1
|
Affolter VK. Cytotoxic dermatitis: Review of the interface dermatitis pattern in veterinary skin diseases. Vet Pathol 2023; 60:770-782. [PMID: 37650259 DOI: 10.1177/03009858231195080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Interface dermatitis or lichenoid interface dermatitis refers to a cutaneous inflammatory pattern in which keratinocyte cell death is the essential feature. These terms have evolved from the originally described lichenoid tissue reaction. These lesions are the basis for an important group of skin diseases in animals and people where cytotoxic T-cell-mediated epidermal damage is a major pathomechanism. Yet, for largely historical reasons these commonly used morphological diagnostic terms do not reflect the essential nature of the lesion. An emphasis on subsidiary lesions, such as the presence of a lichenoid band, and definitions based on anatomical features, such as location at the dermo-epidermal location, may cause confusion and even misdiagnosis. This review covers historical aspects of the terminology, including the origin of terms such as "lichenoid." The types of cell death involved and the histopathologic lesions are described. Etiopathogenesis is discussed in terms of aberrations of immune/inflammatory mechanisms focusing on cutaneous lupus erythematosus, erythema multiforme, and Stevens-Johnson syndrome/toxic epidermal necrolysis. Mechanisms have most extensively been studied in humans and laboratory animals and the discussion is centered on these species. As interface dermatitis is firmly entrenched in dermatological parlance, rather than using "cytotoxic" as its substitute, the terminologies "interface cytotoxic dermatitis" and "panepidermal cytotoxic dermatitis" are recommended, based on location and extent of epithelium affected.
Collapse
|
2
|
Niebel D, de Vos L, Fetter T, Brägelmann C, Wenzel J. Cutaneous Lupus Erythematosus: An Update on Pathogenesis and Future Therapeutic Directions. Am J Clin Dermatol 2023; 24:521-540. [PMID: 37140884 PMCID: PMC10157137 DOI: 10.1007/s40257-023-00774-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 05/05/2023]
Abstract
Lupus erythematosus comprises a spectrum of autoimmune diseases that may affect various organs (systemic lupus erythematosus [SLE]) or the skin only (cutaneous lupus erythematosus [CLE]). Typical combinations of clinical, histological and serological findings define clinical subtypes of CLE, yet there is high interindividual variation. Skin lesions arise in the course of triggers such as ultraviolet (UV) light exposure, smoking or drugs; keratinocytes, cytotoxic T cells and plasmacytoid dendritic cells (pDCs) establish a self-perpetuating interplay between the innate and adaptive immune system that is pivotal for the pathogenesis of CLE. Therefore, treatment relies on avoidance of triggers and UV protection, topical therapies (glucocorticosteroids, calcineurin inhibitors) and rather unspecific immunosuppressive or immunomodulatory drugs. Yet, the advent of licensed targeted therapies for SLE might also open new perspectives in the management of CLE. The heterogeneity of CLE might be attributable to individual variables and we speculate that the prevailing inflammatory signature defined by either T cells, B cells, pDCs, a strong lesional type I interferon (IFN) response, or combinations of the above might be suitable to predict therapeutic response to targeted treatment. Therefore, pretherapeutic histological assessment of the inflammatory infiltrate could stratify patients with refractory CLE for T-cell-directed therapies (e.g. dapirolizumab pegol), B-cell-directed therapies (e.g. belimumab), pDC-directed therapies (e.g. litifilimab) or IFN-directed therapies (e.g. anifrolumab). Moreover, Janus kinase (JAK) and spleen tyrosine kinase (SYK) inhibitors might broaden the therapeutic armamentarium in the near future. A close interdisciplinary exchange with rheumatologists and nephrologists is mandatory for optimal treatment of lupus patients to define the best therapeutic strategy.
Collapse
Affiliation(s)
- Dennis Niebel
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Luka de Vos
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany
| | - Tanja Fetter
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany
| | | | - Jörg Wenzel
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Fenton KA, Pedersen HL. Advanced methods and novel biomarkers in autoimmune diseases ‑ a review of the recent years progress in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1183535. [PMID: 37425332 PMCID: PMC10326284 DOI: 10.3389/fmed.2023.1183535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
There are several autoimmune and rheumatic diseases affecting different organs of the human body. Multiple sclerosis (MS) mainly affects brain, rheumatoid arthritis (RA) mainly affects joints, Type 1 diabetes (T1D) mainly affects pancreas, Sjogren's syndrome (SS) mainly affects salivary glands, while systemic lupus erythematosus (SLE) affects almost every organ of the body. Autoimmune diseases are characterized by production of autoantibodies, activation of immune cells, increased expression of pro-inflammatory cytokines, and activation of type I interferons. Despite improvements in treatments and diagnostic tools, the time it takes for the patients to be diagnosed is too long, and the main treatment for these diseases is still non-specific anti-inflammatory drugs. Thus, there is an urgent need for better biomarkers, as well as tailored, personalized treatment. This review focus on SLE and the organs affected in this disease. We have used the results from various rheumatic and autoimmune diseases and the organs involved with an aim to identify advanced methods and possible biomarkers to be utilized in the diagnosis of SLE, disease monitoring, and response to treatment.
Collapse
Affiliation(s)
- Kristin Andreassen Fenton
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
4
|
Liposomes Bearing Non-Bilayer Phospholipid Arrangements Induce Specific IgG Anti-Lipid Antibodies by Activating NK1.1+, CD4+ T Cells in Mice. MEMBRANES 2022; 12:membranes12070643. [PMID: 35877846 PMCID: PMC9319584 DOI: 10.3390/membranes12070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Liposomes are artificial models of cellular membranes that are used as delivery systems for genes, drugs and protein antigens. We have previously used them to study the antigenic properties of their phospholipids. Here, we used them to induce the production of IgG anti-non-bilayer phospholipid arrangements (NPAs) antibodies in mice; these antibodies cause cell lysis and trigger a lupus-like disease in mice. We studied the mechanisms that lead to the production of these antibodies, and provide evidence that NK1.1+, CD4+ T cells respond to NPA-bearing liposomes and deliver the help required for specific B cell activation and antibody class-switching to IgG. We found increased numbers of IL-4-producing NK1.1+, CD4+ T cells in the secondary lymphoid organs of mice administered with NPAs, and these cells also expressed CD40L, which is required for B cell activation. Additionally, we isolated and purified NK1.1+, CD4+ T cells from spleens and determined that they over-expressed 40 genes, which are key players in inflammatory processes and B cell stimulation and have TRAF6 and UNC39B1 as key nodes in their network. These results show that liposomes are membrane models that can be used to analyze the immunogenicity of lipids.
Collapse
|
5
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Thomason JL, Obih UM, Koelle DM, Lood C, Hughes AG. An interferon-gamma release assay as a novel biomarker in systemic lupus erythematosus. Rheumatology (Oxford) 2021; 59:3479-3487. [PMID: 32375180 DOI: 10.1093/rheumatology/keaa161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/22/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE The mycobacterium tuberculosis (TB) IFN-γ release assay (TB-IGRA) assesses peripheral blood cell release of IFN-γ upon ex vivo exposure to mitogen (IGRA-MT), TB antigen or a negative/nil control (IGRA-NL); IGRA-NL is a measure of spontaneous IFN-γ release (SIR). Here, we investigate the diagnostic associations of elevated SIR and the potential use of IGRA-NL as a novel biomarker in SLE. METHODS We analysed diagnostic code frequencies among 11 823 individuals undergoing TB-IGRA testing between 2010 and 2015 in a large urban US health-care system. To study the relationship between IGRA-NL and SLE, we identified 99 individuals with SLE and TB-IGRA test results then assessed correlations between IGRA-NL, normalized IGRA-NL (the quotient of IGRA-NL/IGRA-MT), disease manifestations and disease activity. RESULTS We identified a discovery cohort of 108 individuals with elevated SIR (>5 S.d. above median) that was significantly enriched for a limited set of diagnoses, including SLE, TB infection, haemophagocytic lymphohistiocytosis and HIV infection. In SLE patients undergoing TB-IGRA testing, normalized IGRA-NL correlated better with disease activity than did anti-dsDNA or complement levels. This relationship appeared to reflect interactions between normalized IGRA-NL and the presence of acute skin disease, hypocomplementemia, fever and thrombocytopenia. CONCLUSION Elevated SIR appears to be associated with a limited number of disease processes, including SLE. The diagnostic utility of SIR remains to be determined. IFN-γ activation, as measured by the TB-IGRA test, may offer a readily available tool for assessing disease activity in patients with SLE.
Collapse
Affiliation(s)
- Jenna L Thomason
- Department of Medicine, Division of Rheumatology, University of Washington
| | - Uchechukwu M Obih
- Department of Medicine, Division of Rheumatology, University of Washington.,Department of Rheumatology, Swedish Medical Center
| | - David M Koelle
- Department of Medicine, Division of Infectious Diseases, University of Washington.,Department of Laboratory Medicine, University of Washington.,Department of Global Health, University of Washington.,Fred Hutchinson Cancer Research Center.,Benaroya Research Institute, Seattle, WA, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington
| | - And Grant Hughes
- Department of Medicine, Division of Rheumatology, University of Washington
| |
Collapse
|
7
|
Garelli CJ, Refat MA, Nanaware PP, Ramirez-Ortiz ZG, Rashighi M, Richmond JM. Current Insights in Cutaneous Lupus Erythematosus Immunopathogenesis. Front Immunol 2020; 11:1353. [PMID: 32714331 PMCID: PMC7343764 DOI: 10.3389/fimmu.2020.01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
Cutaneous Lupus Erythematosus (CLE) is a clinically diverse group of autoimmune skin diseases with shared histological features of interface dermatitis and autoantibodies deposited at the dermal-epidermal junction. Various genetic and environmental triggers of CLE promote infiltration of T cells, B cells, neutrophils, antigen presenting cells, and NK cells into lesional skin. In this mini-review, we will discuss the clinical features of CLE, insights into CLE immunopathogenesis, and novel treatment approaches.
Collapse
Affiliation(s)
- Colton J. Garelli
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Maggi Ahmed Refat
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zaida G. Ramirez-Ortiz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
8
|
Mathias LM, Harff M, Orth V, Hofmann SC. Invariant natural killer T cells are reduced in peripheral blood of bullous pemphigoid patients and accumulate in lesional skin. Arch Dermatol Res 2019; 312:747-751. [PMID: 31858232 DOI: 10.1007/s00403-019-02029-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
iNKT (invariant natural killer T) cells are unconventional immunoregulatory T cells which contribute to B cell maturation, antibody and cytokine production. iNKT cells are implicated in the control of autoimmune inflammation in different disorders. For bullous pemphigoid (BP), the most frequent bullous autoimmune dermatosis, the role of iNKT cells has not yet been studied. We, therefore, aimed at investigating the frequency of iNKT cells in peripheral blood and biopsies from lesional and non-lesional skin from patients with BP and controls. Circulating CD3+iTCR+ iNKT cells were assessed by flow cytometry in peripheral blood from 30 patients with BP and from 29 controls (19 patients with skin tumors and 10 healthy controls). In 34 lesional and 13 non-lesional skin biopsies from BP patients and 17 biopsies from control individuals the number of Vα24+Vβ11+ iNKT cells was investigated by immunofluorescence staining. BP patients showed a significantly lower frequency of circulating iNKT cells compared to the control group. Patients with severe disseminated blistering tended to display lower iNKT cell numbers than patients with moderate disease severity. In lesional skin of BP patients, an enrichment of iNKT cells was detected compared to skin biopsies from controls. Similarly to control biopsies, non-lesional biopsies of BP patients contained only few iNKT cells. In conclusion, the deficiency of circulating iNKT cells associated with enrichment at the site of cutaneous inflammation suggests that iNKT cells may play a pathophysiologically relevant role in BP.
Collapse
Affiliation(s)
- Linda M Mathias
- Department of Dermatology, Allergology and Dermatosurgery, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Miriam Harff
- Department of Dermatology, Allergology and Dermatosurgery, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Valerie Orth
- Department of Surgery, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Wuppertal, Germany
| | - Silke C Hofmann
- Department of Dermatology, Allergology and Dermatosurgery, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Heusnerstr. 40, 42283, Wuppertal, Germany.
| |
Collapse
|
9
|
Adverse Immunologically Mediated Oral Mucosal Reactions to Systemic Medication: Lichenoid Tissue Reaction/Interface Dermatitis-Stomatitis, Autoimmune Vesiculobullous Disease, and IgE-Dependent and Immune Complex Reactions. J Immunol Res 2018; 2018:7645465. [PMID: 29984259 PMCID: PMC6015680 DOI: 10.1155/2018/7645465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/29/2018] [Indexed: 11/18/2022] Open
Abstract
Drug-induced hypersensitivity immune reactions are exaggerated immunoinflammatory responses to allergenic components of the medications that occur in genetically susceptible subjects. The type of hypersensitivity immune response generated, whether antibody mediated or T cell mediated, or an immune complex reaction is determined by multiple factors, including the molecular characteristics of the allergen, the route of administration of the medication, the manner of presentation of the allergen by antigen-presenting cells to naïve T cells, the repertoire of the T cell receptors, and the cytokine profile within the microenvironment. This review deals with the clinical and histopathological aspects of adverse immunologically mediated oral mucosal reactions to systemic medication. We elaborate on diseases showing features of lichenoid tissue reaction/interface dermatitis-stomatitis, autoimmune vesiculobullous oral lesions, and immunoglobulin E- (IgE-) and immune complex-mediated oral reactions to drugs.
Collapse
|
10
|
Tordesillas L, Cubells-Baeza N, Gómez-Casado C, Berin C, Esteban V, Barcik W, O'Mahony L, Ramirez C, Pacios LF, Garrido-Arandia M, Díaz-Perales A. Mechanisms underlying induction of allergic sensitization by Pru p 3. Clin Exp Allergy 2017; 47:1398-1408. [PMID: 28618148 DOI: 10.1111/cea.12962] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Recently, the nature of the lipid-ligand of Pru p 3, one of the most common plant food allergens in southern Europe, has been identified as a derivative of the alkaloid camptothecin bound to phytosphingosine. However, the origin of its immunological activity is still unknown. OBJECTIVE We sought to evaluate the role of the Pru p 3 lipid-ligand in the immunogenic activity of Pru p 3. METHODS In vitro cultures of different cell types (monocyte-derived dendritic cells [moDCs], PBMCs [peripheral blood mononuclear cells] and epithelial and iNKT-hybridoma cell lines) have been used to determine the immunological capacity of the ligand, by measuring cell proliferation, maturation markers and cytokine production. To study the capacity of the lipid-ligand to promote sensitization to Pru p 3 in vivo, a mouse model of anaphylaxis to peach has been produced and changes in the humoral and basophil responses have been analysed. RESULTS The lipid-ligand of Pru p 3 induced maturation of moDCsc and proliferation of PBMCs. Its immunological activity resided in the phytosphingosine tail of the ligand. The adjuvant activity of the ligand was also confirmed in vivo, where the complex of Pru p 3-ligand induced higher levels of IgE than Pru p 3 alone. The immunological capacity of the Pru p 3 ligand was mediated by CD1d, as maturation of moDCs was inhibited by anti-CD1d antibodies and Pru p 3-ligand co-localized with CD1d on epithelial cells. Finally, Pru p 3-ligand presented by CD1d was able to interact with iNKTs. CONCLUSIONS AND CLINICAL RELEVANCE The Pru p 3 lipid-ligand could act as an adjuvant to promote sensitization to Pru p 3, through its recognition by CD1d receptors. This intrinsic adjuvant activity of the accompanying lipid cargo could be a general essential feature of the mechanism underlying the phenomenon of allergenicity.
Collapse
Affiliation(s)
- L Tordesillas
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N Cubells-Baeza
- Centre for Plant Genomics and Biotechnology (UPM-INIA), Pozuelo de Alarcon, Madrid, Spain
| | - C Gómez-Casado
- Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Spain
| | - C Berin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V Esteban
- Fundacion Jimenez Díaz, Madrid, Spain
| | - W Barcik
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - L O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - C Ramirez
- Centre for Plant Genomics and Biotechnology (UPM-INIA), Pozuelo de Alarcon, Madrid, Spain.,Department of Biotechnology and Plant Biology, ETSI Agronómica, Alimentaria y de Biosistemas, Technical University of Madrid, Madrid, Spain
| | - L F Pacios
- Centre for Plant Genomics and Biotechnology (UPM-INIA), Pozuelo de Alarcon, Madrid, Spain.,Department of Natural Systems and Resources, ETSI Montes, Technical University of Madrid, Madrid, Spain
| | - M Garrido-Arandia
- Centre for Plant Genomics and Biotechnology (UPM-INIA), Pozuelo de Alarcon, Madrid, Spain
| | - A Díaz-Perales
- Centre for Plant Genomics and Biotechnology (UPM-INIA), Pozuelo de Alarcon, Madrid, Spain.,Department of Biotechnology and Plant Biology, ETSI Agronómica, Alimentaria y de Biosistemas, Technical University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Saez de Guinoa J, Jimeno R, Farhadi N, Jervis PJ, Cox LR, Besra GS, Barral P. CD1d-mediated activation of group 3 innate lymphoid cells drives IL-22 production. EMBO Rep 2017; 18:39-47. [PMID: 27799287 PMCID: PMC5210076 DOI: 10.15252/embr.201642412] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/07/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous family of immune cells that play a critical role in a variety of immune processes including host defence against infection, wound healing and tissue repair. Whether these cells are involved in lipid-dependent immunity remains unexplored. Here we show that murine ILCs from a variety of tissues express the lipid-presenting molecule CD1d, with group 3 ILCs (ILC3s) showing the highest level of expression. Within the ILC3 family, natural cytotoxicity triggering receptor (NCR)-CCR6+ cells displayed the highest levels of CD1d. Expression of CD1d on ILCs is functionally relevant as ILC3s can acquire lipids in vitro and in vivo and load lipids on CD1d to mediate presentation to the T-cell receptor of invariant natural killer T (iNKT) cells. Conversely, engagement of CD1d in vitro and administration of lipid antigen in vivo induce ILC3 activation and production of IL-22. Taken together, our data expose a previously unappreciated role for ILCs in CD1d-mediated immunity, which can modulate tissue homeostasis and inflammatory responses.
Collapse
Affiliation(s)
| | - Rebeca Jimeno
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Nazanin Farhadi
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| |
Collapse
|
12
|
Smith E, Croca S, Waddington KE, Sofat R, Griffin M, Nicolaides A, Isenberg DA, Torra IP, Rahman A, Jury EC. Cross-talk between iNKT cells and monocytes triggers an atheroprotective immune response in SLE patients with asymptomatic plaque. Sci Immunol 2016; 1:1/6/eaah4081. [PMID: 28783690 DOI: 10.1126/sciimmunol.aah4081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/19/2016] [Indexed: 11/02/2022]
Abstract
Accelerated atherosclerosis is a complication of the autoimmune rheumatic disease systemic lupus erythematosus (SLE). We questioned the role played by invariant natural killer T (iNKT) cells in this process because they not only are defective in autoimmunity but also promote atherosclerosis in response to CD1d-mediated lipid antigen presentation. iNKT cells from SLE patients with asymptomatic plaque (SLE-P) had increased proliferation and interleukin-4 production compared with those from SLE patients with no plaque. The anti-inflammatory iNKT cell phenotype was associated with dyslipidemia and was driven by altered monocyte phospholipid expression and CD1d-mediated cross-talk between iNKT cells and monocytes but not B cells. Healthy iNKT cells differentiated in the presence of healthy monocytes and SLE-P serum polarized macrophages toward an anti-inflammatory M2 phenotype. Conversely, patients with clinical cardiovascular disease had unresponsive iNKT cells and increased proinflammatory monocytes. iNKT cell function could link immune responses, lipids, and cardiovascular disease in SLE patients and, together with serum lipid taxonomy, help predict preclinical atherosclerosis in SLE patients.
Collapse
Affiliation(s)
- Edward Smith
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Sara Croca
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Kirsty E Waddington
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.,Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | - Reecha Sofat
- Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | | | - Andrew Nicolaides
- Vascular Noninvasive Diagnostic Centre, London, U.K.,Department of Vascular Surgery, Imperial College, London, U.K.,Department of Vascular Surgery, Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - David A Isenberg
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Ines Pineda Torra
- Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | - Anisur Rahman
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.
| |
Collapse
|
13
|
Abstract
The onset of the AIDS pandemic in the early 1980s coincided with the convergence of technologies now collectively known as flow cytometry (FCM). Major advances in FCM led significantly toward our understanding of the pathogenicity of the disease, which in turn led to wider adoption of the technology, including using it effectively in a variety of diagnostics. CD4+ T lymphocyte population counts, along with human immunodeficiency virus (HIV) viral load, remain the gold standard in diagnosis and continue to play a major role in the monitoring of advanced retroviral therapies. Arguably, the spread of AIDS (acquired immunodeficiency syndrome), the HIV virus, and the toll of the virus on humanity have been considerably altered by the concurrent development of FCM, the details of which are presented herein.
Collapse
Affiliation(s)
- Ian C Clift
- Indiana University South Bend School of Applied Health Sciences, South Bend, IN
| |
Collapse
|
14
|
Abstract
The pathophysiology of cutaneous lupus erythematosus (CLE) encompasses the complex interactions between genetics, the environment, and cells and their products. Recent data have provided enhanced understanding of these interactions and the mechanism by which they cause disease. A number of candidate genes have been identified which increase the risk of developing CLE. Ultraviolet radiation, the predominant environmental exposure associated with CLE, appears to initiate CLE lesion formation by inducing apoptosis, precipitating autoantigen presentation, and promoting cellular production of specific cytokines. Autoantibodies are a well-known entity in CLE, but their exact role remains unclear. Finally, cells ranging from native skin cells to innate and adaptive immune cells produce cytokines and other molecules and play specific roles in lesion formation and perpetuation. Native skin cells implicated in CLE include keratinocytes and endothelial cells. Innate immune cells crucial to CLE pathophysiology include dendritic cells and neutrophils. The primary adaptive immune cells thought to be involved include Th1 cells, Th17 cells, cytotoxic T cells, and invariant natural killer T cells. Though the pathophysiology of CLE has yet to be fully characterized, current research provides direction for future research and therapies.
Collapse
Affiliation(s)
- Jordan C Achtman
- Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, 19104, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Victoria P Werth
- Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, 19104, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Okiyama N. [Mucocutaneous diseases and murine models with death of keratinocytes induced by lichenoid tissue reaction/interface dermatitis]. ACTA ACUST UNITED AC 2015; 38:1-7. [PMID: 25765683 DOI: 10.2177/jsci.38.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A set of histopathological elements with death of epidermal basal cell layer keratinocytes along with inflammatory cell infiltration distinguishes lichenoid tissue reaction (LTR)/interface dermatitis (IFD) from other inflammatory mucocutaneous diseases. The LTR/IFD can be seen in skin disorders like as lichen planus, acute graft-versus-host disease, lupus erythematosus, dermatomyositis, and toxic epidermal necrolysis/Stevesn-Johnson syndrome. Clinical and basic researches suggested that cytotoxic CD8 T cells producing interferon-γ and FasL are final effector cells to cause apoptosis of keratinocyte. Some murine models of LTR/IFD have been established, for example, LTR/IFD reactions of keratinocyte-specific ovalbumin (OVA)-transgenic mice after OVA-specific T-cell-receptor(+)CD8 T cells. By analysis of the murine model, a new class of immunosuppressant, a JAK inhibitor, has been suggested as a new candidate for treatment of LTR/IFD.
Collapse
Affiliation(s)
- Naoko Okiyama
- Department of Dermatology, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
16
|
Okiyama N, Fujimoto M. Clinical perspectives and murine models of lichenoid tissue reaction/interface dermatitis. J Dermatol Sci 2015; 78:167-72. [PMID: 25813248 DOI: 10.1016/j.jdermsci.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
A set of histopathological elements, that is death of epidermal basal cell layer keratinocytes and inflammatory cell infiltration, distinguishes lichenoid tissue reaction (LTR)/interface dermatitis (IFD) from other inflammatory mucocutaneous diseases with histological findings of superficial perivascular dermatitis. The LTR/IFD is observed in inflammatory mucocutaneous diseases such as lichen planus, Stevens-Johnson syndrome/toxic epidermal necrolysis, acute graft-versus-host disease, lupus erythematosus and dermatomyositis. Clinical and basic researches have suggested that keratinocytes are antigen-presenting cells and mediate LTR/IFD reaction via production of cytokines/chemokines and inhibitory molecules such as programmed cell death (PD)-L1, and that cytotoxic CD8(+) T cells producing cytotoxic granules, perforin, granzyme B and granulysin are final effector cells to cause keratinocyte death. Because interferon-γ and FasL, which are produced by not only CD8(+) but also CD4(+) T cells, are candidates of the pathogenic molecules in LTR/IFD, CD4(+) T cells may also play a role to develop LTR/IFD. On the other hand, CD4(+) Treg cells accelerate the remission of LTR/IFD. Some murine models of LTR/IFD have been established. For example, LTR/IFD reactions were induced in keratinocyte-specific membrane-binding ovalbumin-transgenic (mOVA Tg) mice by adoptive transfer of CD8(+) T cells with OVA-specific T-cell-receptor. It has also been shown that human CD8(+) T cells are pathogenic immune cells in human skin-xenografted mice. Various immunosuppressants are used to treat patients with mucocutaneous diseases with LTR/IFD. By analysis of the mOVA Tg mice, a JAK inhibitor was suggested to be a new candidate drug to inhibit not only pathogenic T cells but also keratinocyte death in LTR/IFD. More specific treatments for patients with LTR/IFD will be developed in future.
Collapse
Affiliation(s)
- Naoko Okiyama
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan.
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
17
|
Shen L, Zhang H, Caimol M, Benike CJ, Chakravarty EF, Strober S, Engleman EG. Invariant natural killer T cells in lupus patients promote IgG and IgG autoantibody production. Eur J Immunol 2014; 45:612-23. [PMID: 25352488 DOI: 10.1002/eji.201444760] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022]
Abstract
IgG autoantibodies, including antibodies to double-stranded DNA (dsDNA), are pathogenic in systemic lupus erythematosus (SLE), but the mechanisms controlling their production are not understood. To assess the role of invariant natural killer T (iNKT) cells in this process, we studied 44 lupus patients. We took advantage of the propensity of PBMCs from patients with active disease to spontaneously secrete IgG in vitro. Despite the rarity of iNKT cells in lupus blood (0.002-0.05% of CD3-positive T cells), antibody blockade of the conserved iNKT TCR or its ligand, CD1d, or selective depletion of iNKT cells, inhibited spontaneous secretion of total IgG and anti-dsDNA IgG by lupus PBMCs. Addition of anti-iNKT or anti-CD1d antibody to PBMC cultures also reduced the frequency of plasma cells, suggesting that lupus iNKT cells induce B-cell maturation. Like fresh iNKT cells, expanded iNKT-cell lines from lupus patients, but not healthy subjects, induced autologous B cells to secrete antibodies, including IgG anti-dsDNA. This activity was inhibited by anti-CD40L antibody, as well as anti-CD1d antibody, confirming a role for CD40L-CD40 and TCR-CD1d interactions in lupus iNKT-cell-mediated help. These results reveal a critical role for iNKT cells in B-cell maturation and autoantibody production in patients with lupus.
Collapse
Affiliation(s)
- Lei Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
OCH ameliorates bone marrow failure in mice via downregulation of T-bet expression. J Immunol Res 2014; 2014:928743. [PMID: 25254224 PMCID: PMC4164259 DOI: 10.1155/2014/928743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to evaluate the immune mechanism of OCH in the treatment of AA (also named bone marrow failure, BMF) induced in mice. OCH at a dose of 400 μg/kg was injected intraperitoneally (I.P.) prior to the induction of BMF. Our study showed that the incidence of BMF was 100% in BMF group and 13% in OCH treatment group. Significant higher level of IL-4 and lower level of IFN-γ were observed in OCH group than that in BMF group (P < 0.05) as well as untreated group over BMF (P < 0.05). However, there was no significant difference between OCH and untreated group. Compared with untreated, the expression level of T-bet in OCH and BMF was all significantly higher. However, T-bet expression level was lower in OCH than in BMF. In addition, OCH treatment increased NKT cell fractions of bone marrow and the colonies of CFU-GM. In conclusion, treatment of OCH prior to the induction of BMF could prevent the incidence of BMF possibly through downregulating T-bet expression leading to the transition of immune response from Th1 to Th2, suggesting OCH might be a new therapeutic approach in the treatment of BMF or AA.
Collapse
|
19
|
Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2014; 36:495-517. [PMID: 25102991 DOI: 10.1007/s00281-014-0440-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a remarkably complex and heterogeneous systemic autoimmune disease. Disease complexity within individuals and heterogeneity among individuals, even genetically identical individuals, is driven by stochastic execution of a complex inherited program. Genome-wide association studies (GWAS) have progressively improved understanding of which genes are most critical to the potential for SLE and provided illuminating insight about the immune mechanisms that are engaged in SLE. What initiates expression of the genetic program to cause SLE within an individual and how that program is initiated remains poorly understood. If we extrapolate from all of the different experimental mouse models for SLE, we can begin to appreciate why SLE is so heterogeneous and consequently why prediction of disease outcome is so difficult. In this review, we critically evaluate extrinsic versus intrinsic cellular functions in the clearance and elimination of cellular debris and how dysfunction in that system may promote autoimmunity to nuclear antigens. We also examine several mouse models genetically prone to SLE either because of natural inheritance or inheritance of induced mutations to illustrate how different immune mechanisms may initiate autoimmunity and affect disease pathogenesis. Finally, we describe the heterogeneity of disease manifestations in SLE and discuss the mechanisms of disease pathogenesis with emphasis on glomerulonephritis. Particular attention is given to discussion of how anti-DNA autoantibody initiates experimental lupus nephritis (LN) in mice.
Collapse
|