1
|
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, Wang MW. Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors. Cell Discov 2023; 9:81. [PMID: 37524700 PMCID: PMC10390531 DOI: 10.1038/s41421-023-00586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.
Collapse
Affiliation(s)
- Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
2
|
Mun Y, Kim W, Shin D. Melanocortin 1 Receptor (MC1R): Pharmacological and Therapeutic Aspects. Int J Mol Sci 2023; 24:12152. [PMID: 37569558 PMCID: PMC10418475 DOI: 10.3390/ijms241512152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Melanocortins play crucial roles in regulating the stress response, inflammation, and skin pigmentation. In this review, we focus on the melanocortin 1 receptor (MC1R), a G protein-coupled receptor primarily known for regulating skin pigmentation and exhibiting anti-inflammatory effects. First, we provide an overview of the structure, signaling pathways, and related diseases of MC1R. Next, we discuss the potential therapeutic use of synthetic peptides and small molecule modulators of MC1R, highlighting the development of various drugs that enhance stability through amino acid sequence modifications and small molecule drugs to overcome limitations associated with peptide characteristics. Notably, MC1R-targeted drugs have applications beyond skin pigmentation-related diseases, which predominantly affect MC1R in melanocytes. These drugs can also be useful in treating inflammatory diseases with MC1R expression present in various cells. Our review underscores the potential of MC1R-targeted drugs to treat a wide range of diseases and encourages further research in this area.
Collapse
Affiliation(s)
- Yoonwoo Mun
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
| | - Woohyun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (Y.M.); (W.K.)
- Gachon Pharmaceutical Research Institute, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
Pinto B, Valente R, Caramelo F, Ruivo R, Castro LFC. Decay of Skin-Specific Gene Modules in Pangolins. J Mol Evol 2023:10.1007/s00239-023-10118-z. [PMID: 37249590 DOI: 10.1007/s00239-023-10118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
The mammalian skin exhibits a rich spectrum of evolutionary adaptations. The pilosebaceous unit, composed of the hair shaft, follicle, and the sebaceous gland, is the most striking synapomorphy. The evolutionary diversification of mammals across different ecological niches was paralleled by the appearance of an ample variety of skin modifications. Pangolins, order Pholidota, exhibit keratin-derived scales, one of the most iconic skin appendages. This formidable armor is intended to serve as a deterrent against predators. Surprisingly, while pangolins have hair on their abdomens, the occurrence of sebaceous and sweat glands is contentious. Here, we explore various molecular modules of skin physiology in four pangolin genomes, including that of sebum production. We show that genes driving wax monoester formation, Awat1/2, show patterns of inactivation in the stem pangolin branch, while the triacylglycerol synthesis gene Dgat2l6 seems independently eroded in the African and Asian clades. In contrast, Elovl3 implicated in the formation of specific neutral lipids required for skin barrier function is intact and expressed in the pangolin skin. An extended comparative analysis shows that genes involved in skin pathogen defense and structural integrity of keratinocyte layers also show inactivating mutations: associated with both ancestral and independent pseudogenization events. Finally, we deduce that the suggested absence of sweat glands is not paralleled by the inactivation of the ATP-binding cassette transporter Abcc11, as previously described in Cetacea. Our findings reveal the sophisticated and complex history of gene retention and loss as key mechanisms in the evolution of the highly modified mammalian skin phenotypes.
Collapse
Affiliation(s)
- Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Filipe Caramelo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
4
|
Zhang J, Xing Y, Li F, Mu J, Liu T, Ge J, Zhao M, Liu L, Gong D, Geng T. Study on the Mechanism of MC5R Participating in Energy Metabolism of Goose Liver. Int J Mol Sci 2023; 24:ijms24108648. [PMID: 37239994 DOI: 10.3390/ijms24108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Nutrition and energy levels have an important impact on animal growth, production performance, disease occurrence and health recovery. Previous studies indicate that melanocortin 5 receptor (MC5R) is mainly involved in the regulations of exocrine gland function, lipid metabolism and immune response in animals. However, it is not clear how MC5R participates in the nutrition and energy metabolism of animals. To address this, the widely used animal models, including the overfeeding model and the fasting/refeeding model, could provide an effective tool. In this study, the expression of MC5R in goose liver was first determined in these models. Goose primary hepatocytes were then treated with nutrition/energy metabolism-related factors (glucose, oleic acid and thyroxine), which is followed by determination of MC5R gene expression. Moreover, MC5R was overexpressed in goose primary hepatocytes, followed by identification of differentially expressed genes (DEGs) and pathways subjected to MC5R regulation by transcriptome analysis. At last, some of the genes potentially regulated by MC5R were also identified in the in vivo and in vitro models, and were used to predict possible regulatory networks with PPI (protein-protein interaction networks) program. The data showed that both overfeeding and refeeding inhibited the expression of MC5R in goose liver, while fasting induced the expression of MC5R. Glucose and oleic acid could induce the expression of MC5R in goose primary hepatocytes, whereas thyroxine could inhibit it. The overexpression of MC5R significantly affected the expression of 1381 genes, and the pathways enriched with the DEGs mainly include oxidative phosphorylation, focal adhesion, ECM-receptor interaction, glutathione metabolism and MAPK signaling pathway. Interestingly, some pathways are related to glycolipid metabolism, including oxidative phosphorylation, pyruvate metabolism, citrate cycle, etc. Using the in vivo and in vitro models, it was demonstrated that the expression of some DEGs, including ACSL1, PSPH, HMGCS1, CPT1A, PACSIN2, IGFBP3, NMRK1, GYS2, ECI2, NDRG1, CDK9, FBXO25, SLC25A25, USP25 and AHCY, was associated with the expression of MC5R, suggesting these genes may mediate the biological role of MC5R in these models. In addition, PPI analysis suggests that the selected downstream genes, including GYS2, ECI2, PSPH, CPT1A, ACSL1, HMGCS1, USP25 and NDRG1, participate in the protein-protein interaction network regulated by MC5R. In conclusion, MC5R may mediate the biological effects caused by changes in nutrition and energy levels in goose hepatocytes through multiple pathways, including glycolipid-metabolism-related pathways.
Collapse
Affiliation(s)
- Jinqi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Fangbo Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ji'an Mu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tongjun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zahn I, Garreis F, Schicht M, Rötzer V, Waschke J, Liu Y, Altersberger VL, Paulsen F, Dietrich J. A New Organotypic 3D Slice Culture of Mouse Meibomian Glands Reveals Impact of Melanocortins. Int J Mol Sci 2022; 23:ijms232314947. [PMID: 36499274 PMCID: PMC9737810 DOI: 10.3390/ijms232314947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The meibomian glands (MGs) within the eyelids produce a lipid-rich secretion that forms the superficial layer of the tear film. Meibomian gland dysfunction (MGD) results in excessive evaporation of the tear film, which is the leading cause of dry eye disease (DED). To develop a research model similar to the physiological situation of MGs, we established a new 3D organotypic slice culture (OSC) of mouse MGs (mMGs) and investigated the effects of melanocortins on exocrine secretion. Tissue viability, lipid production and morphological changes were analyzed during a 21-day cultivation period. Subsequently, the effects on lipid production and gene expression were examined after stimulation with a melanocortin receptor (MCR) agonist, α-melanocyte-stimulating hormone (α-MSH), and/or an MCR antagonist, JNJ-10229570. The cultivation of mMGs OSCs was possible without impairment for at least seven days. Stimulation with the MCR agonists induced lipid production in a dose-dependent manner, whereas this effect was tapered with the simultaneous incubation of the MCR antagonist. The new 3D OSC model is a promising approach to study the (patho-) physiological properties of MG/MGD while reducing animal studies. Therefore, it may accelerate the search for new treatments for MGD/DED and lead to new insights, such as that melanocortins likely stimulate meibum production.
Collapse
Affiliation(s)
- Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (I.Z.); (F.P.); Tel.: +49-9131-85-26734 (I.Z.); +49-9131-85-22865 (F.P.)
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Vera Rötzer
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Jens Waschke
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Yuqiuhe Liu
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Valerian L. Altersberger
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Anatomy, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (I.Z.); (F.P.); Tel.: +49-9131-85-26734 (I.Z.); +49-9131-85-22865 (F.P.)
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Drake L, Reyes-Hadsall S, Barbieri JS, Mostaghimi A. New Developments in Topical Acne Therapy. Am J Clin Dermatol 2022; 23:125-136. [PMID: 35041198 DOI: 10.1007/s40257-021-00666-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Acne vulgaris is a common chronic inflammatory disease with a multifactorial pathogenesis. Although myriad acne treatments are available, current options may not be sufficient because of a lack of efficacy, limited tolerability, or burden of cost to patients. In this review, we highlight recently approved topical acne treatments, as well as those currently in clinical trials. Novel formulations of tretinoin, tazarotene, and minocycline provide modifications of and improvements to existing products. Trifarotene, a novel fourth-generation retinoid, has demonstrated improved tolerability compared with existing topical retinoids. Clascoterone is a novel first-in-class antiandrogen that topically addresses the hormonal etiology of acne. The late-phase clinical trials pipeline consists of agents with bactericidal and anti-sebum mechanisms. Although it is evident that acne treatments continue to evolve, it is important to recognize the need for further comparative studies among new and existing agents to define optimal treatment algorithms that address not only safety and efficacy but also cost-effective care.
Collapse
Affiliation(s)
- Lara Drake
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Sophia Reyes-Hadsall
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - John S Barbieri
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Arash Mostaghimi
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Shintani A, Sakata-Haga H, Moriguchi K, Tomosugi M, Sakai D, Tsukada T, Taniguchi M, Asano M, Shimada H, Otani H, Shoji H, Hatta J, Mochizuki T, Hatta T. MC5R Contributes to Sensitivity to UVB Waves and Barrier Function in Mouse Epidermis. JID INNOVATIONS 2021; 1:100024. [PMID: 34909724 PMCID: PMC8659802 DOI: 10.1016/j.xjidi.2021.100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
MC5R is known for its role in the exocrine function of sebaceous glands, but other functions in the epidermis remain unclear. This study focused on the relationship between MC5R and homeostasis in the epidermis and examined the role of MC5R in mice whose skin was irradiated with UVB waves. UVB irradiation-induced skin ulcers and severe inflammation at lower doses in homozygotes of MC5R-deficient (i.e., MC5R -/- ) mice (150 mJ/cm2) than the doses in wild-type mice (500 mJ/cm2). Transepidermal water loss was increased (approximately 10-fold) in adult MC5R -/- mice compared with that in wild-type mice. In neonates, a dye exclusion assay showed no remarkable difference between MC5R -/- and wild-type mice. After UVB irradiation, compared with wild-type mice, MC5R -/- mice showed increased inflammatory cell infiltration in the dermis of the ulcerative region, significantly increased thickness of the epidermis in the nonulcerative region, significantly more prickle cells in the nonulcerative region, and increased serum IL-6 levels but decreased IL-10 levels. Transmission electron microscopy revealed fewer lamellar granules, less lipid secretion, and an expansion of the trans-Golgi network in the epidermis in MC5R -/- mice. This study elucidated the increased sensitivity to UVB irradiation and decreased barrier function in MC5R -/- mice.
Collapse
Affiliation(s)
- Akari Shintani
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Keiichi Moriguchi
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Mitsuhiro Tomosugi
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Uchinada, Japan
| | - Tsuyoshi Tsukada
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Hiroki Shimada
- Department of Medical Science, School of Nursing, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Uchinada, Japan
| | - Junko Hatta
- Department of Dermatology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Takashi Mochizuki
- Department of Dermatology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Toshihisa Hatta
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
8
|
Örenay ÖM, Sarıfakıoğlu E, Gülekon A. Evaluation of perilipin 2 and melanocortin 5 receptor serum levels with sebogenesis in acne vulgaris patients. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2021. [DOI: 10.15570/actaapa.2021.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med 2020; 27:60-74. [PMID: 32981840 DOI: 10.1016/j.molmed.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Human skin responds to numerous neurohormones, neuropeptides, and neurotransmitters that reach it via the vasculature or skin nerves, and/or are generated intracutaneously, thus acting in a para- and autocrine manner. This review focuses on how neurohormones impact on human skin physiology and pathology. We highlight basic concepts, major open questions, and translational research perspectives in cutaneous neuroendocrinology and argue that greater emphasis on neuroendocrine human skin research will foster the development of novel dermatological therapies. Furthermore, human skin and its appendages can be used as highly accessible and clinically relevant model systems for probing nonclassical, ancestral neurohormone functions. This calls for close interdisciplinary collaboration between dermatologists, skin biologists, neuroendocrinologists, and neuropharmacologists.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Monasterium Laboratory, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Xu Y, Guan X, Zhou R, Gong R. Melanocortin 5 receptor signaling pathway in health and disease. Cell Mol Life Sci 2020; 77:3831-3840. [PMID: 32248247 DOI: 10.1007/s00018-020-03511-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Melanocortin hormone system plays a key role in maintaining the homeostasis of our body via their neuro-immune-endocrine activities and regulates a diverse array of physiological functions, including melanogenesis, inflammation, immunomodulation, adrenocortical steroidogenesis, hemodynamics, natriuresis, energy homeostasis, sexual function, and exocrine secretion. The pathobiologic actions of all melanocortins are conveyed by melanocortin receptors. As the last melanocortin receptor to be cloned and characterized, melanocortin receptor 5 (MC5R) is widely expressed in both central nervous system and a number of peripheral organ systems in man. However, the exact effect of the MC5R mediated melanocortinergic signaling remains largely uncertain. Owing to the recent advances in developing highly selective peptidomimetic agonists and antagonists of MC5R and also to studies in MC5R knockout animals, our understanding of MC5R pathobiology has been greatly expanded and strengthened. Evidence suggests that MC5R plays a key role in governing immune reaction and inflammatory response, and is pivotal for the regulation of sexual behavior, thermoregulation, and exocrine secretion, like sebogenesis, lacrimal secretion and release of sex pheromones. As such, recent translational efforts have focused on developing novel sebum-suppressive therapies for seborrhoea and acne vulgaris based on antagonizing MC5R. Conversely, selective MC5R agonists have demonstrated promising beneficial effects in immune-mediated diseases, metabolic endocrinopathies and other disease conditions, such as glomerular diseases and dry eyes, skin and mouth. Thus, MC5R-mediated signaling is essential for health. Therapeutic targeting of MC5R represents a promising and pragmatic therapeutic strategy for diverse diseases. This review article delineates the biophysiology of MC5R-mediated biophysiology of the melanocortin hormone system, discusses the existing data on MC5R-targeted therapy in experimental disease models, and envisages the translational potential for treating human diseases.
Collapse
Affiliation(s)
- Yahong Xu
- Division of Kidney Disease and Hypertension, Department of Medicine, Brown University School of Medicine, Providence, RI, USA.,Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuejing Guan
- Division of Nephrology, Department of Medicine, The University of Toledo College of Medicine, Toledo, OH, USA
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Department of Medicine, Brown University School of Medicine, Providence, RI, USA. .,Division of Nephrology, Department of Medicine, The University of Toledo College of Medicine, Toledo, OH, USA.
| |
Collapse
|
11
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
12
|
Cong TX, Hao D, Wen X, Li XH, He G, Jiang X. From pathogenesis of acne vulgaris to anti-acne agents. Arch Dermatol Res 2019; 311:337-349. [PMID: 30859308 DOI: 10.1007/s00403-019-01908-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 02/05/2023]
Abstract
Acne vulgaris is a cutaneous chronic inflammatory disorder with complex pathogenesis. Four factors play vital roles in acne pathophysiology: hyperseborrhea and dysseborrhea, altered keratinization of the pilosebaceous duct, Cutibacterium acnes (C. acnes) and inflammation. The main hormones responsible for the development of acne vulgaris include androgens, insulin and insulin-like growth factor-1. Other factors involved in this process are corticotropin-releasing hormone, α-melanocyte-stimulating hormone and substance P. Wnt/β-catenin signaling pathway, phosphoinositide 3-kinase (PI3K)/Akt pathway, mitogen-activated protein kinase pathway, adenosine 5'-monophosphate-activated protein kinase pathway and nuclear factor kappa B pathway participate in the modulation of sebocyte, keratinocyte and inflammatory cell (e.g. lymphocytes, monocytes, macrophages, neutrophils) activity. Among all the triggers and pathways mentioned above, IGF-1-induced PI3K/Akt/Forkhead box protein O1/mammalian target of rapamycin (mTOR) C1 pathway is the most important signaling responsible for acne pathogenesis. Commonly used anti-acne agents include retinoids, benzoyl peroxide, antibiotics and hormonal agents (e.g. spironolactone, combination oral contraceptive and flutamide). New approaches including peroxisome proliferator-activated receptor γ modifier, melanocortin receptor antagonists, epigallocatechin-3-gallate, metformin, olumacostat glasaretil, stearoyl-CoA desaturase inhibitor omiganan pentahydrochloride, KDPT, afamelanotide, apremilast and biologics have been developed as promising treatments for acne vulgaris. Although these anti-acne agents have various pharmacological effects against the diverse pathogenesis of acne, all of them have a synergistic mode of action, the attenuation of Akt/mTORC1 signaling and enhancement of p53 signal transduction. In addition to drug therapy, diet with no hyperglycemic carbohydrates, no milk and dairy products is also beneficial for treatment of acne.
Collapse
Affiliation(s)
- Tian-Xin Cong
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiao-Hua Li
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Valente Duarte De Sousa IC. New and emerging drugs for the treatment of acne vulgaris in adolescents. Expert Opin Pharmacother 2019; 20:1009-1024. [DOI: 10.1080/14656566.2019.1584182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Abstract
As we gain a greater understanding of acne pathogenesis, both new agents as well as new uses for established drugs are being considered for the treatment of acne vulgaris. Multiple clinical trials assessing new formulations or combinations of established acne treatments have been conducted, and novel uses of antimicrobials such as modified diallyl disulfide oxide and nitric oxide are being assessed in clinical trials. There are also a multitude of new therapies currently being studied that target the inflammatory cascade of acne pathogenesis, including sebosuppressive and anti-inflammatory phytochemicals, and small molecule inhibitors targeting sebaceous glands and enzymes, among others. Laser and light therapy is also being modified for the treatment of acne through combination methods with metal nanoshells and vacuum assistance. Probiotics have gained popularity in medicine as greater knowledge of the microbiome and its effects on multiple organ systems is being elucidated. Studies describing the positive effects of certain ammonia-oxidizing bacterial strains in the regulation of the skin's inflammatory response are ongoing. Therapies for acne are constantly evolving and current gold-standard acne therapy may be supplemented with novel treatment modalities in the near future.
Collapse
Affiliation(s)
- Megha K Trivedi
- School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Suzana S Bosanac
- School of Medicine, University of California-Davis, Sacramento, CA, USA
| | - Raja K Sivamani
- Department of Dermatology, University of California, Davis, 3301 C Street, Suite 1400, Sacramento, CA, 95816, USA
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Larissa N Larsen
- Department of Dermatology, University of California, Davis, 3301 C Street, Suite 1400, Sacramento, CA, 95816, USA.
| |
Collapse
|
15
|
Gonçalves JPL, Palmer D, Meldal M. MC4R Agonists: Structural Overview on Antiobesity Therapeutics. Trends Pharmacol Sci 2018; 39:402-423. [PMID: 29478721 DOI: 10.1016/j.tips.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
The melanocortin-4 receptor (MC4R) regulates adipose tissue formation and energy homeostasis, and is believed to be a monogenic target for novel antiobesity therapeutics. Several research efforts targeting this receptor have identified potent and selective agonists. While viable agonists have been characterized in vitro, undesirable side effects frequently appeared during clinical trials. The most promising candidates have diverse structures, including linear peptides, cyclic peptides, and small molecules. Herein, we present a compilation of potent MC4R agonists and discuss the pivotal structural differences within those molecules that resulted in good selectivity for MC4R over other melanocortins. We provide insight on recent progress in the field and reflect on directions for development of new agonists.
Collapse
Affiliation(s)
- Juliana Pereira Lopes Gonçalves
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| | - Daniel Palmer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| |
Collapse
|
16
|
Zouboulis CC, Dessinioti C, Tsatsou F, Gollnick HPM. Anti-acne drugs in phase 1 and 2 clinical trials. Expert Opin Investig Drugs 2017. [PMID: 28627277 DOI: 10.1080/13543784.2017.1337745] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Despite the impressive increase of knowledge on acne etiology accumulated during the last 20 years, few efforts have been overtaken to introduce new therapeutic regiments targeting the ideal treatment of acne. The increasing emergence of microbial resistance associated with antibiotics, teratogenicity, particularly associated with systemic isotretinoin, and the need for an adverse drug profile, which can be tolerated by the patient, make the need of new pathogenesis relevant anti-acne agents an emerging issue. Areas covered: A search for phase 1 and 2 acne treatment trials in the US National Institutes of Health database of clinical trials and the European Medicines Agency database with the key words 'acne' and 'treatment' was carried out, on 6 January 2017. Expert opinion: The detected trials mostly investigate topical agents that may act via sebosuppressive effects, antimicrobial properties or anti-inflammatory actions. The compounds under investigation include olumacostat glasaretil, cortexolone 17α-propionate, stearoyl-CoA desaturase 1 inhibitors, agents affecting the melanocortin system, omiganan, and minocycline. Systemic studied anti-acne drugs include finasteride, biologics, low dose anti-inflammatory antibiotics, and leukotriene B4 inhibitors.
Collapse
Affiliation(s)
- Christos C Zouboulis
- a Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center , Theodore Fontane Medical University of Brandenburg , Dessau , Germany
| | - Clio Dessinioti
- b Department of Dermatology , Andreas Sygros Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Fragkiski Tsatsou
- a Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center , Theodore Fontane Medical University of Brandenburg , Dessau , Germany
| | - Harald P M Gollnick
- c Department of Venerology and Dermatology , Otto von Guericke University Magdeburg , Magdeburg , Germany
| |
Collapse
|
17
|
Yang Y, Harmon CM. Molecular signatures of human melanocortin receptors for ligand binding and signaling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2436-2447. [PMID: 28478228 DOI: 10.1016/j.bbadis.2017.04.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/10/2017] [Accepted: 04/29/2017] [Indexed: 12/29/2022]
Abstract
Human melanocortin receptors (hMCRs) belong to the seven-transmembrane (TM) domain proteins. There are five hMCR subtypes and each of these receptor subtypes has different patterns of tissue expression and physiological function. The endogenous agonists for hMCRs are α-, β-, and γ-MSH and ACTH and endogenous antagonists are Agouti and AGRP which are the only known naturally occurring antagonists for the receptors. These peptides have their own profiles regarding the relative potency for specific hMCR subtype. Extensive studies have been performed to examine the molecular basis of the hMCRs for different ligand binding affinity and potency. Studies indicate that natural ligand α-MSH utilizes conserved amino acid residues for MCR specific binding (orthosteric binding) while synthetic ligands utilize non-conserved amino acid residues for receptor subtype specific binding (allosteric binding). ACTH is the only endogenous agonist for hMC2R and more amino acid residues at hMC2R are required for ACTH binding and signaling. HMCR computer modeling provides the detailed information of ligand and MCR interaction. This review provides the latest understanding of the molecular basis of the hMCRs for ligand binding and signaling. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, State University of New York at Buffalo, Buffalo, NY 14203, United States.
| | - Carroll M Harmon
- Department of Surgery, State University of New York at Buffalo, Buffalo, NY 14203, United States
| |
Collapse
|
18
|
Abstract
Acne vulgaris is a chronic inflammatory disease - rather than a natural part of the life cycle as colloquially viewed - of the pilosebaceous unit (comprising the hair follicle, hair shaft and sebaceous gland) and is among the most common dermatological conditions worldwide. Some of the key mechanisms involved in the development of acne include disturbed sebaceous gland activity associated with hyperseborrhoea (that is, increased sebum production) and alterations in sebum fatty acid composition, dysregulation of the hormone microenvironment, interaction with neuropeptides, follicular hyperkeratinization, induction of inflammation and dysfunction of the innate and adaptive immunity. Grading of acne involves lesion counting and photographic methods. However, there is a lack of consensus on the exact grading criteria, which hampers the conduction and comparison of randomized controlled clinical trials evaluating treatments. Prevention of acne relies on the successful management of modifiable risk factors, such as underlying systemic diseases and lifestyle factors. Several treatments are available, but guidelines suffer from a lack of data to make evidence-based recommendations. In addition, the complex combination treatment regimens required to target different aspects of acne pathophysiology lead to poor adherence, which undermines treatment success. Acne commonly causes scarring and reduces the quality of life of patients. New treatment options with a shift towards targeting the early processes involved in acne development instead of suppressing the effects of end products will enhance our ability to improve the outcomes for patients with acne.
Collapse
|
19
|
Li WH, Zhang L, Lyte P, Rodriguez K, Cavender D, Southall MD. p38 MAP Kinase Inhibition Reduces Propionibacterium acnes-Induced Inflammation in Vitro. Dermatol Ther (Heidelb) 2015; 5:53-66. [PMID: 25749612 PMCID: PMC4374066 DOI: 10.1007/s13555-015-0072-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 12/16/2022] Open
Abstract
Introduction Propionibacterium acnes, a ubiquitous skin bacterium, stimulates keratinocytes to produce a number of proinflammatory cytokines and may contribute to inflammatory acne. The aim of the study was to investigate whether P. acnes-induced proinflammatory cytokine release is mediated by P. acnes-induced activation of p38 mitogen-activated protein kinase (p38 MAPK or p38) in human keratinocytes. Methods Immunohistochemistry was used to evaluate p38 phosphorylation in human skin samples with or without acne. Primary human keratinocytes and epidermal skin equivalents were exposed to viable P. acnes. Phosphorylation of MAPKs without or with p38 inhibitors was examined by Western blot and cytokine secretion was detected by Enzyme-Linked Immunosorbent Assay (ELISA). Results Increased levels of phospho-p38 were observed in human acne lesions, predominantly in follicular and perifollicular keratinocytes. Exposure of cultured human keratinocytes to viable P. acnes resulted in phosphorylation of multiple members of the MAPK family, including rapid and transient activation of p38 and extracellular signal-related kinase (ERK1/2) and relatively slow but sustained activation of c-Jun N-terminal kinases (JNK1/2). Viable P. acnes induced the secretion of interleukin-1α (IL-1α), tumor necrosis factor-α (TNF-α), and IL-8 from human keratinocytes. The phosphorylation of p38 (phospho-p38) and the secretion of cytokines induced by P. acnes in cultured keratinocytes were inhibited by SB203580, a p38α/β inhibitor. Furthermore, SCIO-469, a selective inhibitor of p38α, showed similar effects in cultured keratinocytes. Topical treatment of SCIO-469 inhibited the P. acnes-induced phospho-p38 and cytokine secretion in human epidermal equivalents. Conclusion The data demonstrate that P. acnes induces p38-dependent inflammatory responses in keratinocytes, and suggest that p38 may play an important role in the pathogenesis of inflammatory acne. Funding Johnson & Johnson. Electronic supplementary material The online version of this article (doi:10.1007/s13555-015-0072-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Hwa Li
- Department of Skin Biology and Pharmacology, The Johnson & Johnson Skin Research Center, Johnson & Johnson Consumer and Personal Products Worldwide, Division of Johnson and Johnson Consumer Companies, Inc., 199 Grandview Road, Skillman, NJ, 08558, USA,
| | | | | | | | | | | |
Collapse
|
20
|
Inoue T, Miki Y, Kakuo S, Hachiya A, Kitahara T, Aiba S, Zouboulis CC, Sasano H. Expression of steroidogenic enzymes in human sebaceous glands. J Endocrinol 2014; 222:301-12. [PMID: 24938708 DOI: 10.1530/joe-14-0323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Androgens are well known to influence sebum synthesis and secretion. Various factors related to androgen biosynthesis are expressed in human sebaceous glands. In this study, immunohistochemical analysis of human skin specimens from 43 subjects indicated that various androgen-producing and -metabolizing enzymes were functionally localized to sebocytes accumulating lipid droplets and that the exclusive expression of 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2 (HSD17B2)) in sebaceous glands was negatively correlated with that of peroxisome proliferator-activated receptor gamma (PPARγ (PPARG)), which also significantly changed in an age-dependent manner. We also demonstrated that the changes of 17β-HSD2 expression in human immortalized sebocytes (SZ95) influenced the expressions of sebogenesis-related factors. In addition, the overexpression of 17β-HSD2 in SZ95 significantly increased the androstenedione production and markedly decreased the amounts of testosterone and dihydrotestosterone when DHEA was added externally. On the other hand, the phosphorylation of mammalian target of rapamycin, which is well known to induce sebum secretion and the onset and/or aggravation of acne, was increased by the addition of testosterone in the presence of IGF1 in hamster sebocytes. These results all indicated that local androgen biosynthesis and metabolism in human sebaceous glands could play a pivotal role in sebum synthesis and secretion.
Collapse
Affiliation(s)
- Takayoshi Inoue
- Departments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, GermanyDepartments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Yasuhiro Miki
- Departments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Shingo Kakuo
- Departments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Akira Hachiya
- Departments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Takashi Kitahara
- Departments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Setsuya Aiba
- Departments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Christos C Zouboulis
- Departments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Hironobu Sasano
- Departments of PathologyDermatologyTohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, JapanBiological Science LaboratoriesKao Corporation, Haga, Tochigi, JapanDepartments of DermatologyVenereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| |
Collapse
|
21
|
Valente Duarte de Sousa IC. Novel pharmacological approaches for the treatment of acne vulgaris. Expert Opin Investig Drugs 2014; 23:1389-410. [PMID: 24890096 DOI: 10.1517/13543784.2014.923401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Acne vulgaris is the most common skin disease worldwide; yet, current treatment options, although effective, are associated with unwanted side effects, chronicity, relapses and recurrences. The adequate control of the four pathogenic mechanisms, involved in the appearance of acne lesions, is paramount to treatment success. AREAS COVERED The authors discuss and evaluate the pathogenic pathways related to the mechanisms of action of novel molecules, which are currently under investigation for the treatment of acne vulgaris. The manuscript is based on comprehensive searches made through PubMed, GoogleScholar and ClinicalTrial.gov, using different combination of key words, which include acne vulgaris, pathogenesis, treatment, sebogenesis and Propionibacterium acnes. EXPERT OPINION In the near future, more effective treatments with fewer side effects are expected. The use of topical antiandrogens, acetylcholine inhibitors and PPAR modulators seem to be promising options for controlling sebum production. Retinoic acid metabolism-blocking agents and IL-1α inhibitors have the potential to become legitimate alternative options to retinoid therapy in the management of infundibular dyskeratosis. Indeed, the authors believe that there will likely be a decline in the use of antibiotics for controlling P. acnes colonization and targeting the inflammation cascade.
Collapse
|
22
|
Pannkuk EL, McGuire LP, Gilmore DF, Savary BJ, Risch TS. Glycerophospholipid analysis of Eastern red bat (Lasiurus borealis) hair by electrospray ionization tandem mass spectrometry. J Chem Ecol 2014; 40:227-35. [PMID: 24532214 PMCID: PMC4167415 DOI: 10.1007/s10886-014-0388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Pilosebaceous units found in the mammalian integument are composed of a hair follicle, the proximal portion of the hair shaft, a sebaceous gland, and the erector pili muscle. Pilosebaceous units release protective oils, or sebum, by holocrine secretion onto skin and hair through rupturing of sebocytes. Sebum is composed largely of polar and neutral lipids including glycerolipids, free fatty acids, sterols, wax esters, sterol esters, and squalene. In addition to these lipid classes, there is a small proportion of ionic/anionic glycerophospholipids (GPs). Composition of GPs on hair is rarely addressed despite their broad biological activities as signaling molecules and membrane stability. Furthermore, knowledge on GP composition in bats is lacking. Bat GP composition is important to document due to GP roles ranging from decreasing drag during migration to interaction with the integumentary microbiome. In this study, we analyzed GP molecular composition with liquid chromatography electrospray ionization tandem mass spectrometry and compared GP content to previous literature. A total of 152 GPs were detected. Broad GP classes identified include lysophosphatidylcholine, phosphatidylcholine (PC), lysophosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with PC being the most abundant class. The acyl components were consistent with fatty acid methyl esters and triacylglyceride moieties found in Eastern red bat sebum. Glycerophospholipid proportions of the hair surface were different from a previous study on bat lung surfactants. This study determined the broad class and molecular species of bat sebum GPs that may be used in future ecological studies in vespertilionid bats.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Graduate Program of Environmental Science, Arkansas State University, P.O. Box 847, State University, Jonesboro, AR, 72467, USA,
| | | | | | | | | |
Collapse
|
23
|
Hinde E, Haslam IS, Schneider MR, Langan EA, Kloepper JE, Schramm C, Zouboulis CC, Paus R. A practical guide for the study of human and murine sebaceous glandsin situ. Exp Dermatol 2013; 22:631-7. [DOI: 10.1111/exd.12207] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Eleanor Hinde
- Institute of Inflammation and Repair; University of Manchester; Manchester; UK
| | - Iain S. Haslam
- Institute of Inflammation and Repair; University of Manchester; Manchester; UK
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and Biotechnology; Gene Center; LMU Munich; Munich; Germany
| | | | | | | | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau; Germany
| | | |
Collapse
|
24
|
Miller CL. Evidence for phenotypic plasticity in response to photic cues and the connection with genes of risk in schizophrenia. Front Behav Neurosci 2013; 7:82. [PMID: 23847488 PMCID: PMC3705146 DOI: 10.3389/fnbeh.2013.00082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/20/2013] [Indexed: 01/28/2023] Open
Abstract
Numerous environmental factors have been identified as influential in the development of schizophrenia. Some are byproducts of modern life, yet others were present in our evolutionary past and persist to a lesser degree in the current era. The present study brings together published epidemiological data for schizophrenia and data on variables related to photic input for places of residence across geographical regions, using rainfall as an inverse, proxy measure for light levels. Data were gathered from the literature for two countries, the former Yugoslavia and Ireland, during a time in the early 20th century when mobility was relatively limited. The data for Yugoslavia showed a strong correlation between hospital census rates for schizophrenia (by place of birth) and annual rain (r = 0.96, p = 0.008). In Ireland, the hospital census rates and first admissions for schizophrenia (by place of permanent residence) showed a trend for correlation with annual rain, reaching significance for 1st admissions when the rainfall data was weighted by the underlying population distribution (r = 0.71, p = 0.047). In addition, across the years 1921-1945, birth-year variations in a spring quarter season-of-birth effect for schizophrenia in Ireland showed a trend for correlation with January-March rainfall (r = 0.80, p ≤ 0.10). The data are discussed in terms of the effect of photoperiod on the gestation and behavior of offspring in animals, and the premise is put forth that vestigial phenotypic plasticity for such photic cues still exists in humans. Moreover, genetic polymorphisms of risk identified for psychotic disorders include genes modulated by photoperiod and sunlight intensity. Such a relationship between phenotypic plasticity in response to a particular environmental regime and subsequent natural selection for fixed changes in the environmentally responsive genes, has been well studied in animals and should not be discounted when considering human disease.
Collapse
|
25
|
Bowe WP, Glick JB, Shalita AR. Solodyn and Updates on Topical and Oral Therapies for Acne. CURRENT DERMATOLOGY REPORTS 2012. [DOI: 10.1007/s13671-012-0014-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|