1
|
Yang Y, Wu Y, Xiang L, Picardo M, Zhang C. Deciphering the role of skin aging in pigmentary disorders. Free Radic Biol Med 2024; 227:638-655. [PMID: 39674424 DOI: 10.1016/j.freeradbiomed.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Skin aging is a complex biological process involving intrinsic and extrinsic factors. Skin aging contains alterations at the tissue, cellular, and molecular levels. Currently, there is increasing evidence that skin aging occurs not only in time-dependent chronological aging but also plays a role in skin pigmentary disorders. This review provides an in-depth analysis of the impact of skin aging on different types of pigmentary disorders, including both hyperpigmentation disorders such as melasma and senile lentigo and hypopigmentation disorders such as vitiligo, idiopathic guttate hypomelanosis and graying of hair. In addition, we explore the mechanisms of skin aging on pigmentation regulation and suggest several potential therapeutic approaches for skin aging and aging-related pigmentary disorders.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata, IDI-RCCS, Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China.
| |
Collapse
|
2
|
Foo MXR, Ong PF, Yap ZX, Maric M, Bong CJS, Dröge P, Burke B, Dreesen O. Genetic and pharmacological modulation of lamin A farnesylation determines its function and turnover. Aging Cell 2024; 23:e14105. [PMID: 38504487 PMCID: PMC11113360 DOI: 10.1111/acel.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Hutchinson-Gilford Progeria syndrome (HGPS) is a severe premature ageing disorder caused by a 50 amino acid truncated (Δ50AA) and permanently farnesylated lamin A (LA) mutant called progerin. On a cellular level, progerin expression leads to heterochromatin loss, impaired nucleocytoplasmic transport, telomeric DNA damage and a permanent growth arrest called cellular senescence. Although the genetic basis for HGPS has been elucidated 20 years ago, the question whether the Δ50AA or the permanent farnesylation causes cellular defects has not been addressed. Moreover, we currently lack mechanistic insight into how the only FDA-approved progeria drug Lonafarnib, a farnesyltransferase inhibitor (FTI), ameliorates HGPS phenotypes. By expressing a variety of LA mutants using a doxycycline-inducible system, and in conjunction with FTI, we demonstrate that the permanent farnesylation, and not the Δ50AA, is solely responsible for progerin-induced cellular defects, as well as its rapid accumulation and slow clearance. Importantly, FTI does not affect clearance of progerin post-farnesylation and we demonstrate that early, but not late FTI treatment prevents HGPS phenotypes. Collectively, our study unravels the precise contributions of progerin's permanent farnesylation to its turnover and HGPS cellular phenotypes, and how FTI treatment ameliorates these. These findings are applicable to other diseases associated with permanently farnesylated proteins, such as adult-onset autosomal dominant leukodystrophy.
Collapse
Affiliation(s)
- Mattheus Xing Rong Foo
- A*STAR Skin Research Labs, Cell Ageing Laboratory, Skin Research Institute of Singapore, Singapore, Singapore
| | - Peh Fern Ong
- A*STAR Skin Research Labs, Cell Ageing Laboratory, Skin Research Institute of Singapore, Singapore, Singapore
| | - Zi Xuan Yap
- A*STAR Skin Research Labs, Cell Ageing Laboratory, Skin Research Institute of Singapore, Singapore, Singapore
| | - Martina Maric
- A*STAR Skin Research Labs, Cell Ageing Laboratory, Skin Research Institute of Singapore, Singapore, Singapore
| | - Christopher Jue Shi Bong
- A*STAR Skin Research Labs, Cell Ageing Laboratory, Skin Research Institute of Singapore, Singapore, Singapore
| | - Peter Dröge
- LambdaGen Pte. Ltd., Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Brian Burke
- A*STAR Skin Research Labs, Cell Ageing Laboratory, Skin Research Institute of Singapore, Singapore, Singapore
| | - Oliver Dreesen
- A*STAR Skin Research Labs, Cell Ageing Laboratory, Skin Research Institute of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Wang J, Yu Q, Tang X, Gordon LB, Chen J, Jiang B, Huang G, Fu H, Qian J, Liu Z, Mao J. Epidemiological characteristics of patients with Hutchinson-Gilford progeria syndrome and progeroid laminopathies in China. Pediatr Res 2024; 95:1356-1362. [PMID: 38191824 DOI: 10.1038/s41390-023-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) and progeroid laminopathies (PL) are extremely rare genetic diseases with extremely poor prognoses. This study aims to investigate the epidemiological and genotypic characteristics of patients with HGPS/PL in China. METHODS Using a cross-sectional study design, general characteristics and genotypic data of 46 patients with HGPS/PL from 17 provinces in China were analyzed. RESULTS Among the 46 patients with HGPS/PL, 20 patients are HGPS, and the rest are PL; the identified total prevalence of HGPS/PL is 1/23 million. Among 42 patients with gene reports, 3 carried compound heterozygous mutations in the ZMPSTE24 while the other 39 carried LMNA mutations. Among PL, LMNA c.1579 C > T homozygous mutation was the most common. The onset of classic genotype HGPS is skin sclerosis in the first month after birth. The primary clinical manifestations of PL patients include skin abnormalities, growth retardation, and joint stiffness. The median age of onset for PL was 12 (6,12) months. CONCLUSIONS In China, the identified total prevalence of HGPS/PL is 1/23 million. 92.8% of the genetic mutations of HGPS/PL were located in LMNA, and the rest in ZMPSTE24. Most patients of HGPS/PL have skin abnormalities as the earliest manifestation. Compared to PL, the classic genotype HGPS starts earlier. IMPACT STATEMENT Hutchinson-Gilford progeria syndrome (HGPS) and progeroid laminopathies (PL) are extremely rare genetic diseases with extremely poor prognoses. To date, there is a paucity of epidemiological data related to HGPS/PL in China. This study first examined the genotypic, phenotypic, and prevalence characteristics of 40-50% of the cases of HGPS/PL in mainland China through a collaborative international registry effort. In China, the identified total prevalence of HGPS/PL is 1/23 million. 92.8% of the genetic mutations of HGPS/PL are located in LMNA. LMNA c.1579 C > T homozygous mutations are the most common form of gene mutations among the Chinese PL population.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Qinmei Yu
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Xiaoxiao Tang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Leslie B Gordon
- Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
- Progeria Research Foundation, Peabody, MA, USA
| | - Junyi Chen
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Buchun Jiang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Guoping Huang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Jianqin Qian
- Clinical trial institute, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China
| | - Zhihong Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- National Clinical Research Center of Kidney Diseases, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jianhua Mao
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center of Child Health, Hangzhou, China.
| |
Collapse
|
4
|
Lian J, Du L, Li Y, Yin Y, Yu L, Wang S, Ma H. Hutchinson-Gilford progeria syndrome: Cardiovascular manifestations and treatment. Mech Ageing Dev 2023; 216:111879. [PMID: 37832833 DOI: 10.1016/j.mad.2023.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), also known as hereditary progeria syndrome, is caused by mutations in the LMNA gene and the expression of progerin, which causes accelerated aging and premature death, with most patients dying of heart failure or other cardiovascular complications in their teens. HGPS patients are able to exhibit cardiovascular phenotypes similar to physiological aging, such as extensive atherosclerosis, smooth muscle cell loss, vascular lesions, and electrical and functional abnormalities of the heart. It also excludes the traditional risk causative factors of cardiovascular disease, making HGPS a new model for studying aging-related cardiovascular disease. Here, we analyzed the pathogenesis and pathophysiological characteristics of HGPS and the relationship between HGPS and cardiovascular disease, provided insight into the molecular mechanisms of cardiovascular disease pathogenesis in HGPS patients and treatment strategies for this disease. Moreover, we summarize the disease models used in HGPS studies to improve our understanding of the pathological mechanisms of cardiovascular aging in HGPS patients.
Collapse
Affiliation(s)
- Jing Lian
- Medical School of Yan'an University, Yan'an, China
| | - Linfang Du
- Medical School of Yan'an University, Yan'an, China
| | - Yang Li
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lu Yu
- Department of Pathology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | | | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Vujovic F, Shepherd CE, Witting PK, Hunter N, Farahani RM. Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease. Antioxidants (Basel) 2023; 12:1873. [PMID: 37891951 PMCID: PMC10604469 DOI: 10.3390/antiox12101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state. While this network-level impact of redox is achieved by the modulation of individual redox-sensitive proteins, it is the population by these proteins of critical nodes in a network topology of signal transduction pathways that amplifies the impact of redox-mediated reprogramming. We propose that redox-mediated rewiring is essential to regulate the rate of transmission of biological signals, giving rise to a programmable cellular clock that orchestrates the pace of biological phenomena such as development and aging. We further review the evidence that an aberrant redox-mediated modulation of output of the cellular clock contributes to the emergence of pathological conditions affecting the human brain.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Paul K. Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
7
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
8
|
Kirsch-Volders M, Fenech M. Towards prevention of aneuploidy-associated cellular senescence and aging: more questions than answers? MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108474. [PMID: 37866738 DOI: 10.1016/j.mrrev.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The aim of this review is to discuss how aneuploidy contributes to the aging process, and to identify plausible strategies for its prevention. After an overview of mechanisms leading to aneuploidy and the major features of cellular senescence, we discuss the link between (i) aneuploidy and cellular senescence; (ii) aneuploidy and aging; and (iii) cellular senescence and aging. We also consider (i) interactions between aneuploidy, micronuclei, cellular senescence and aging, (ii) the potential of nutritional treatments to prevent aneuploidy-associated senescence and aging, and (iii) knowledge and technological gaps. Evidence for a causal link between aneuploidy, senescence and aging is emerging. In vitro, aneuploidy accompanies the entry into cellular senescence and can itself induce senescence. How aneuploidy contributes in vivo to cellular senescence is less clear. Several routes depending on aneuploidy and/or senescence converge towards chronic inflammation, the major driver of unhealthy aging. Aneuploidy can induce the pro-inflammatory Senescence Associated Secretory Phenotype (SASP), either directly or as a result of micronucleus (MN) induction leading to leakage of DNA into the cytoplasm and triggering of the cGAS-STING pathway of innate immune response. A major difficulty in understanding the impact of aneuploidy on senescence and aging in vivo, results from the heterogeneity of cellular senescence in different tissues at the cytological and molecular level. Due to this complexity, there is at the present time no biomarker or biomarker combination characteristic for all types of senescent cells. In conclusion, a deeper understanding of the critical role aneuploidy plays in cellular senescence and aging is essential to devise practical strategies to protect human populations from aneuploidy-associated pathologies. We discuss emerging evidence, based on in vitro and in vivo studies, that adequate amounts of specific micronutrients are essential for prevention of aneuploidy in humans and that precise nutritional intervention may be essential to help avoid the scourge of aneuploidy-driven diseases.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, SA 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| |
Collapse
|
9
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
10
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
11
|
Extracellular Vesicles in Aging: An Emerging Hallmark? Cells 2023; 12:cells12040527. [PMID: 36831194 PMCID: PMC9954704 DOI: 10.3390/cells12040527] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells and circulating in body fluids. Initially considered as a tool to dispose of unnecessary material, they are now considered an additional method to transmit cell signals. Aging is characterized by a progressive impairment of the physiological functions of tissues and organs. The causes of aging are complex and interconnected, but there is consensus that genomic instability, telomere erosion, epigenetic alteration, and defective proteostasis are primary hallmarks of the aging process. Recent studies have provided evidence that many of these primary stresses are associated with an increased release of EVs in cell models, able to spread senescence signals in the recipient cell. Additional investigations on the role of EVs during aging also demonstrated the great potential of EVs for the modulation of age-related phenotypes and for pro-rejuvenation therapies, potentially beneficial for many diseases associated with aging. Here we reviewed the current literature on EV secretion in senescent cell models and in old vs. young individual body fluids, as well as recent studies addressing the potential of EVs from different sources as an anti-aging tool. Although this is a recent field, the robust consensus on the altered EV release in aging suggests that altered EV secretion could be considered an emerging hallmark of aging.
Collapse
|
12
|
Peña B, Gao S, Borin D, Del Favero G, Abdel-Hafiz M, Farahzad N, Lorenzon P, Sinagra G, Taylor MRG, Mestroni L, Sbaizero O. Cellular Biomechanic Impairment in Cardiomyocytes Carrying the Progeria Mutation: An Atomic Force Microscopy Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14928-14940. [PMID: 36420863 PMCID: PMC9730902 DOI: 10.1021/acs.langmuir.2c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Given the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.1824 C > T, p.Gly608Gly) in neonatal rat ventricular myocytes (NRVMs) using cell indentation by atomic force microscopy to measure alterations in beating force, frequency, and contractile amplitude of selected cells within cell clusters. Furthermore, we examined the beating rate variability using a time-domain method that produces a Poincaré plot because beat-to-beat changes can shed light on the causes of arrhythmias. Our data have been further related to our cell phenotype findings, using immunofluorescence and calcium transient analysis, showing that mutant NRVMs display changes in both beating force and frequency. These changes were associated with a decreased gap junction localization (Connexin 43) in the mutant NRVMs even in the presence of a stable cytoskeletal structure (microtubules and actin filaments) when compared with controls (wild type and non-treated cells). These data emphasize the kindred between nucleoskeleton (LMNA), cytoskeleton, and the sarcolemmal structures in NRVM with the progeria Gly608Gly mutation, prompting future mechanistic and therapeutic investigations.
Collapse
Affiliation(s)
- Brisa Peña
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Shanshan Gao
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Daniele Borin
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| | - Giorgia Del Favero
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-42, 1090Vienna, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Wien, Währinger Straße 38-42, 1090Vienna, Austria
| | - Mostafa Abdel-Hafiz
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Nasim Farahzad
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Paola Lorenzon
- Department
F of Life Sciences, University of Trieste, Trieste34127, Italy
| | - Gianfranco Sinagra
- Polo
Cardiologico, Azienda Sanitaria Universitaria
Integrata di Trieste, Strada di Fiume 447, Trieste34127, Italy
| | - Matthew R. G. Taylor
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Luisa Mestroni
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Orfeo Sbaizero
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| |
Collapse
|
13
|
Primmer SR, Liao CY, Kummert OMP, Kennedy BK. Lamin A to Z in normal aging. Aging (Albany NY) 2022; 14:8150-8166. [PMID: 36260869 DOI: 10.18632/aging.204342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Almost since the discovery that mutations in the LMNA gene, encoding the nuclear structure components lamin A and C, lead to Hutchinson-Gilford progeria syndrome, people have speculated that lamins may have a role in normal aging. The most common HPGS mutation creates a splice variant of lamin A, progerin, which promotes accelerated aging pathology. While some evidence exists that progerin accumulates with normal aging, an increasing body of work indicates that prelamin A, a precursor of lamin A prior to C-terminal proteolytic processing, accumulates with age and may be a driver of normal aging. Prelamin A shares properties with progerin and is also linked to a rare progeroid disease, restrictive dermopathy. Here, we describe mechanisms underlying changes in prelamin A with aging and lay out the case that this unprocessed protein impacts normative aging. This is important since intervention strategies can be developed to modify this pathway as a means to extend healthspan and lifespan.
Collapse
Affiliation(s)
| | - Chen-Yu Liao
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, National University Health System, Singapore.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
14
|
Structural basis for the interaction between unfarnesylated progerin and the Ig-like domain of lamin A/C in premature aging disorders. Biochem Biophys Res Commun 2022; 637:210-217. [DOI: 10.1016/j.bbrc.2022.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
|
15
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
16
|
Thompson EL, Pitcher LE, Niedernhofer LJ, Robbins PD. Targeting Cellular Senescence with Senotherapeutics: Development of New Approaches for Skin Care. Plast Reconstr Surg 2022; 150:12S-19S. [PMID: 36170431 PMCID: PMC9529240 DOI: 10.1097/prs.0000000000009668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SUMMARY Aging of the skin is evidenced by increased wrinkles, age spots, dryness, and thinning with decreased elasticity. Extrinsic and intrinsic factors including UV, pollution, and inflammation lead to an increase in senescent cells (SnCs) in skin with age that contribute to these observed pathological changes. Cellular senescence is induced by multiple types of damage and stress and is characterized by the irreversible exit from the cell cycle with upregulation of cell cycle-dependent kinase inhibitors p16INK4a and p21CIP1. Most SnCs also developed an inflammatory senescence-associated secretory phenotype (SASP) that drives further pathology through paracrine effects on neighboring cells and endocrine effects on cells at a distance. Recently, compounds able to kill senescent cells specifically, termed senolytics, or suppress the SASP, termed senomorphics, have been developed that have the potential to improve skin aging as well as systemic aging in general. Here, we provide a summary of the evidence for a key role in cellular senescence in driving skin aging. In addition, the evidence for the potential application of senotherapeutics for skin treatments is presented. Overall, topical, and possibly oral senotherapeutic treatments have tremendous potential to eventually become a standard of care for skin aging and related skin disorders.
Collapse
Affiliation(s)
- Elizabeth L Thompson
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Louise E Pitcher
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Laura J Niedernhofer
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| | - Paul D Robbins
- From the Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota
| |
Collapse
|
17
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
18
|
Inci N, Kamali D, Akyildiz EO, Tahir Turanli E, Bozaykut P. Translation of Cellular Senescence to Novel Therapeutics: Insights From Alternative Tools and Models. FRONTIERS IN AGING 2022; 3:828058. [PMID: 35821852 PMCID: PMC9261353 DOI: 10.3389/fragi.2022.828058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Increasing chronological age is the greatest risk factor for human diseases. Cellular senescence (CS), which is characterized by permanent cell-cycle arrest, has recently emerged as a fundamental mechanism in developing aging-related pathologies. During the aging process, senescent cell accumulation results in senescence-associated secretory phenotype (SASP) which plays an essential role in tissue dysfunction. Although discovered very recently, senotherapeutic drugs have been already involved in clinical studies. This review gives a summary of the molecular mechanisms of CS and its role particularly in the development of cardiovascular diseases (CVD) as the leading cause of death. In addition, it addresses alternative research tools including the nonhuman and human models as well as computational techniques for the discovery of novel therapies. Finally, senotherapeutic approaches that are mainly classified as senolytics and senomorphics are discussed.
Collapse
Affiliation(s)
- Nurcan Inci
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Dilanur Kamali
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Erdogan Oguzhan Akyildiz
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eda Tahir Turanli
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Perinur Bozaykut
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
19
|
Maciejczyk M, Nesterowicz M, Szulimowska J, Zalewska A. Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging? J Inflamm Res 2022; 15:2051-2073. [PMID: 35378954 PMCID: PMC8976116 DOI: 10.2147/jir.s356029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Aging is inextricably linked to oxidative stress, inflammation, and posttranslational protein modifications. However, no studies evaluate oxidation, glycation, and carbamylation of salivary biomolecules as biomarkers of aging. Saliva collection is non-invasive, painless, and inexpensive, which are advantages over other biofluids. Methods The study enrolled 180 healthy subjects divided into six groups according to age: 6–13, 14–19, 20–39, 40–59, 60–79, and 80–100 years. The number of individuals was determined a priori based on our previous experiment (power of the test = 0.8; α = 0.05). Non-stimulated saliva and plasma were collected from participants, in which biomarkers of aging were determined by colorimetric, fluorometric, and ELISA methods. Results The study have demonstrated that modifications of salivary proteins increase with age, as manifested by decreased total thiol levels and increased carbonyl groups, glycation (Nε-(carboxymethyl) lysine, advanced glycation end products (AGE)) and carbamylation (carbamyl-lysine) protein products in the saliva of old individuals. Oxidative modifications of lipids (4-hydroxynonenal) and nucleic acids (8-hydroxy-2’-deoxyguanosine (8-OHdG)) also increase with age. Salivary redox biomarkers correlate poorly with their plasma levels; however, salivary AGE and 8-OHdG generally reflect their blood concentrations. In the multivariate regression model, they are a predictor of aging and, in the receiver operating characteristic (ROC) analysis, significantly differentiate children and adolescents (under 15 years old) from the working-age population (15–64 years) and the older people (65 years and older). Conclusion Salivary AGE and 8-OHdG have the most excellent diagnostic utility in assessing the aging process. Saliva can be used to evaluate the aging of the body.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- Correspondence: Mateusz Maciejczyk, Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok, 15-233, Poland, Email
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Julita Szulimowska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
Abu-Libdeh B, Jhujh SS, Dhar S, Sommers JA, Datta A, Longo GM, Grange LJ, Reynolds JJ, Cooke SL, McNee GS, Hollingworth R, Woodward BL, Ganesh AN, Smerdon SJ, Nicolae CM, Durlacher-Betzer K, Molho-Pessach V, Abu-Libdeh A, Meiner V, Moldovan GL, Roukos V, Harel T, Brosh RM, Stewart GS. RECON syndrome is a genome instability disorder caused by mutations in the DNA helicase RECQL1. J Clin Invest 2022; 132:147301. [PMID: 35025765 PMCID: PMC8884905 DOI: 10.1172/jci147301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Despite being the first homolog of the bacterial RecQ helicase to be identified in humans, the function of RECQL1 remains poorly characterized. Furthermore, unlike other members of the human RECQ family of helicases, mutations in RECQL1 have not been associated with a genetic disease. Here, we identify 2 families with a genome instability disorder that we have named RECON (RECql ONe) syndrome, caused by biallelic mutations in the RECQL gene. The affected individuals had short stature, progeroid facial features, a hypoplastic nose, xeroderma, and skin photosensitivity and were homozygous for the same missense mutation in RECQL1 (p.Ala459Ser), located within its zinc binding domain. Biochemical analysis of the mutant RECQL1 protein revealed that the p.A459S missense mutation compromised its ATPase, helicase, and fork restoration activity, while its capacity to promote single-strand DNA annealing was largely unaffected. At the cellular level, this mutation in RECQL1 gave rise to a defect in the ability to repair DNA damage induced by exposure to topoisomerase poisons and a failure of DNA replication to progress efficiently in the presence of abortive topoisomerase lesions. Taken together, RECQL1 is the fourth member of the RecQ family of helicases to be associated with a human genome instability disorder.
Collapse
Affiliation(s)
- Bassam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, Jerusalem, Israel
| | - Satpal S Jhujh
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Canada
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Canada
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Canada
| | - Gabriel Mc Longo
- Institute of Molecular Biology, Institute of Molecular Biology, Mainz, Germany
| | - Laura J Grange
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John J Reynolds
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie L Cooke
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gavin S McNee
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert Hollingworth
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Beth L Woodward
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anil N Ganesh
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephen J Smerdon
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, United States of America
| | | | - Vered Molho-Pessach
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Abdulsalam Abu-Libdeh
- Department of Pediatrics & Genetics, Makassed Hospital & Al-Quds Medical School, Jerusalem, Israel
| | - Vardiella Meiner
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, United States of America
| | - Vassilis Roukos
- Institute of Molecular Biology, Institute of Molecular Biology, Mainz, Germany
| | - Tamar Harel
- Faculty of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Canada
| | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Wu SW, Li L, Feng F, Wang L, Kong YY, Liu XW, Yin C. Whole-exome sequencing reveals POLR3B variants associated with progeria-related Wiedemann-Rautenstrauch syndrome. Ital J Pediatr 2021; 47:160. [PMID: 34289880 PMCID: PMC8296688 DOI: 10.1186/s13052-021-01112-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Wiedemann-Rautenstrauch syndrome (WRS) is a rare autosomal recessive neonatal progeroid disorder characterized by prenatal and postnatal growth retardation, short stature, a progeroid appearance, hypotonia, and mental impairment. Case presentation A 6-year-old patient, who initially presented with multiple postnatal abnormalities, facial dysplasia, micrognathia, skull appearance, hallux valgus, and congenital dislocation of the hip, was recruited in this study. The patient was initially diagnosed with progeria. The mother of the patient had abnormal fetal development during her second pregnancy check-up, and the clinical phenotype of the fetus was similar to that of the patient. Whole-exome sequencing (WES) of the patient was performed, and POLR3B compound heterozygous variants—c.2191G > C:p.E731Q and c.3046G > A:p.V1016M—were identified in the patient. Using Sanger sequencing, we found that the phenotypes and genotypes were segregated within the pedigree. These two variants are novel and not found in the gnomAD and 1000 Genomes databases. The two mutation sites are highly conserved between humans and zebrafish. Conclusions Our study not only identified a novel WRS-associated gene, POLR3B, but also broadened the mutational and phenotypic spectra of POLR3B. Furthermore, WES may be useful for identifying rare disease-related genetic variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13052-021-01112-6.
Collapse
Affiliation(s)
- Shao-Wen Wu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China.,Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China
| | - Lin Li
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China.,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China
| | - Fan Feng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Haidian, Beijing, 100084, China
| | - Li Wang
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China.,Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China
| | - Yuan-Yuan Kong
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China.,Department of Newborn Screening, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China
| | - Xiao-Wei Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China. .,Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China.
| | - Chenghong Yin
- Beijing Maternal and Child Health Care Hospital, Beijing, 100026, Chaoyang, China. .,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, Chaoyang, China.
| |
Collapse
|
22
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
23
|
Lee AY. Skin Pigmentation Abnormalities and Their Possible Relationship with Skin Aging. Int J Mol Sci 2021; 22:ijms22073727. [PMID: 33918445 PMCID: PMC8038212 DOI: 10.3390/ijms22073727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Skin disorders showing abnormal pigmentation are often difficult to manage because of their uncertain etiology or pathogenesis. Abnormal pigmentation is a common symptom accompanying aging skin. The association between skin aging and skin pigmentation abnormalities can be attributed to certain inherited disorders characterized by premature aging and abnormal pigmentation in the skin and some therapeutic modalities effective for both. Several molecular mechanisms, including oxidative stress, mitochondrial DNA mutations, DNA damage, telomere shortening, hormonal changes, and autophagy impairment, have been identified as involved in skin aging. Although each of these skin aging-related mechanisms are interconnected, this review examined the role of each mechanism in skin hyperpigmentation or hypopigmentation to propose the possible association between skin aging and pigmentation abnormalities.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 410-773, Gyeonggi-do, Korea
| |
Collapse
|
24
|
Araújo de Melo Campos JT, Dantas de Medeiros JL, Cardoso de Melo ME, Alvares da Silva M, Oliveira de Sena M, Sales Craveiro Sarmento A, Fassarella Agnez Lima L, de Freitas Fregonezi GA, Gomes Lima J. Endoplasmic reticulum stress and muscle dysfunction in congenital lipodystrophies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166120. [PMID: 33713793 DOI: 10.1016/j.bbadis.2021.166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Lipodystrophy syndromes are a group of rare diseases related to the pathological impairment of adipose tissue and metabolic comorbidities, including dyslipidemia, diabetes, insulin resistance, hypoleptinemia, and hypoadiponectinemia. They can be categorized as partial or generalized according to the degree of fat loss, and inherited or acquired disorders, if they are associated with genetic mutations or are related to autoimmunity, respectively. Some types of lipodystrophies have been associated with changes in both redox and endoplasmic reticulum (ER) homeostasis as well as muscle dysfunction (MD). Although ER stress (ERS) has been related to muscle dysfunction (MD) in many diseases, there is no data concerning its role in lipodystrophies' muscle physiopathology. Here we focused on congenital lipodystrophies associated with ERS and MD. We also described recent advances in our understanding of the relationships among ERS, MD, and genetic lipodystrophies, highlighting the adiponectin-protective roles.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Jorge Luiz Dantas de Medeiros
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Maria Eduarda Cardoso de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Monique Alvares da Silva
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Oliveira de Sena
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aquiles Sales Craveiro Sarmento
- Unidade de Laboratório de Análises Clínicas e Anatomia Patológica, Hospital Universitário de Lagarto (HUL)/UFS, Lagarto, SE, Brazil
| | - Lucymara Fassarella Agnez Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Guilherme Augusto de Freitas Fregonezi
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes (HUOL)/UFRN, Natal, RN, Brazil
| |
Collapse
|
25
|
Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology 2021; 22:165-187. [PMID: 33502634 PMCID: PMC7838467 DOI: 10.1007/s10522-021-09910-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023]
Abstract
Aging is a physiological process mediated by numerous biological and genetic pathways, which are directly linked to lifespan and are a driving force for all age-related diseases. Human life expectancy has greatly increased in the past few decades, but this has not been accompanied by a similar increase in their healthspan. At present, research on aging biology has focused on elucidating the biochemical and genetic pathways that contribute to aging over time. Several aging mechanisms have been identified, primarily including genomic instability, telomere shortening, and cellular senescence. Aging is a driving factor of various age-related diseases, including neurodegenerative diseases, cardiovascular diseases, cancer, immune system disorders, and musculoskeletal disorders. Efforts to find drugs that improve the healthspan by targeting the pathogenesis of aging have now become a hot topic in this field. In the present review, the status of aging research and the development of potential drugs for aging-related diseases, such as metformin, rapamycin, resveratrol, senolytics, as well as caloric restriction, are summarized. The feasibility, side effects, and future potential of these treatments are also discussed, which will provide a basis to develop novel anti-aging therapeutics for improving the healthspan and preventing aging-related diseases.
Collapse
|
26
|
Towards delineating the chain of events that cause premature senescence in the accelerated aging syndrome Hutchinson-Gilford progeria (HGPS). Biochem Soc Trans 2020; 48:981-991. [PMID: 32539085 PMCID: PMC7329345 DOI: 10.1042/bst20190882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
The metazoan nucleus is equipped with a meshwork of intermediate filament proteins called the A- and B-type lamins. Lamins lie beneath the inner nuclear membrane and serve as a nexus to maintain the architectural integrity of the nucleus, chromatin organization, DNA repair and replication and to regulate nucleocytoplasmic transport. Perturbations or mutations in various components of the nuclear lamina result in a large spectrum of human diseases collectively called laminopathies. One of the most well-characterized laminopathies is Hutchinson-Gilford progeria (HGPS), a rare segmental premature aging syndrome that resembles many features of normal human aging. HGPS patients exhibit alopecia, skin abnormalities, osteoporosis and succumb to cardiovascular complications in their teens. HGPS is caused by a mutation in LMNA, resulting in a mutated form of lamin A, termed progerin. Progerin expression results in a myriad of cellular phenotypes including abnormal nuclear morphology, loss of peripheral heterochromatin, transcriptional changes, DNA replication defects, DNA damage and premature cellular senescence. A key challenge is to elucidate how these different phenotypes are causally and mechanistically linked. In this mini-review, we highlight some key findings and present a model on how progerin-induced phenotypes may be temporally and mechanistically linked.
Collapse
|