1
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Yamamoto-Fukuda T, Akiyama N, Takahashi M, Kojima H. Keratinocyte Growth Factor (KGF) Modulates Epidermal Progenitor Cell Kinetics through Activation of p63 in Middle Ear Cholesteatoma. J Assoc Res Otolaryngol 2018; 19:223-241. [PMID: 29549594 DOI: 10.1007/s10162-018-0662-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 02/28/2018] [Indexed: 01/27/2023] Open
Abstract
The basal stem/progenitor cell maintains homeostasis of the epidermis. Progressive disturbance of this homeostasis has been implicated as a possible cause in the pathogenesis of epithelial disease, such as middle ear cholesteatoma. In many cases of stem/progenitor cell regulation, the importance of extracellular signals provided by the surrounding cells is well-recognized. Keratinocyte growth factor (KGF) is a mesenchymal-cell-derived paracrine growth factor that specifically participates in skin homeostasis; however, the overexpression of KGF induces middle ear cholesteatoma. In this study, two kinds of thymidine analogs were transferred at different time points and we investigated the effects of overexpressed KGF on the cell kinetics of stem/progenitor cells in vivo. As a result, BrdU(+)EdU(+) cells (stem/progenitor cells) were detected in the thickened epithelium of KGF-transfected specimens. The use of a high-resolution microscope enabled us to analyze the phosphorylated level of p63 in individual nuclei, and the results clearly demonstrated that BrdU(+)EdU(+) cells are regarded as progenitor cells. In the overexpression of KGF, the stimulation of progenitor cell proliferation was inhibited by SU5402, an inhibitor for tyrosine kinase of KGFR. These findings indicate that KGF overexpression may increase stem/progenitor cell proliferation and block terminal differentiation, resulting in epithelial hyperplasia, which is typical in middle ear cholesteatoma.
Collapse
Affiliation(s)
- Tomomi Yamamoto-Fukuda
- Department of Otorhinolaryngology, Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan. .,Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Naotaro Akiyama
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Otorhinolaryngology, Toho University School of Medicine, Tokyo, Japan
| | - Masahiro Takahashi
- Department of Otorhinolaryngology, Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
3
|
Gamal W, Borooah S, Smith S, Underwood I, Srsen V, Chandran S, Bagnaninchi PO, Dhillon B. Real-time quantitative monitoring of hiPSC-based model of macular degeneration on Electric Cell-substrate Impedance Sensing microelectrodes. Biosens Bioelectron 2015; 71:445-455. [PMID: 25950942 PMCID: PMC4456427 DOI: 10.1016/j.bios.2015.04.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/15/2015] [Accepted: 04/23/2015] [Indexed: 01/29/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. Humanized disease models are required to develop new therapies for currently incurable forms of AMD. In this work, a tissue-on-a-chip approach was developed through combining human induced pluripotent stem cells, Electric Cell-substrate Impedance Sensing (ECIS) and reproducible electrical wounding assays to model and quantitatively study AMD. Retinal Pigment Epithelium (RPE) cells generated from a patient with an inherited macular degeneration and from an unaffected sibling were used to test the model platform on which a reproducible electrical wounding assay was conducted to model RPE damage. First, a robust and reproducible real-time quantitative monitoring over a 25-day period demonstrated the establishment and maturation of RPE layers on the microelectrode arrays. A spatially controlled RPE layer damage that mimicked cell loss in AMD disease was then initiated. Post recovery, significant differences (P < 0.01) in migration rates were found between case (8.6 ± 0.46 μm/h) and control cell lines (10.69 ± 0.21 μm/h). Quantitative data analysis suggested this was achieved due to lower cell-substrate adhesion in the control cell line. The ECIS cell-substrate adhesion parameter (α) was found to be 7.8 ± 0.28 Ω(1/2)cm for the case cell line and 6.5 ± 0.15 Ω(1/2)cm for the control. These findings were confirmed using cell adhesion biochemical assays. The developed disease model-on-a-chip is a powerful platform for translational studies with considerable potential to investigate novel therapies by enabling real-time, quantitative and reproducible patient-specific RPE cell repair studies.
Collapse
Affiliation(s)
- W Gamal
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, EH9 3DW, United Kingdom
| | - S Borooah
- MRC Centre for Regenerative Medicine, The University of Edinburgh, EH16 4UU, United Kingdom; Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, United Kingdom; Euan MacDonald Centre for MND Research, The University of Edinburgh, EH16 4SB, United Kingdom; Centre for Neuroregeneration, The University of Edinburgh, EH16 4SB, United Kingdom; The Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, EH16 4SB, United Kingdom
| | - S Smith
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, EH9 3DW, United Kingdom
| | - I Underwood
- Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, EH9 3JF, United Kingdom
| | - V Srsen
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, EH9 3DW, United Kingdom
| | - S Chandran
- MRC Centre for Regenerative Medicine, The University of Edinburgh, EH16 4UU, United Kingdom; Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, United Kingdom; Euan MacDonald Centre for MND Research, The University of Edinburgh, EH16 4SB, United Kingdom; Centre for Neuroregeneration, The University of Edinburgh, EH16 4SB, United Kingdom; The Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, EH16 4SB, United Kingdom
| | - P O Bagnaninchi
- MRC Centre for Regenerative Medicine, The University of Edinburgh, EH16 4UU, United Kingdom.
| | - B Dhillon
- Centre for Clinical Brain Sciences, The University of Edinburgh, EH16 4SB, United Kingdom; The Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, EH16 4SB, United Kingdom; School of Clinical Sciences, The University of Edinburgh, EH16 4SB, United Kingdom
| |
Collapse
|
4
|
Hong L, Han Y, Liu J, Fan D. Keratinocyte growth factor receptor: a therapeutic target in solid cancer. Expert Opin Ther Targets 2015. [PMID: 26200212 DOI: 10.1517/14728222.2015.1062474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The treatment effects of advanced solid cancer are unsatisfactory, and novel therapeutic approaches are much needed. Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase that is primarily localized on epithelial cells. KGFR may play important roles in epithelial cell proliferation and differentiation, epithelial wound repair, embryonic development, immunity, tumor formation and development. AREAS COVERED This review summarizes the expression, function and mechanism of KGFR in solid cancer, and analyzes its value for the cancer therapy. Furthermore, this study discusses the limitations of KGFR-based therapy, and envisages future developments in the clinical applications of KGFR. EXPERT OPINION KGFR may function as an ideal therapeutic target for solid cancer. Continued basic investigation of KGFR-mediated pathways will push insight into the novel strategies of target therapy. More in vivo studies and clinical trials should be performed to promote the translational bridging of the latest research into clinical application.
Collapse
Affiliation(s)
- Liu Hong
- a 1 Fourth Military Medical University, Xijing Hospital of Digestive Diseases , Xi'an 710032, Shaanxi Province, China +86 29 84771531 ; +86 29 82539041 ;
| | - Yu Han
- b 2 Fourth Military Medical University, Xijing Hospital, Department of Otolaryngology , Xi'an 710032, Shaanxi Province, China
| | - Jinqiang Liu
- a 1 Fourth Military Medical University, Xijing Hospital of Digestive Diseases , Xi'an 710032, Shaanxi Province, China +86 29 84771531 ; +86 29 82539041 ;
| | - Daiming Fan
- a 1 Fourth Military Medical University, Xijing Hospital of Digestive Diseases , Xi'an 710032, Shaanxi Province, China +86 29 84771531 ; +86 29 82539041 ;
| |
Collapse
|
5
|
McDowell RE, Amsler MO, Li Q, Lancaster JR, Amsler CD. The immediate wound-induced oxidative burst of Saccharina latissima depends on light via photosynthetic electron transport. JOURNAL OF PHYCOLOGY 2015; 51:431-441. [PMID: 26986660 DOI: 10.1111/jpy.12302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/24/2015] [Indexed: 06/05/2023]
Abstract
Reactive oxygen species (ROS) produced by an oxidative burst are an important component of the wound response in algae, vascular plants, and animals. In all taxa, ROS production is usually attributed solely to a defense-related enzyme like NADPH-oxidase (Nox). However, here we show that the initial, wound-induced oxidative burst of the kelp Saccharina latissima depends on light and photosynthetic electron transport. We measured oxygen evolution and ROS production at different light levels and in the presence of a photosynthetic inhibitor, and we used spin trapping and electron paramagnetic resonance as an orthogonal method. Using an in vivo chemical probe, we provide data suggesting that wound-induced ROS production in two distantly related and geographically isolated species of Antarctic macroalgae may be light dependent as well. We propose that electron transport chains are an important and as yet unaddressed component of the wound response, not just for photosynthetic organisms, but for animals via mitochondria as well. This component may have been obscured by the historic use of diphenylene iodonium, which inhibits not only Noxes but also photosynthetic and respiratory electron transport as well. Finally, we anticipate physiological and/or ecological consequences of the light dependence of macroalgal wound-induced ROS since pathogens and grazers do not disappear in the dark.
Collapse
Affiliation(s)
- Ruth E McDowell
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Margaret O Amsler
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Qian Li
- Department of Anesthesiology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Jack R Lancaster
- Department of Anesthesiology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
- Departments of Pharmacology and Chemical Biology, Surgery, and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15213, USA
| | - Charles D Amsler
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| |
Collapse
|
6
|
Canady J, Arndt S, Karrer S, Bosserhoff AK. Increased KGF Expression Promotes Fibroblast Activation in a Double Paracrine Manner Resulting in Cutaneous Fibrosis. J Invest Dermatol 2013; 133:647-657. [DOI: 10.1038/jid.2012.389] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Meyer M, Müller AK, Yang J, Moik D, Ponzio G, Ornitz DM, Grose R, Werner S. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. J Cell Sci 2012; 125:5690-701. [PMID: 22992463 DOI: 10.1242/jcs.108167] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Efficient wound repair is essential for the maintenance of the integrity of the skin. The repair process is controlled by a variety of growth factors and cytokines, and their abnormal expression or activity can cause healing disorders. Here, we show that wound repair is severely delayed in mice lacking fibroblast growth factor receptors (FGFR) 1 and 2 in keratinocytes. As the underlying mechanism, we identified impaired wound contraction and a delay in re-epithelialization that resulted from impaired keratinocyte migration at the wound edge. Scratch wounding and transwell assays demonstrated that FGFR1/2-deficient keratinocytes had a reduced migration velocity and impaired directional persistence owing to inefficient formation and turnover of focal adhesions. Underlying this defect, we identified a significant reduction in the expression of major focal adhesion components in the absence of FGFR signaling, resulting in a general migratory deficiency. These results identify FGFs as key regulators of keratinocyte migration in wounded skin.
Collapse
Affiliation(s)
- Michael Meyer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Surviladze Z, Dziduszko A, Ozbun MA. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog 2012; 8:e1002519. [PMID: 22346752 PMCID: PMC3276557 DOI: 10.1371/journal.ppat.1002519] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
A subset of human papillomavirus (HPV) infections is causally related to the development of human epithelial tumors and cancers. Like a number of pathogens, HPV entry into target cells is initiated by first binding to heparan sulfonated proteoglycan (HSPG) cell surface attachment factors. The virus must then move to distinct secondary receptors, which are responsible for particle internalization. Despite intensive investigation, the mechanism of HPV movement to and the nature of the secondary receptors have been unclear. We report that HPV16 particles are not liberated from bound HSPG attachment factors by dissociation, but rather are released by a process previously unreported for pathogen-host cell interactions. Virus particles reside in infectious soluble high molecular weight complexes with HSPG, including syndecan-1 and bioactive compounds, like growth factors. Matrix mellatoproteinase inhibitors that block HSPG and virus release from cells interfere with virus infection. Employing a co-culture assay, we demonstrate HPV associated with soluble HSPG-growth factor complexes can infect cells lacking HSPG. Interaction of HPV-HSPG-growth factor complexes with growth factor receptors leads to rapid activation of signaling pathways important for infection, whereas a variety of growth factor receptor inhibitors impede virus-induced signaling and infection. Depletion of syndecan-1 or epidermal growth factor and removal of serum factors reduce infection, while replenishment of growth factors restores infection. Our findings support an infection model whereby HPV usurps normal host mechanisms for presenting growth factors to cells via soluble HSPG complexes as a novel method for interacting with entry receptors independent of direct virus-cell receptor interactions. A subset of the >120 different types of human papillomaviruses (HPVs) are the most common cause of sexually transmitted infections. Certain HPVs are also associated with approximately 5% of all cancers worldwide. Like many pathogens, HPVs bind first to heparan sulfate proteoglycans (HSPGs) on cells before moving to more specific uptake receptors. However, relatively little is known about the mechanism(s) that triggers the translocation of HPV from HSPGs to the receptors that facilitate entry. As obligate parasites, viruses have evolved numerous means to hijack host cell functions to cause infection. We report two novel mechanisms of pathogen-host interactions. First, bound HPV particles are liberated from cells in an active complex with HSPGs and growth factors rather than dissociating from the sugars to engage secondary receptors. Second, HPV uses the specificity of the associated growth factors to bridge to their cognate receptors as opposed to direct binding to a cell internalization receptor. Signals transduced during these interactions are important for HPV infection. Our study provides new insights into the transmission of a significant viral pathogen and reveals novel means whereby microbes may repurpose normal cell functions during infection of their hosts. Likewise, this work uncovers new targets for HPV prophylaxis.
Collapse
Affiliation(s)
- Zurab Surviladze
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (ZS); (MAO)
| | - Agnieszka Dziduszko
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Michelle A. Ozbun
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (ZS); (MAO)
| |
Collapse
|
9
|
Riahi R, Yang Y, Zhang DD, Wong PK. Advances in Wound-Healing Assays for Probing Collective Cell Migration. ACTA ACUST UNITED AC 2012; 17:59-65. [DOI: 10.1177/2211068211426550] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Fibroblast growth factor requirements for in vitro development of bovine embryos. Theriogenology 2011; 75:1466-75. [DOI: 10.1016/j.theriogenology.2010.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022]
|
11
|
Nong L, Yin G, Ren K, Tang J, Fan W. Periodic mechanical stress enhances rat chondrocyte area expansion and migration through Src-PLCγ1-ERK1/2 signaling. Eur J Cell Biol 2010; 89:705-11. [DOI: 10.1016/j.ejcb.2010.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/20/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022] Open
|