1
|
Rousel J, Mergen C, Bergmans ME, Klarenbeek NB, der Kolk TNV, van Doorn MBA, Bouwstra JA, Rissmann R. Lesional Psoriasis is Associated With Alterations in the Stratum Corneum Ceramide Profile and Concomitant Decreases in Barrier Function. Exp Dermatol 2024; 33:e15185. [PMID: 39382258 DOI: 10.1111/exd.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Psoriasis is an inflammatory skin disease associated with an impaired skin barrier. The skin barrier function is dependent on the extracellular lipid matrix which surrounds the corneocytes in the stratum corneum. Ceramides comprise essential components of this matrix. Alterations in the stratum corneum ceramide profile have been directly linked to barrier dysfunction and might be an underlying factor of the barrier impairment in psoriasis. In this study, we investigated the ceramide profile and barrier function in psoriasis. Lesional and non-lesional skin of 26 patients and 10 healthy controls were analysed using in-depth ceramide lipidomics by liquid chromatography-mass spectrometry. Barrier function was assessed by measuring transepidermal water loss. Lesional skin showed a significant decrease in the abundance of total ceramides with significant alterations in the ceramide subclass composition compared to control and non-lesional skin. Additionally, the percentage of monounsaturated ceramides was significantly increased, and the average ceramide chain length significantly decreased in lesional skin. Altogether, this resulted in a markedly different profile compared to controls for lesional skin, but not for non-lesional skin. Importantly, the reduced barrier function in lesional psoriasis correlated to alterations in the ceramide profile, highlighting their interdependence. By assessing the parameters 2 weeks apart, we are able to highlight the reproducibility of these findings, which further affirms this connection. To conclude, we show that changes in the ceramide profile and barrier impairment are observed in, and limited to, lesional psoriatic skin. Their direct correlation provides a further mechanistic basis for the concomitantly observed impairment of barrier dysfunction.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Catherine Mergen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Menthe E Bergmans
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Martijn B A van Doorn
- Centre for Human Drug Research, Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Omi M, Takeichi T, Ito Y, Yoshikawa T, Mizutani Y, Nagai M, Seishima M, Ogi T, Muro Y, Akiyama M. Two patients with Hailey-Hailey disease with novel pathogenic ATP2C1 variants suggesting possible genotype/phenotype correlations. J Dermatol 2024; 51:e185-e187. [PMID: 38111361 DOI: 10.1111/1346-8138.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Affiliation(s)
- Michiya Omi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Nagoya University Institute for Advanced Research, Nagoya, Japan
| | - Yasutoshi Ito
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Dermatology, National Hospital Organization, Nagoya Medical Center, Nagoya, Japan
| | - Takenori Yoshikawa
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Mizutani
- Gifu Prefectural General Medical Center, Gifu, Japan
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Miki Nagai
- Gifu Prefectural General Medical Center, Gifu, Japan
| | - Mariko Seishima
- Department of Dermatology, Asahi University Hospital, Gifu, Japan
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinao Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Diociaiuti A, Corbeddu M, Rossi S, Pisaneschi E, Cesario C, Condorelli AG, Samela T, Giancristoforo S, Angioni A, Zambruno G, Novelli A, Alaggio R, Abeni D, El Hachem M. Cross-Sectional Study on Autosomal Recessive Congenital Ichthyoses: Association of Genotype with Disease Severity, Phenotypic, and Ultrastructural Features in 74 Italian Patients. Dermatology 2024; 240:397-413. [PMID: 38588653 PMCID: PMC11168449 DOI: 10.1159/000536366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 01/14/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Autosomal recessive congenital ichthyoses (ARCIs) are a clinically heterogeneous group of keratinization disorders characterized by generalized skin scaling due to mutations in at least 12 genes. The aim of our study was to assess disease severity, phenotypic, and ultrastructural features and to evaluate their association with genetic findings in ARCI patients. METHODS Clinical signs and symptoms, and disease severity were scored in a single-center series of patients with a genetic diagnosis of ARCI. Skin ultrastructural findings were reviewed. RESULTS Seventy-four consecutive patients (mean age 11.0 years, range 0.1-48.8) affected with lamellar ichthyosis (50/74, 67.5%), congenital ichthyosiform erythroderma (18/74, 24.3%), harlequin ichthyosis (two/74, 2.7%), and other minor ARCI subtypes (four/74, 5.4%) were enrolled. Mutated genes were as follows: TGM1 in 18/74 (24.3%) patients, ALOX12B in 18/74 (24.3%), CYP4F22 in 12/74 (16.2%), ABCA12 in nine/74 (12.2%), ALOXE3 in seven/74 (9.5%), NIPAL4 in seven/74 (9.5%), and CERS3, PNPLA1, and SDR9C7 in 1 patient each (1.4%). Twenty-five previously undescribed mutations in the different ARCI causative genes, as well as two microduplications in TGM1, and two microdeletions in CYP4F22 and NIPAL4 were identified. The mean ichthyosis severity score in TGM1- and ABCA12-mutated patients was significantly higher than in all other mutated genes, while the lowest score was observed in CYP4F22-mutated patients. Alopecia, ectropion, and eclabium were significantly associated with TGM1 and ABCA12 mutations, and large, thick, and brownish scales with TGM1 mutations. Among specific phenotypic features, psoriasis-like lesions as well as a trunk reticulate scale pattern and striated keratoderma were present in NIPAL4-mutated patients. Ultrastructural data available for 56 patients showed a 100% specificity of cholesterol clefts for TGM1-mutated cases and revealed abnormal lamellar bodies in SDR9C7 and CERS3 patients. CONCLUSION Our study expands the phenotypic and genetic characterization of ARCI by the description of statistically significant associations between disease severity, specific clinical signs, and different mutated genes. Finally, we highlighted the presence of psoriasis-like lesions in NIPAL4-ARCI patients as a novel phenotypic feature with diagnostic and possible therapeutic implications.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marialuisa Corbeddu
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Dermatology Clinic, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tonia Samela
- Clinical Epidemiology Unit, IDI-IRCCS, Rome, Italy
| | - Simona Giancristoforo
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Adriano Angioni
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Translational Paediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Omi M, Takeichi T, Chiba T, Asano Y, Muro Y, Akiyama M. An in-frame 18 bp deletion in linker domain L1 of KRT9 identified in a Japanese patient with epidermolytic palmoplantar keratoderma. J Dermatol 2023; 50:e370-e372. [PMID: 37401035 DOI: 10.1111/1346-8138.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/05/2023]
Affiliation(s)
- Michiya Omi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Chiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinao Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Häder A, Schäuble S, Gehlen J, Thielemann N, Buerfent BC, Schüller V, Hess T, Wolf T, Schröder J, Weber M, Hünniger K, Löffler J, Vylkova S, Panagiotou G, Schumacher J, Kurzai O. Pathogen-specific innate immune response patterns are distinctly affected by genetic diversity. Nat Commun 2023; 14:3239. [PMID: 37277347 DOI: 10.1038/s41467-023-38994-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Innate immune responses vary by pathogen and host genetics. We analyze quantitative trait loci (eQTLs) and transcriptomes of monocytes from 215 individuals stimulated by fungal, Gram-negative or Gram-positive bacterial pathogens. We identify conserved monocyte responses to bacterial pathogens and a distinct antifungal response. These include 745 response eQTLs (reQTLs) and corresponding genes with pathogen-specific effects, which we find first in samples of male donors and subsequently confirm for selected reQTLs in females. reQTLs affect predominantly upregulated genes that regulate immune response via e.g., NOD-like, C-type lectin, Toll-like and complement receptor-signaling pathways. Hence, reQTLs provide a functional explanation for individual differences in innate response patterns. Our identified reQTLs are also associated with cancer, autoimmunity, inflammatory and infectious diseases as shown by external genome-wide association studies. Thus, reQTLs help to explain interindividual variation in immune response to infection and provide candidate genes for variants associated with a range of diseases.
Collapse
Affiliation(s)
- Antje Häder
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany
| | - Jan Gehlen
- Institute of Human Genetics, Philipps University of Marburg, 35033, Marburg, Germany
| | - Nadja Thielemann
- Institute for Hygiene and Microbiology, Julius Maximilians University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Benedikt C Buerfent
- Institute of Human Genetics, Philipps University of Marburg, 35033, Marburg, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Vitalia Schüller
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Timo Hess
- Institute of Human Genetics, Philipps University of Marburg, 35033, Marburg, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Wolf
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany
| | - Julia Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Michael Weber
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute, 07743, Jena, Germany
| | - Kerstin Hünniger
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany
- Institute for Hygiene and Microbiology, Julius Maximilians University of Wuerzburg, 97080, Wuerzburg, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, Josef-Schneider-Strasse 2 /C11, 97080, Wuerzburg, Germany
| | - Slavena Vylkova
- Research Group Host Fungal Interfaces, Septomics Research Center and Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong SAR, China
| | - Johannes Schumacher
- Institute of Human Genetics, Philipps University of Marburg, 35033, Marburg, Germany.
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany.
| | - Oliver Kurzai
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745, Jena, Germany.
- Institute for Hygiene and Microbiology, Julius Maximilians University of Wuerzburg, 97080, Wuerzburg, Germany.
| |
Collapse
|
6
|
Sochorová M, Kremslehner C, Nagelreiter I, Ferrara F, Lisicin MM, Narzt M, Bauer C, Stiegler A, Golabi B, Vávrová K, Gruber F. Deletion of NRF2 disturbs composition, morphology, and differentiation of the murine tail epidermis in chronological aging. Biofactors 2023; 49:684-698. [PMID: 36772996 PMCID: PMC10946746 DOI: 10.1002/biof.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
NRF2 is a master regulator of the cellular protection against oxidative damage in mammals and of multiple pathways relevant in the mammalian aging process. In the epidermis of the skin NRF2 contributes additionally to the formation of an antioxidant barrier to protect from environmental insults and is involved in the differentiation process of keratinocytes. In chronological aging of skin, the capacity for antioxidant responses and the ability to restore homeostasis after damage are impaired. Surprisingly, in absence of extrinsic stressors, NRF2 deficient mice do not show any obvious skin phenotype, not even at old age. We investigated the differences in chronological epidermal aging of wild type and NRF2-deficient mice to identify the changes in aged epidermis that may compensate for absence of this important transcriptional regulator. While both genotypes showed elevated epidermal senescence markers (increased Lysophospholipids, decreased LaminB1 expression), the aged NRF2 deficient mice displayed disturbed epidermal differentiation manifested in irregular keratin 10 and loricrin expression. The tail skin displayed less age-related epidermal thinning and a less pronounced decline in proliferating basal epidermal cells compared to the wildtype controls. The stratum corneum lipid composition also differed, as we observed elevated production of barrier protective linoleic acid (C18:2) and reduced abundance of longer chain saturated lignoceric acid (C24:0) among the stratum corneum fatty acids in the aged NRF2-deficient mice. Thus, despite epidermal differentiation being disturbed in aged NRF2-deficient animals in homeostasis, adaptations in keratinocyte proliferation and barrier lipid synthesis could explain the lack of a more severe phenotype.
Collapse
Affiliation(s)
- Michaela Sochorová
- Department of DermatologyMedical University of ViennaViennaAustria
- Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | | | | | - Francesca Ferrara
- Department of DermatologyMedical University of ViennaViennaAustria
- Department of Chemical, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | | | | | - Christina Bauer
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Bahar Golabi
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Katerina Vávrová
- Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Florian Gruber
- Department of DermatologyMedical University of ViennaViennaAustria
| |
Collapse
|
7
|
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily of cytokines. IL-36 cytokines are composed of three agonists (IL-36α, IL-36β, and IL-36γ) and two antagonists (IL-36 receptor antagonist [IL36Ra] and IL-38). These work in innate and acquired immunity and are known to contribute to host defense and to the pathogenesis of autoinflammatory diseases, autoimmune diseases, and infectious diseases. In the skin, IL-36α and IL-36γ are mainly expressed by keratinocytes in the epidermis, although they are also produced by dendritic cells, macrophages, endothelial cells, and dermal fibroblasts. IL-36 cytokines participate in the first-line defense of the skin against various exogenous assaults. IL-36 cytokines play significant roles in the host defense system and in the regulation of inflammatory pathways in the skin, collaborating with other cytokines/chemokines and immune-related molecules. Thus, numerous studies have shown IL-36 cytokines to play important roles in the pathogenesis of various skin diseases. In this context, the clinical efficacy and safety profiles of anti-IL-36 agents such as spesolimab and imsidolimab have been evaluated in patients with generalized pustular psoriasis, palmoplantar pustulosis, hidradenitis suppurativa, acne/acneiform eruptions, ichthyoses, and atopic dermatitis. This article comprehensively summarizes the roles played by IL-36 cytokines in the pathogenesis and pathophysiology of various skin diseases and summarizes the current state of research on therapeutic agents that target IL-36 cytokine pathways.
Collapse
|
8
|
Takeichi T, Ohno Y, Tanahashi K, Ito Y, Shiraishi K, Utsunomiya R, Yoshida S, Ikeda K, Nomura H, Morizane S, Sayama K, Ogi T, Muro Y, Kihara A, Akiyama M. Ceramide Analysis in Combination With Genetic Testing May Provide a Precise Diagnosis for Self-Healing Collodion Babies. J Lipid Res 2022; 63:100308. [PMID: 36332686 DOI: 10.1016/j.jlr.2022.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Self-healing collodion baby (SHCB), also called "self-improving collodion baby", is a rare mild variant of autosomal recessive congenital ichthyosis and is defined as a collodion baby who shows the nearly complete resolution of scaling within the first 3 months to 1 year of life. However, during the neonatal period, it is not easy to distinguish SHCB from other inflammatory forms of autosomal recessive congenital ichthyosis, such as congenital ichthyosiform erythroderma. Here, we report a case study of two Japanese SHCB patients with compound heterozygous mutations, c.235G>T (p.(Glu79∗))/ c.1189C>T (p.(Arg397Cys)) and c.1295A>G (p.(Tyr432Cys))/ c.1138delG (p.(Asp380Thrfs∗3)), in CYP4F22, which encodes cytochrome P450, family 4, subfamily F, polypeptide 22 (CYP4F22). Immunohistochemically, inflammation with the strong expression of IL-17C, IL-36γ, and TNF-α was seen in the skin at birth. CYP4F22 is an ultra-long-chain FA ω-hydroxylase responsible for ω-O-acylceramide (acylceramide) production. Among the epidermal ceramides, acylceramide is a key lipid in maintaining the epidermal permeability barrier function. We found that the levels of ceramides with ω-hydroxy FAs including acylceramides and the levels of protein-bound ceramides were much lower in stratum corneum samples obtained by tape stripping from SHCB patients than in those from their unaffected parents and individuals without SHCB. Additionally, our cell-based enzyme assay revealed that two mutants, p.(Glu79∗) and p.(Arg397Cys), had no enzyme activity. Our findings suggest that genetic testing coupled with noninvasive ceramide analyses using tape-stripped stratum corneum samples might be useful for the early and precise diagnosis of congenital ichthyoses, including SHCB.
Collapse
Affiliation(s)
- Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yusuke Ohno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kana Tanahashi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasutoshi Ito
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryo Utsunomiya
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Satoshi Yoshida
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kenta Ikeda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hayato Nomura
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinao Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
9
|
Deng J, Leijten E, Nordkamp MO, Zheng G, Pouw J, Tao W, Hartgring S, Balak D, Rijken R, Huang R, Radstake T, Lu C, Pandit A. Multi-omics integration reveals a core network involved in host defence and hyperkeratinization in psoriasis. Clin Transl Med 2022; 12:e976. [PMID: 36536476 PMCID: PMC9763538 DOI: 10.1002/ctm2.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The precise pathogenesis of psoriasis remains incompletely explored. We aimed to better understand the underlying mechanisms of psoriasis, using a systems biology approach based on transcriptomics and microbiome profiling. METHODS We collected the skin tissue biopsies and swabs in both lesional and non-lesional skin of 13 patients with psoriasis, 15 patients with psoriatic arthritis and healthy skin from 12 patients with ankylosing spondylitis. To study the similarities and differences in the molecular profiles between these three conditions, and the associations between the host defence and microbiota composition, we performed high-throughput RNA-sequencing to quantify the gene expression profile in tissues. The metagenomic composition of 16S on local skin sites was quantified by clustering amplicon sequences and counted into operational taxonomic units. We further analysed associations between the transcriptome and microbiome profiling. RESULTS We found that lesional and non-lesional samples were remarkably different in terms of their transcriptome profiles. The functional annotation of differentially expressed genes showed a major enrichment in neutrophil activation. By using co-expression gene networks, we identified a gene module that was associated with local psoriasis severity at the site of biopsy. From this module, we found a 'core' set of genes that was functionally involved in neutrophil activation, epidermal cell differentiation and response to bacteria. Skin microbiome analysis revealed that the abundances of Enhydrobacter, Micrococcus and Leptotrichia were significantly correlated with the genes in core network. CONCLUSIONS We identified a core gene network that associated with local disease severity and microbiome composition, involved in the inflammation and hyperkeratinization in psoriatic skin.
Collapse
Affiliation(s)
- Jingwen Deng
- Guangdong Provincial Hospital of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Emmerik Leijten
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Michel Olde Nordkamp
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Guangjuan Zheng
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Juliëtte Pouw
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Weiyang Tao
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sarita Hartgring
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Deepak Balak
- Department of DermatologyLangeLand HospitalZoetermeerThe Netherlands
| | - Rianne Rijken
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Runyue Huang
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Timothy Radstake
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Chuanjian Lu
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Aridaman Pandit
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
10
|
Hwang J, Rick J, Hsiao J, Shi VY. A review of IL-36: an emerging therapeutic target for inflammatory dermatoses. J DERMATOL TREAT 2022; 33:2711-2722. [PMID: 35470744 DOI: 10.1080/09546634.2022.2067819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND IL-36 cytokines are members of the IL-1 superfamily. Increasing evidence in the IL-36 pathway demonstrates their potential as a therapeutic target for treating inflammatory skin diseases, such as generalized pustular psoriasis (GPP). OBJECTIVE A narrative review was written to further study preclinical and clinical evidence for the role of IL-36 in psoriasis, atopic dermatitis (AD), hidradenitis suppurativa (HS), acne, autoimmune blistering diseases, and neutrophilic dermatoses. RESULTS IL-36 has important downstream effects such as inducing expression of inflammatory cytokines, antimicrobial peptides, and growth factors. Increased expression of IL-36 cytokines has been observed in the lesional skin of patients with psoriasis. Studies of other inflammatory skin diseases have also noted similar findings, albeit to a lesser extent. IL-36 inhibition has been shown to be effective in GPP and is currently being studied for other inflammatory skin diseases. CONCLUSIONS The IL-36 pathway contributes to pathogenesis of many inflammatory skin diseases and is a promising therapeutic target.
Collapse
Affiliation(s)
- Jonwei Hwang
- University of Illinois College of Medicine, Chicago, IL, USA
| | - Jonathan Rick
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer Hsiao
- Department of Dermatology, University of Southern California, Los Angeles, CA, USA
| | - Vivian Y Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
11
|
Chulpanova DS, Shaimardanova AA, Ponomarev AS, Elsheikh S, Rizvanov AA, Solovyeva VV. Current Strategies for the Gene Therapy of Autosomal Recessive Congenital Ichthyosis and Other Types of Inherited Ichthyosis. Int J Mol Sci 2022; 23:2506. [PMID: 35269649 PMCID: PMC8910354 DOI: 10.3390/ijms23052506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes such as transglutaminase-1 (TGM1), which are responsible for the formation and normal functioning of a lipid barrier, lead to the development of autosomal recessive congenital ichthyosis (ARCI). ARCIs are characterized by varying degrees of hyperkeratosis and the presence of scales on the body surface since birth. The quality of life of patients is often significantly affected, and in order to alleviate the manifestations of the disease, symptomatic therapy with moisturizers, keratolytics, retinoids and other cosmetic substances is often used to improve the condition of the patients' skin. Graft transplantation is commonly used to correct defects of the eye. However, these approaches offer symptomatic treatment that does not restore the lost protein function or provide a long-term skin barrier. Gene and cell therapies are evolving as promising therapy for ARCIs that can correct the functional activity of altered proteins. However, these approaches are still at an early stage of development. This review discusses current studies of gene and cell therapy approaches for various types of ichthyosis and their further prospects for patient treatment.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Aleksei S. Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Somaia Elsheikh
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| |
Collapse
|
12
|
Voorberg AN, Niehues H, Oosterhaven JAF, Romeijn GLE, van Vlijmen-Willems IMJJ, van Erp PEJ, Ederveen THA, Zeeuwen PLJM, Schuttelaar MLA. Vesicular hand eczema transcriptome analysis provides insights into its pathophysiology. Exp Dermatol 2021; 30:1775-1786. [PMID: 34252224 PMCID: PMC8596617 DOI: 10.1111/exd.14428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Hand eczema is a common inflammatory skin condition of the hands whose pathogenesis is largely unknown. More insight and knowledge of the disease on a more fundamental level might lead to a better understanding of the biological processes involved, which could provide possible new treatment strategies. We aimed to profile the transcriptome of lesional palmar epidermal skin of patients suffering from vesicular hand eczema using RNA‐sequencing. RNA‐sequencing was performed to identify differentially expressed genes in lesional vs. non‐lesional palmar epidermal skin from a group of patients with vesicular hand eczema compared to healthy controls. Comprehensive real‐time quantitative PCR analyses and immunohistochemistry were used for validation of candidate genes and protein profiles for vesicular hand eczema. Overall, a significant and high expression of genes/proteins involved in keratinocyte host defense and inflammation was found in lesional skin. Furthermore, we detected several molecules, both up or downregulated in lesional skin, which are involved in epidermal differentiation. Immune signalling genes were found to be upregulated in lesional skin, albeit with relatively low expression levels. Non‐lesional patient skin showed no significant differences compared to healthy control skin. Lesional vesicular hand eczema skin shows a distinct expression profile compared to non‐lesional skin and healthy control skin. Notably, the overall results indicate a large overlap between vesicular hand eczema and earlier reported atopic dermatitis lesional transcriptome profiles, which suggests that treatments for atopic dermatitis could also be effective in (vesicular) hand eczema.
Collapse
Affiliation(s)
- Angelique N Voorberg
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hanna Niehues
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Jart A F Oosterhaven
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geertruida L E Romeijn
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Piet E J van Erp
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics, RIMLS, Radboudumc, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Marie L A Schuttelaar
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Xu J, Lu H, Luo H, Hu Y, Chen Y, Xie B, Du X, Hua Y, Song X. Tape stripping and lipidomics reveal skin surface lipid abnormity in female melasma. Pigment Cell Melanoma Res 2021; 34:1105-1111. [PMID: 33974351 DOI: 10.1111/pcmr.12984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022]
Abstract
The skin barrier of melasma is involved in the pathogenesis of melasma. Previous studies have shown that there are differences in the expression of epidermal lipid genes in melasma, but little is known about the epidermis lipid composition of melasma. Compared with the non-lesional skin, the content of total lipids, phosphatidic acid, phosphatidylserine, and ceramide (Cer) increased significantly in the lesional skin. Multivariate data analysis indicated that 40 individual Cer lipid species were responsible for the discrimination. In terms of acyl chain length in Cer, the expressions of very long chain (VLC) (C20-C26) and ultra-long chain (ULC) (>C26) increased significantly in the lesional skin. However, Cer[AH] had negative correlations with the activation of melanocytes in the lesional skin. Some lipid species had lower expression in lesional skin with high activation of melanocytes, as well as the high darkness. The epidermal thickness of lesional skin was higher compared with the non-lesional skin. These results suggest that Cer increased significantly in the lesional skin of melasma, possibly as a compensatory mechanism to maintain skin barrier function. Between different groups of darkness and activation of melanocytes, the change of ceramides might have correlation with the pigmentation progress of melasma.
Collapse
Affiliation(s)
- Jinhui Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haojie Lu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixin Luo
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yebei Hu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohang Du
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - You Hua
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Experimental Models for the Study of Hereditary Cornification Defects. Biomedicines 2021; 9:biomedicines9030238. [PMID: 33652877 PMCID: PMC7996736 DOI: 10.3390/biomedicines9030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ichthyoses comprise a broad spectrum of keratinization disorders due to hereditary defects of cornification. Until now, mutations in more than 50 genes, mostly coding for structural proteins involved in epidermal barrier formation, have been identified as causes for different types of these keratinization disorders. However, due to the high heterogeneity and difficulties in the establishment of valid experimental models, research in this field remains challenging and translation of novel findings to clinical practice is difficult. In this review, we provide an overview of existing models to study hereditary cornification defects with focus on ichthyoses and palmoplantar keratodermas.
Collapse
|
15
|
Ito Y, Takeichi T, Igari S, Mori T, Ono A, Suyama K, Takeuchi S, Muro Y, Ogi T, Hosoya M, Yamamoto T, Akiyama M. MEDNIK-like syndrome due to compound heterozygous mutations in AP1B1. J Eur Acad Dermatol Venereol 2020; 35:e345-e347. [PMID: 33349978 DOI: 10.1111/jdv.17098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Y Ito
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Igari
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | - T Mori
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | - A Ono
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - K Suyama
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - S Takeuchi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - M Hosoya
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - T Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | - M Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Yoshikawa T, Takeichi T, Ogi T, Suga Y, Muro Y, Akiyama M. A heterozygous SERPINB7 mutation is a possible modifying factor for epidermolytic palmoplantar keratoderma. J Dermatol Sci 2020; 100:148-151. [PMID: 33012634 DOI: 10.1016/j.jdermsci.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Takenori Yoshikawa
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yasushi Suga
- Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Yoshinao Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
17
|
Takeichi T. SDR9C7 plays an essential role in skin barrier function by dehydrogenating acylceramide for covalent attachment to proteins. J Dermatol Sci 2020; 98:82-87. [PMID: 32305239 DOI: 10.1016/j.jdermsci.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 02/04/2023]
Abstract
Among the components of the barrier structure of the stratum corneum in human skin, the corneocyte lipid envelope (CLE) is extremely important for the skin barrier. The importance of the CLE and esterified ω-hydroxy sphingosine (CerEOS), its main precursor, has been suggested from the fact that mutations in a number of genes involved in CerEOS synthesis and CLE formation have been identified as genetic causes of congenital ichthyoses, which are severe genetic skin disorders. However, the molecule/mechanism involved in the covalent binding of CerEOS to proteins on the outer surface of the cornified cell envelope had been a missing part. Very recently, we proposed new potential modes of protein binding by covalent reactions of CerEOS-epoxy-enone. We revealed the biochemical function of short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7), encoded by SDR9C7, as catalyzing the dehydrogenation of the lipoxygenase products that are esterified in CerEOS. Epoxy-enone produced by SDR9C7 covalently binds to proteins on the outer extracellular surface of the cornified cell envelope. Importantly, our recent striking findings were derived from the detailed lipid analysis of only one ARCI patient with SDR9C7 mutation. The combination of detailed analyses of precious samples from a rare patient and the establishment of corresponding animal models is an effective and powerful tool for analyzing rare inherited diseases. This review summarizes this newly revealed mechanism in skin barrier formation, describes the characteristic features of patients with SDR9C7 mutations, and introduces the clinical value of non-invasive analyses for patients with very rare intractable skin diseases.
Collapse
Affiliation(s)
- Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|