1
|
Hazra S, Kalyan Dinda S, Kumar Mondal N, Hossain SR, Datta P, Yasmin Mondal A, Malakar P, Manna D. Giant cells: multiple cells unite to survive. Front Cell Infect Microbiol 2023; 13:1220589. [PMID: 37790914 PMCID: PMC10543420 DOI: 10.3389/fcimb.2023.1220589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/26/2023] [Indexed: 10/05/2023] Open
Abstract
Multinucleated Giant Cells (MGCs) are specialized cells that develop from the fusion of multiple cells, and their presence is commonly observed in human cells during various infections. However, MGC formation is not restricted to infections alone but can also occur through different mechanisms, such as endoreplication and abortive cell cycle. These processes lead to the formation of polyploid cells, eventually resulting in the formation of MGCs. In Entamoeba, a protozoan parasite that causes amoebic dysentery and liver abscesses in humans, the formation of MGCs is a unique phenomenon and not been reported in any other protozoa. This organism is exposed to various hostile environmental conditions, including changes in temperature, pH, and nutrient availability, which can lead to stress and damage to its cells. The formation of MGCs in Entamoeba is thought to be a survival strategy to cope with these adverse conditions. This organism forms MGCs through cell aggregation and fusion in response to osmotic and heat stress. The MGCs in Entamoeba are thought to have increased resistance to various stresses and can survive longer than normal cells under adverse conditions. This increased survival could be due to the presence of multiple nuclei, which could provide redundancy in case of DNA damage or mutations. Additionally, MGCs may play a role in the virulence of Entamoeba as they are found in the inflammatory foci of amoebic liver abscesses and other infections caused by Entamoeba. The presence of MGCs in these infections suggests that they may contribute to the pathogenesis of the disease. Overall, this article offers valuable insights into the intriguing phenomenon of MGC formation in Entamoeba. By unraveling the mechanisms behind this process and examining its implications, researchers can gain a deeper understanding of the complex biology of Entamoeba and potentially identify new targets for therapeutic interventions. The study of MGCs in Entamoeba serves as a gateway to exploring the broader field of cell fusion in various organisms, providing a foundation for future investigations into related cellular processes and their significance in health and disease.
Collapse
Affiliation(s)
- Shreyasee Hazra
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Suman Kalyan Dinda
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Naba Kumar Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Sk Rajjack Hossain
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Pratyay Datta
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Afsana Yasmin Mondal
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Dipak Manna
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
2
|
Muto T, Imaizumi S, Kamoi K. Viral Conjunctivitis. Viruses 2023; 15:v15030676. [PMID: 36992385 PMCID: PMC10057170 DOI: 10.3390/v15030676] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Viruses account for 80% of all cases of acute conjunctivitis and adenovirus; enterovirus and herpes virus are the common causative agents. In general, viral conjunctivitis spreads easily. Therefore, to control the spread, it is crucial to quickly diagnose illnesses, strictly implement hand washing laws, and sanitize surfaces. Swelling of the lid margin and ciliary injection are subjective symptoms, and eye discharge is frequently serofibrinous. Preauricular lymph node swelling can occasionally occur. Approximately 80% of cases of viral conjunctivitis are caused by adenoviruses. Adenoviral conjunctivitis may become a big global concern and may cause a pandemic. Diagnosis of herpes simplex viral conjunctivitis is crucial for using corticosteroid eye solution as a treatment for adenovirus conjunctivitis. Although specific treatments are not always accessible, early diagnosis of viral conjunctivitis may help to alleviate short-term symptoms and avoid long-term consequences.
Collapse
Affiliation(s)
- Tetsuaya Muto
- Department of Ophthalmology, Dokkyo Medical University Saitama Medical Center, Koshigaya 343-8555, Japan
- Imaizumi Eye Hospital, Koriyama 963-8877, Japan
- Correspondence:
| | | | - Koju Kamoi
- Department of Ophthalmology and Visual Science, Tokyo Medical Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
3
|
Tang J, Frascaroli G, Zhou X, Knickmann J, Brune W. Cell Fusion and Syncytium Formation in Betaherpesvirus Infection. Viruses 2021; 13:v13101973. [PMID: 34696402 PMCID: PMC8537622 DOI: 10.3390/v13101973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell–cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell–cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell–cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell–cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.
Collapse
Affiliation(s)
- Jiajia Tang
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Center for Single-Cell Omics, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Xuan Zhou
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Jan Knickmann
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Correspondence:
| |
Collapse
|
4
|
Yamamoto T, Aoyama Y. Role of pro-inflammatory cytokines in the pathophysiology of herpes simplex virus superinfection in Darier's disease. J Dermatol 2021; 48:1607-1611. [PMID: 34355821 DOI: 10.1111/1346-8138.16097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
Darier's disease (DD) and Hailey-Hailey disease (HHD), belonging to a hereditary acantholytic dermatosis caused by mutations in ATP2A2 and ATP2C1, respectively, are easily affected by eczema herpeticum (EH) induced by mostly herpes simplex virus (HSV) superinfection. However, the mechanisms by which those patients with DD or HHD are susceptible to HSV are not well elucidated. Here, we experienced two cases with DD, including three episodes of the exacerbation of DD after the development of severe EH. We serially measured serum cytokines before and after the development of EH and DD in these patients. Furthermore, we analyzed the effect of pro-inflammatory cytokines on the mRNA expression of ATP2A2 and ATP2C1, and HSV growth. The timing of EH onset in these patients was coincident with the increase in serum interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels. Moreover, the exacerbation of DD occurred in the non-lesional skin of EH after EH remission (mean 24 days, ranging 15-30 days after EH onset). IL-6 and TNF-α enhanced HSV-1 growth, and ATP2A2 and ATP2C1 mRNA levels were downregulated by IL-6 stimulation in cultured differentiated keratinocytes. Increased pro-inflammatory cytokines IL-6 and TNF-α lead to development of severe EH lesions via accentuation of HSV growth. IL-6 acts as an exacerbating factor of DD and HHD by downregulating the expression of responsible genes.
Collapse
Affiliation(s)
- Takenobu Yamamoto
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan.,Department of Dermatology, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Yumi Aoyama
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
5
|
Bhutta MS, Sausen DG, Reed KM, Gallo ES, Hair PS, Lassiter BP, Krishna NK, Cunnion KM, Borenstein R. Peptide Inhibitor of Complement C1, RLS-0071, Reduces Zosteriform Spread of Herpes Simplex Virus Type 1 Skin Infection and Promotes Survival in Infected Mice. Viruses 2021; 13:v13081422. [PMID: 34452288 PMCID: PMC8402672 DOI: 10.3390/v13081422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen primarily transmitted through skin-to-skin contact, especially on and around mucosal surfaces where there is contact with contaminated saliva during periods of viral shedding. It is estimated that 90% of adults worldwide have HSV-1 antibodies. Cutaneous HSV-1 infections are characterized by a sensation of tingling or numbness at the initial infection site followed by an eruption of vesicles and then painful ulcers with crusting. These symptoms can take ten days to several weeks to heal, leading to significant morbidity. Histologically, infections cause ballooning degeneration of keratinocytes and formation of multinucleated giant cells, ultimately resulting in a localized immune response. Commonly prescribed treatments against HSV-1 infections are nucleoside analogs, such as acyclovir (ACV). However, the emergence of ACV-resistant HSV (ACVR-HSV) clinical isolates has created an urgent need for the development of compounds to control symptoms of cutaneous infections. RLS-0071, also known as peptide inhibitor of complement C1 (PIC1), is a 15-amino-acid anti-inflammatory peptide that inhibits classical complement pathway activation and modulates neutrophil activation. It has been previously shown to aid in the healing of chronic diabetic wounds by inhibiting the excessive activation of complement component C1 and infiltration of leukocytes. Here, we report that treatment of cutaneous infections of HSV-1 and ACVR-HSV-1 in BALB/cJ mice with RLS-0071 significantly reduced the rate of mortality, decreased zosteriform spread, and enhanced the healing of the infection-associated lesions compared to control-treated animals. Therefore, RLS-0071 may work synergistically with other antiviral drugs to aid in wound healing of HSV-1 cutaneous infection and may potentially aid in rapid wound healing of other pathology not limited to HSV-1.
Collapse
Affiliation(s)
- Maimoona S. Bhutta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
| | - Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
| | - Kirstin M. Reed
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
| | - Elisa S. Gallo
- Board-Certified Dermatologist and Independent Researcher, Norfolk, VA 23507, USA
| | - Pamela S. Hair
- ReAlta Life Sciences, Inc., Norfolk, VA 23502, USA; (P.S.H.); (B.P.L.); (N.K.K.)
| | - Brittany P. Lassiter
- ReAlta Life Sciences, Inc., Norfolk, VA 23502, USA; (P.S.H.); (B.P.L.); (N.K.K.)
| | - Neel K. Krishna
- ReAlta Life Sciences, Inc., Norfolk, VA 23502, USA; (P.S.H.); (B.P.L.); (N.K.K.)
| | - Kenji M. Cunnion
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
- ReAlta Life Sciences, Inc., Norfolk, VA 23502, USA; (P.S.H.); (B.P.L.); (N.K.K.)
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Children’s Specialty Group, 811 Redgate Avenue, Norfolk, VA 23507, USA
- Children’s Hospital of The King’s Daughters, Norfolk, VA 23507, USA
| | - Ronen Borenstein
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (M.S.B.); (D.G.S.); (K.M.R.); (K.M.C.)
- Correspondence:
| |
Collapse
|
6
|
Zhang F, Liu Y, You Q, Yang E, Liu B, Wang H, Xu S, Nawaz W, Chen D, Wu Z. NSC23766 and Ehop016 Suppress Herpes Simplex Virus-1 Replication by Inhibiting Rac1 Activity. Biol Pharm Bull 2021; 44:1263-1271. [PMID: 34162786 DOI: 10.1248/bpb.b21-00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) infection of the eyes leads to herpes simplex virus keratitis (HSK), the main cause of infectious blindness in the world. As the current therapeutics for HSV-1 infection are rather limited and prolonged use of acyclovir (ACV)/ganciclovir (GCV) and in immunocompromised patients lead to the rise of drug resistant mutants, it underlines the urgent need for new antiviral agents with distinct mechanisms. Our study attempted to establish ras-related C3 botulinum toxin substrate 1 (Rac1) as a new therapeutic target for HSV-1 infection by using Rac1-specific inhibitors to evaluate the in vitro inhibition of virus growth. Our results showed that increased Rac1 activity facilitated HSV-1 replication and inhibition of Rac1 activity by NSC23766 and Ehop016 significantly reduced HSV-1 replication. Thus, we identified NSC23766 and Ehop016 as possessing potent anti-HSV-1 activities by suppressing the Rac1 activity, suggesting that Rac1 is a potential target for treating HSV-1-related diseases.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Public Health Research, Medical School of Nanjing University.,Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University
| | - Ye Liu
- Center for Public Health Research, Medical School of Nanjing University.,Department of Ophthalmology, JinLing Hospital, Medical School of Nanjing University
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University
| | - Enhui Yang
- Nanjing Children's Hospital, Nanjing Medical University
| | - Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University
| | - Huanru Wang
- Center for Public Health Research, Medical School of Nanjing University
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University
| | - Waqas Nawaz
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University.,School of Life Sciences, Ningxia University
| |
Collapse
|
7
|
Yamamoto T, Aoyama Y. Detection of multinucleated giant cells in differentiated keratinocytes with herpes simplex virus and varicella zoster virus infections by modified Tzanck smear method. J Dermatol 2020; 48:21-27. [PMID: 32940400 DOI: 10.1111/1346-8138.15619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus (HSV) and varicella zoster virus (VZV) infections induce the formation of intraepidermal vesicles containing acantholytic cells and multinucleated giant cells in the skin. The Tzanck smear is most commonly used to diagnose cutaneous herpetic infections, but it leads to many false-positive and -negative results. This study aimed at establishing a method detecting much larger multinucleated giant cells using the Tzanck smear because these cells characterize the viral cytopathic effect in skin infections. Morphological changes were analyzed among several layers of keratinocytes with HSV- or VZV-related cutaneous lesions, clinically and in vitro. We compared the sensitivity of the Tzanck smear to detect large acantholytic cells using both the removed roof tissue part (our approach) and the floor of the lesion (conventional approach) of a fresh vesicle. Large acantholytic cells were detected 2.0-times more frequently in the removed roof tissue part of the vesicle than in the floor of the lesion. Round cells were much larger in the removed roof tissue part of the vesicle corresponding to the granular or prickle layer of the epidermis than in its floor of the lesion corresponding to the basal or prickle layer with the Tzanck smear. Differentiated cultured keratinocytes formed multinucleated giant cells by cell-to-cell fusion with resolution of cell membrane with VZV infection. Differentiated keratinocytes promote multinucleated giant cell formation by cell-to-cell fusion with HSV-1 or VZV infection. To increase the sensitivity, the Tzanck smear should be prepared from the removed roof tissue part of a fresh vesicle to detect multinucleated giant cells in herpetic infections.
Collapse
Affiliation(s)
- Takenobu Yamamoto
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan.,Department of Dermatology, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Yumi Aoyama
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|