adhesive interface, and extending the lifespan of composite restoration.
Collapse
|
11
|
Polymeric Dental Nanomaterials: Antimicrobial Action. Polymers (Basel) 2022; 14:polym14050864. [PMID: 35267686 PMCID: PMC8912874 DOI: 10.3390/polym14050864] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
This review aims to describe and critically analyze studies published over the past four years on the application of polymeric dental nanomaterials as antimicrobial materials in various fields of dentistry. Nanoparticles are promising antimicrobial additives to restoration materials. According to published data, composites based on silver nanoparticles, zinc(II), titanium(IV), magnesium(II), and copper(II) oxide nanoparticles, chitosan nanoparticles, calcium phosphate or fluoride nanoparticles, and nanodiamonds can be used in dental therapy and endodontics. Composites with nanoparticles of hydroxyapatite and bioactive glass proved to be of low efficiency for application in these fields. The materials applicable in orthodontics include nanodiamonds, silver nanoparticles, titanium(IV) and zinc(II) oxide nanoparticles, bioactive glass, and yttrium(III) fluoride nanoparticles. Composites of silver nanoparticles and zinc(II) oxide nanoparticles are used in periodontics, and nanodiamonds and silver, chitosan, and titanium(IV) oxide nanoparticles are employed in dental implantology and dental prosthetics. Composites based on titanium(IV) oxide can also be utilized in maxillofacial surgery to manufacture prostheses. Composites with copper(II) oxide nanoparticles and halloysite nanotubes are promising materials in the field of denture prosthetics. Composites with calcium(II) fluoride or phosphate nanoparticles can be used in therapeutic dentistry for tooth restoration.
Collapse
|
12
|
Al-Qarni F, Weir M, Melo MA, Al-Dulaijan Y, Almulhim KS, Xu HHK. Novel calcium phosphate ion-rechargeable and antibacterial adhesive to inhibit dental caries. Clin Oral Investig 2022; 26:313-323. [PMID: 34110495 DOI: 10.1007/s00784-021-04002-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study aimed to develop an antibacterial and calcium (Ca) and phosphate (P) rechargeable adhesive and investigate the effects of dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on dentin bonding, biofilm response, and repeated Ca and P ion recharge and re-release capability for the first time. MATERIALS AND METHODS Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol A glycidyl dimethacrylate (BisGMA) formed the adhesive (PEHB). Three groups were tested: (1) Scotchbond (SBMP, 3 M) control, (2) PEHB + 30% NACP, and (3) PEHB + 30% NACP + 5% DMAHDM. Specimens were tested for dentin shear bond strength, and Ca and P ion release, recharge, and re-release. Biofilm lactic acid production and colony-forming units (CFU) on resins were analyzed. RESULTS The four groups had similar dentin shear bond strengths (p > 0.1). Adhesive with DMAHDM showed significant decrease in metabolic activity, lactic acid production, and biofilm CFU (p < 0.05). The adhesives containing NACP released high levels of Ca and P ions initially and after being recharged. CONCLUSION This study developed the first Ca and P ion-rechargeable and antibacterial adhesive, achieving strong antibacterial activity and Ca and P ion recharge and re-release for long-term remineralization. CLINICAL RELEVANCE Considering the restoration-tooth bonded interface being the weak link and recurrent caries at the margins being the primary reason for restoration failures, this novel calcium phosphate-rechargeable and antibacterial adhesive is promising for a wide range of tooth-restoration applications to inhibit caries.
Collapse
Affiliation(s)
- Faisal Al-Qarni
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Michael Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Mary A Melo
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Yousif Al-Dulaijan
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid S Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
13
|
Ramburrun P, Pringle NA, Dube A, Adam RZ, D'Souza S, Aucamp M. Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3167. [PMID: 34207552 PMCID: PMC8229368 DOI: 10.3390/ma14123167] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
The risk of secondary bacterial infections resulting from dental procedures has driven the design of antimicrobial and antifouling dental materials to curb pathogenic microbial growth, biofilm formation and subsequent oral and dental diseases. Studies have investigated approaches based primarily on contact-killing or release-killing materials. These materials are designed for addition into dental resins, adhesives and fillings or as immobilized coatings on tooth surfaces, titanium implants and dental prosthetics. This review discusses the recent developments in the different classes of biomaterials for antimicrobial and antifouling dental applications: polymeric drug-releasing materials, polymeric and metallic nanoparticles, polymeric biocides and antimicrobial peptides. With modifications to improve cytotoxicity and mechanical properties, contact-killing and anti-adhesion materials show potential for incorporation into dental materials for long-term clinical use as opposed to short-lived antimicrobial release-based coatings. However, extended durations of biocompatibility testing, and adjustment of essential biomaterial features to enhance material longevity in the oral cavity require further investigations to confirm suitability and safety of these materials in the clinical setting. The continuous exposure of dental restorative and regenerative materials to pathogenic microbes necessitates the implementation of antimicrobial and antifouling materials to either replace antibiotics or improve its rational use, especially in the day and age of the ever-increasing problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Poornima Ramburrun
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Nadine A Pringle
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Admire Dube
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Razia Z Adam
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| | - Sarah D'Souza
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
14
|
Sustained Antibacterial Effect and Wear Behavior of Quaternary Ammonium Contact-Killing Dental Polymers after One-Year of Hydrolytic Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study intended to investigate the long-term antibacterial effect, mechanical performance, and surface topography of new anticaries dental composites. While most artificial aging studies of dental resins lasted for 30–90 days, this study prolonged the water-aging to one year to be more clinically relevant. The base resin was loaded with dimethylaminohexadecyl methacrylate (DMAHDM) at 3 or 5 wt.% and nano-sized amorphous calcium phosphate (NACP) at 20 wt.%. Composites were subjected to one-year water storage and wear. Following water aging, samples were evaluated for flexural strength, elastic modulus, and microbiological assays. Biofilm plate counting method, metabolic assay, colorimetric quantification of lactic acid, and Baclight bacterial viability assay were measured after one year. Topography changes (ΔRa, ΔRq, ΔRv, ΔRt) were examined after wear and observed by scanning electron microscopy. Biofilm assays and topography changes data were analyzed via one-way ANOVA and Tukey’s tests. Mechanical properties and normalized data were verified using a t-test. The flexural strength values for the formulations that contained 5% DMAHDM-20% NACP, 3% DMAHDM, and 5% DMAHDM were reduced significantly (p < 0.05) in relation to the baseline but the values were still above the ISO standards. No significant differences were observed between the groups concerning the topography changes, except for the ΔRt, where there was a significant increase in the 5% DMAHDM-20% NACP group. All the groups demonstrated robust biofilm-inhibition, with slightly reduced antibacterial properties following water aging. The aged samples reduced the total microorganisms, total streptococci, and mutans streptococci by 1.5 to 3-log, compared to the experimental control. The new formulations containing DMAHDM and NACP were able to sustain the antibacterial performance after one-year of aging. Mechanical properties and surface topography were slightly affected over time.
Collapse
|
15
|
Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004014. [PMID: 33898183 PMCID: PMC8061367 DOI: 10.1002/advs.202004014] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Indexed: 05/09/2023]
Abstract
The oral cavity and oropharynx are complex environments that are susceptible to physical, chemical, and microbiological insults. They are also common sites for pathological and cancerous changes. The effectiveness of conventional locally-administered medications against diseases affecting these oral milieus may be compromised by constant salivary flow. For systemically-administered medications, drug resistance and adverse side-effects are issues that need to be resolved. New strategies for drug delivery have been investigated over the last decade to overcome these obstacles. Synthesis of nanoparticle-containing agents that promote healing represents a quantum leap in ensuring safe, efficient drug delivery to the affected tissues. Micro/nanoencapsulants with unique structures and properties function as more favorable drug-release platforms than conventional treatment approaches. The present review provides an overview of newly-developed nanocarriers and discusses their potential applications and limitations in various fields of dentistry and oral medicine.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Uros Josic
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Masoud Delfi
- Department of Chemical SciencesUniversity of Naples “Federico II”Complesso Universitario Monte S. Angelo, Via CintiaNaples80126Italy
| | - Filippo Pinelli
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
| | - Emine Kaya
- Faculty of DentistryIstanbul Okan UniversityTuzla CampusTuzlaIstanbul34959Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Atefeh Zarepour
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | | | - Matineh Ghomi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Franklin R Tay
- The Dental College of GeorgiaAugusta University1430 John Wesley Gilbert DriveAugustaGA30192USA
- The Graduate SchoolAugusta UniversityAugustaGA30912USA
| |
Collapse
|
16
|
Blinova AV, Rumyantsev VA. [Nanomaterials in the modern dentistry (review)]. STOMATOLOGIIA 2021; 100:103-109. [PMID: 33874670 DOI: 10.17116/stomat2021100021103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Was to study the promising areas for using nanotechnologies in dentistry, existing methods of diagnostics, treatment and prevention of the dental diseases based on the properties of nanoparticles, to review the scientific literature devoted to this problem. In this literature review we use 86 sources: 1 Russian and 85 foreign articles. Analyzed articles were published within the last 5 years. The literature review summarizes and presents up-to-date methods of diagnosing, treating, and preventing dental disease that use nanotechnologies. Development and implementation of nanotechnological treatment are a promising direction for modern dentistry.
Collapse
|
17
|
Khan AS, Ur Rehman S, AlMaimouni YK, Ahmad S, Khan M, Ashiq M. Bibliometric Analysis of Literature Published on Antibacterial Dental Adhesive from 1996-2020. Polymers (Basel) 2020; 12:E2848. [PMID: 33260410 PMCID: PMC7761276 DOI: 10.3390/polym12122848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the current state of research on antibacterial dental adhesives. The interest in this field can be drawn from an increasing number of scholarly works in this area. However, there is still a lack of quantitative measurement of this topic. The main aim of this study was to consolidate the research published on the antibacterial adhesive from 1996 to 2020 in Web of Science indexed journals. The bibliometric method, a quantitative study of investigating publishing trends and patterns, was used for this study. The result has shown that a gradual increase in research was found, whereby a substantial increase was observed from 2013. A total of 248 documents were published in 84 journals with total citations of 5107. The highly cited articles were published mainly in Q1 category journals. Most of the published articles were from the USA, China, and other developed countries; however, some developing countries contributed as well. The authorship pattern showed an interdisciplinary and collaborative approach among researchers. The thematic evaluation of keywords along with a three-factor analysis showed that 'antibacterial adhesives' and 'quaternary ammonium' have been used commonly. This bibliometric analysis can provide direction not only to researchers but also to funding organizations and policymakers.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54000, Pakistan;
| | - Murtaza Ashiq
- Islamabad Model College for Boys, H-9, Islamabad 44000, Pakistan;
| |
Collapse
|
18
|
AlSahafi R, Balhaddad AA, Mitwalli H, Ibrahim MS, Melo MAS, Oates TW, Xu HH, Weir MD. Novel Crown Cement Containing Antibacterial Monomer and Calcium Phosphate Nanoparticles. NANOMATERIALS 2020; 10:nano10102001. [PMID: 33050559 PMCID: PMC7600938 DOI: 10.3390/nano10102001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 01/20/2023]
Abstract
Oral biofilm accumulation at the tooth–restoration interface often leads to recurrent dental caries and restoration failure. The objectives of this study were to: (1) develop a novel bioactive crown cement containing dimethylaminohexadecyl methacrylate (DMAHDM) and nano-sized amorphous calcium phosphate (NACP), and (2) investigate the mechanical properties, anti-biofilm activity, and calcium (Ca2+) and phosphate (PO43−) ion release of the crown cement for the first time. The cement matrix consisted of pyromellitic glycerol dimethacrylate and ethoxylated bisphenol-A dimethacrylate monomers and was denoted PEHB resin matrix. The following cements were tested: (1) RelyX luting cement (commercial control); (2) 55% PEHB + 45% glass fillers (experimental control); (3) 55% PEHB + 20% glass + 25% NACP + 0% DMAHDM; (4) 52% PEHB + 20% glass + 25% NACP + 3% DMAHDM; (5) 51% PEHB + 20% glass + 25% NACP + 4% DMAHDM; (6) 50% PEHB + 20% glass + 25% NACP + 5% DMAHDM. Mechanical properties and ion release were measured. Streptococcusmutans (S. mutans) biofilms were grown on cements, and colony-forming units (CFUs) and other biofilm properties were measured. The novel bioactive cement demonstrated strong antibacterial properties and high levels of Ca2+ and PO43− ion release to remineralize tooth lesions. Adding NACP and DMAHDM into the cement did not adversely affect the mechanical properties and dentin bonding strength. In conclusion, the novel NACP + DMAHDM crown cement has excellent potential for restoration cementation to inhibit caries by suppressing oral biofilm growth and increasing remineralization via Ca2+ and PO43− ions. The NACP + DMAHDM composition may have wide applicability to other biomaterials to promote hard-tissue formation and combat bacterial infection.
Collapse
Affiliation(s)
- Rashed AlSahafi
- Program in Dental Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (R.A.); (A.A.B.); (H.M.)
- Department of Restorative Dental Sciences, College of Dentistry, Umm Al-Qura University, Makkah 24211, Saudi Arabia
| | - Abdulrahman A. Balhaddad
- Program in Dental Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (R.A.); (A.A.B.); (H.M.)
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Heba Mitwalli
- Program in Dental Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (R.A.); (A.A.B.); (H.M.)
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maria Salem Ibrahim
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Mary Anne S. Melo
- Department of General Dentistry, Division of Operative Dentistry, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Department of Advanced Oral Sciences and Therapeutics, Biomaterials & Tissue Engineering Division, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, Biomaterials & Tissue Engineering Division, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Hockin H.K. Xu
- Department of Advanced Oral Sciences and Therapeutics, Biomaterials & Tissue Engineering Division, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center for Stem Cell Biology & Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: (H.H.K.X.); (M.D.W.)
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, Biomaterials & Tissue Engineering Division, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Correspondence: (H.H.K.X.); (M.D.W.)
| |
Collapse
|
19
|
Balhaddad AA, Ibrahim MS, Weir MD, Xu HH, Melo MAS. Concentration dependence of quaternary ammonium monomer on the design of high-performance bioactive composite for root caries restorations. Dent Mater 2020; 36:e266-e278. [DOI: 10.1016/j.dental.2020.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/18/2020] [Indexed: 01/30/2023]
|
20
|
Torres Jr L, Bienek DR. Use of Protein Repellents to Enhance the Antimicrobial Functionality of Quaternary Ammonium Containing Dental Materials. J Funct Biomater 2020; 11:E54. [PMID: 32752169 PMCID: PMC7565790 DOI: 10.3390/jfb11030054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
An advancement in preventing secondary caries has been the incorporation of quaternary ammonium containing (QAC) compounds into a composite resin mixture. The permanent positive charge on the monomers allows for electrostatic-based killing of bacteria. Spontaneous adsorption of salivary proteins onto restorations dampens the antimicrobial capabilities of QAC compounds. Protein-repellent monomers can work with QAC restorations to achieve the technology's full potential. We discuss the theory behind macromolecular adsorption, direct and indirect characterization methods, and advances of protein repellent dental materials. The translation of protein adsorption to microbial colonization is covered, and the concerns and fallbacks of the state-of-the-art protein-resistant monomers are addressed. Last, we present new and exciting avenues for protein repellent monomer design that have yet to be explored in dental materials.
Collapse
Affiliation(s)
| | - Diane R. Bienek
- ADA Science & Research Institute, LLC, Innovative & Technology Research, Frederick, MD 21704, USA;
| |
Collapse
|
21
|
Mitwalli H, Alsahafi R, Balhaddad AA, Weir MD, Xu HHK, Melo MAS. Emerging Contact-Killing Antibacterial Strategies for Developing Anti-Biofilm Dental Polymeric Restorative Materials. Bioengineering (Basel) 2020; 7:E83. [PMID: 32751652 PMCID: PMC7552663 DOI: 10.3390/bioengineering7030083] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Polymeric materials are the first choice for restoring tooth cavities, bonding tooth-colored fillings, sealing root canal systems, and many other dental restorative applications. However, polymeric materials are highly susceptible to bacterial attachment and colonization, leading to dental diseases. Many approaches have been investigated to minimize the formation of biofilms over polymeric restorative materials and at the tooth/material interfaces. Among them, contact-killing compounds have shown promising results to inhibit dental biofilms. Contact-killing compounds can be immobilized within the polymer structure, delivering a long-lasting effect with no leaching or release, thus providing advantages compared to release-based materials. This review discusses cutting-edge research on the development of contact-killing compounds in dental restorative materials to target oral pathogens. Contact-killing compounds in resin composite restorations, dental adhesives, root canal sealers, denture-based materials, and crown cements have all demonstrated promising antibacterial properties. Contact-killing restorative materials have been found to effectively inhibit the growth and activities of several oral pathogens related to dental caries, periodontal diseases, endodontic, and fungal infections. Further laboratory optimization and clinical trials using translational models are needed to confirm the clinical applicability of this new generation of contact-killing dental restorative materials.
Collapse
Affiliation(s)
- Heba Mitwalli
- Program in Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (H.M.); (R.A.); (A.A.B.); (M.D.W.)
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed Alsahafi
- Program in Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (H.M.); (R.A.); (A.A.B.); (M.D.W.)
- Department of Restorative Dental Sciences, College of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulrahman A. Balhaddad
- Program in Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (H.M.); (R.A.); (A.A.B.); (M.D.W.)
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam 34212, Saudi Arabia
| | - Michael D. Weir
- Program in Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (H.M.); (R.A.); (A.A.B.); (M.D.W.)
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Hockin H. K. Xu
- Program in Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (H.M.); (R.A.); (A.A.B.); (M.D.W.)
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Center for Stem Cell Biology; Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Mary Anne S. Melo
- Program in Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (H.M.); (R.A.); (A.A.B.); (M.D.W.)
- Division of Operative Dentistry, Department of General Dentistry, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Bhadila G, Baras BH, Weir MD, Wang H, Melo MAS, Hack GD, Bai Y, Xu HHK. Novel antibacterial calcium phosphate nanocomposite with long-term ion recharge and re-release to inhibit caries. Dent Mater J 2020; 39:678-689. [PMID: 32295987 DOI: 10.4012/dmj.2019-203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Short-term studies on calcium-phosphate (CaP) ion-rechargeable composites were reported. The long-term rechargeability is important but unknown. The objectives of this study were to investigate nanocomposite with strong antibacterial and ion-recharge capabilities containing dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and evaluate long-term ion-recharge by testing for 12 cycles (taking 6 months to complete) for the first time. Three groups were tested: (1) Heliomolar control; (2) Resin+20%NACP+50%glass; (3) Resin+3%DMAHDM+20%NACP+50%glass. Biofilm acid and colony-forming units (CFU) were measured. Ion-recharge was tested for 12 cycles. NACP-DMAHDM composite reduced biofilm acid, and reduced CFU by 4 logs. High levels of ion releases were maintained throughout 12 cycles of recharge, maintaining steady-state releases without reduction in 6 months (p>0.1), representing long-term remineralization potential. Bioactive nanocomposite demonstrated long-term ion-rechargeability for the first time, showed remineralization and potent anti-biofilm functions, with promise for tooth restorations to combat caries.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University
| | - Bashayer H Baras
- Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Department of Restorative Dental Science, College of Dentistry, King Saud University
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haohao Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry
| | - Gary D Hack
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| |
Collapse
|
23
|
Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M. Applications of nano-materials in diverse dentistry regimes. RSC Adv 2020; 10:15430-15460. [PMID: 35495474 PMCID: PMC9052824 DOI: 10.1039/d0ra00762e] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Research and development in the applied sciences at the atomic or molecular level is the order of the day under the domain of nanotechnology or nano-science with enormous influence on nearly all areas of human health and activities comprising diverse medical fields such as pharmacological studies, clinical diagnoses, and supplementary immune system. The field of nano-dentistry has emerged due to the assorted dental applications of nano-technology. This review provides a brief introduction to the general nanotechnology field and a comprehensive overview of the synthesis features and dental uses of nano-materials including current innovations and future expectations with general comments on the latest advancements in the mechanisms and the most significant toxicological dimensions.
Collapse
Affiliation(s)
- Loke Kok Foong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Viet Nam
| | | | - Armita Forutan Mirhosseini
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
| | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Shohreh Jahani
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Maryam Mostafavi
- Tehran Dental Branch, Islamic Azad University Tehran Iran
- Craniomaxilofacial Resarch Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Nasser Ebrahimpoor
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Maryam Sharifi
- Department of Pediatric Dentistry, School of Dentistry, Kerman University of Medical Sciences Kerman Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
24
|
Yao S, Li T, Zhou C, Weir MD, Melo MAS, Tay FR, Lynch CD, Imazato S, Wu J, Xu HH. Novel antibacterial and therapeutic dental polymeric composites with the capability to self-heal cracks and regain mechanical properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Baras BH, Melo MAS, Thumbigere-Math V, Tay FR, Fouad AF, Oates TW, Weir MD, Cheng L, Xu HHK. Novel Bioactive and Therapeutic Root Canal Sealers with Antibacterial and Remineralization Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1096. [PMID: 32121595 PMCID: PMC7084849 DOI: 10.3390/ma13051096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
According to the American Dental Association Survey of Dental Services Rendered (published in 2007), 15 million root canal treatment procedures are performed annually. Endodontic therapy relies mainly on biomechanical preparation, chemical irrigation and intracanal medicaments which play an important role in eliminating bacteria in the root canal. Furthermore, adequate obturation is essential to confine any residual bacteria within the root canal and deprive them of nutrients. However, numerous studies have shown that complete elimination of bacteria is not achieved due to the complex anatomy of the root canal system. There are several conventional antibiotic materials available in the market for endodontic use. However, the majority of these antibiotics and antiseptics provide short-term antibacterial effects, and they impose a risk of developing antibacterial resistance. The root canal is a dynamic environment, and antibacterial and antibiofilm materials with long-term effects and nonspecific mechanisms of action are highly desirable in such environments. In addition, the application of acidic solutions to the root canal wall can alter the dentin structure, resulting in a weaker and more brittle dentin. Root canal sealers with bioactive properties come in direct contact with the dentin wall and can play a positive role in bacterial elimination and strengthening of the root structure. The new generation of nanostructured, bioactive, antibacterial and remineralizing additives into polymeric resin-based root canal sealers are discussed in this review. The effects of these novel bioactive additives on the physical and sealing properties, as well as their biocompatibility, are all important factors that are presented in this article.
Collapse
Affiliation(s)
- Bashayer H. Baras
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mary Anne S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
| | - Vivek Thumbigere-Math
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Franklin R. Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ashraf F. Fouad
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA;
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Lei Cheng
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Zaferani SPG, Emami MRS, Amiri MK, Binaeian E. Optimization of the removal Pb (II) and its Gibbs free energy by thiosemicarbazide modified chitosan using RSM and ANN modeling. Int J Biol Macromol 2019; 139:307-319. [DOI: 10.1016/j.ijbiomac.2019.07.208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/08/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023]
|
27
|
Baras BH, Sun J, Melo MAS, Tay FR, Oates TW, Zhang K, Weir MD, Xu HH. Novel root canal sealer with dimethylaminohexadecyl methacrylate, nano-silver and nano-calcium phosphate to kill bacteria inside root dentin and increase dentin hardness. Dent Mater 2019; 35:1479-1489. [DOI: 10.1016/j.dental.2019.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
|
28
|
A Novel Dental Sealant Containing Dimethylaminohexadecyl Methacrylate Suppresses the Cariogenic Pathogenicity of Streptococcus mutans Biofilms. Int J Mol Sci 2019; 20:ijms20143491. [PMID: 31315225 PMCID: PMC6679354 DOI: 10.3390/ijms20143491] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Cariogenic oral biofilms are strongly linked to dental caries around dental sealants. Quaternary ammonium monomers copolymerized with dental resin systems have been increasingly explored for modulation of biofilm growth. Here, we investigated the effect of dimethylaminohexadecyl methacrylate (DMAHDM) on the cariogenic pathogenicity of Streptococcus mutans (S. mutans) biofilms. DMAHDM at 5 mass% was incorporated into a parental formulation containing 20 mass% nanoparticles of amorphous calcium phosphate (NACP). S. mutans biofilms were grown on the formulations, and biofilm inhibition and virulence properties were assessed. The tolerances to acid stress and hydrogen peroxide stress were also evaluated. Our findings suggest that incorporating 5% DMAHDM into 20% NACP-containing sealants (1) imparts a detrimental biological effect on S. mutans by reducing colony-forming unit counts, metabolic activity and exopolysaccharide synthesis; and (2) reduces overall acid production and tolerance to oxygen stress, two major virulence factors of this microorganism. These results provide a perspective on the value of integrating bioactive restorative materials with traditional caries management approaches in clinical practice. Contact-killing strategies via dental materials aiming to prevent or at least reduce high numbers of cariogenic bacteria may be a promising approach to decrease caries in patients at high risk.
Collapse
|
29
|
Balhaddad AA, Kansara AA, Hidan D, Weir MD, Xu HHK, Melo MAS. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioact Mater 2018; 4:43-55. [PMID: 30582079 PMCID: PMC6299130 DOI: 10.1016/j.bioactmat.2018.12.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 01/06/2023] Open
Abstract
Millions of people worldwide suffer from a toothache due to tooth cavity, and often permanent tooth loss. Dental caries, also known as tooth decay, is a biofilm-dependent infectious disease that damages teeth by minerals loss and presents a high incidence of clinical restorative polymeric fillings (tooth colored fillings). Until now, restorative polymeric fillings present no bioactivity. The complexity of oral biofilms contributes to the difficulty in developing effective novel dental materials. Nanotechnology has been explored in the development of bioactive dental materials to reduce or modulate the activities of caries-related bacteria. Nano-structured platforms based on calcium phosphate and metallic particles have advanced to impart an anti-caries potential to restorative materials. The bioactivity of these platforms induces prevention of mineral loss of the hard tooth structure and antibacterial activities against caries-related pathogens. It has been suggested that this bioactivity could minimize the incidence of caries around restorations (CARS) and increase the longevity of such filling materials. The last few years witnessed growing numbers of studies on the preparation evaluations of these novel materials. Herein, the caries disease process and the role of pathogenic caries-related biofilm, the increasing incidence of CARS, and the recent efforts employed for incorporation of bioactive nanoparticles in restorative polymer materials as useful strategies for prevention and management of caries-related-bacteria are discussed. We highlight the status of the most advanced and widely explored interaction of nanoparticle-based platforms and calcium phosphate compounds with an eye toward translating the potential of these approaches to the dental clinical reality. Current progress and future applications of functional nanoparticles and remineralizing compounds incorporated in dental direct restorative materials. Overview of the antibacterial and remineralizing mechanisms presenting direct and indirect implications on the tooth mineral loss. These investigations, although in the initial phase of evidence are necessary and their results are encouraging and open the doors to future clinical studies that will allow the therapeutic value of nanotechnology-based restorative materials to be established.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam, Saudi Arabia
| | - Anmar A Kansara
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Department of Restorative Dentistry, Umm Al-Qura University, College of Dentistry, Makkah, Saudi Arabia
| | - Denise Hidan
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Hockin H K Xu
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Mary Anne S Melo
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| |
Collapse
|