1
|
Ramos R, Vinyals A, Campos-Martin R, Cabré E, Bech JJ, Vaquero J, Gonzalez-Sanchez E, Bertran E, Ferreres JR, Lorenzo D, De La Torre CG, Fabregat I, Caminal JM, Fabra À. New Insights into the Exosome-Induced Migration of Uveal Melanoma Cells and the Pre-Metastatic Niche Formation in the Liver. Cancers (Basel) 2024; 16:2977. [PMID: 39272836 PMCID: PMC11394004 DOI: 10.3390/cancers16172977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
UM is an aggressive intraocular tumor characterized by high plasticity and a propensity to metastasize in the liver. However, the underlying mechanisms governing liver tropism remain poorly understood. Given the emerging significance of exosomes, we sought to investigate the contribution of UM-derived exosomes to specific steps of the metastatic process. Firstly, we isolated exosomes from UM cells sharing a common genetic background and different metastatic properties. A comparison of protein cargo reveals an overrepresentation of proteins related to cytoskeleton remodeling and actin filament-based movement in exosomes derived from the parental cells that may favor the detachment of cells from the primary site. Secondly, we assessed the role of macrophages in reprogramming the HHSCs by exosomes. The activation of HHSCs triggered a pro-inflammatory and pro-fibrotic environment through cytokine production, upregulation of extracellular matrix molecules, and the activation of signaling pathways. Finally, we found that activated HHSCs promote increased adhesion and migration of UM cells. Our findings shed light on the pivotal role of exosomes in pre-metastatic niche construction in the liver.
Collapse
Affiliation(s)
- Raquel Ramos
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Antònia Vinyals
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany
| | - Eduard Cabré
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Joan Josep Bech
- Clinical Proteomics Unit, IDIBELL, 08908 Barcelona, Spain
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, 08916 Badalona, Spain
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- HepatoBiliary Tumors Lab, Centro de Investigación del Cancer and Instituto de Biologia Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- HepatoBiliary Tumors Lab, Centro de Investigación del Cancer and Instituto de Biologia Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
- Department of Physiological Sciences, Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Josep Ramon Ferreres
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- Dermatology Service, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Daniel Lorenzo
- Ocular Translational Eye Research Unit, Ophthalmology Department, Spanish Ocular Oncology National Referral Center (CSUR), Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Carolina G De La Torre
- Clinical Proteomics Unit, IDIBELL, 08908 Barcelona, Spain
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, 08916 Badalona, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Jose Maria Caminal
- Ocular Translational Eye Research Unit, Ophthalmology Department, Spanish Ocular Oncology National Referral Center (CSUR), Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Àngels Fabra
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
2
|
Sprunger ML, Jackrel ME. The role of Matrin-3 in physiology and its dysregulation in disease. Biochem Soc Trans 2024; 52:961-972. [PMID: 38813817 PMCID: PMC11209761 DOI: 10.1042/bst20220585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.
Collapse
Affiliation(s)
- Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
3
|
Santos JR, Park J. MATR3's Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells 2024; 13:980. [PMID: 38891112 PMCID: PMC11171696 DOI: 10.3390/cells13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Matrin-3 (MATR3) was initially discovered as a component of the nuclear matrix about thirty years ago. Since then, accumulating studies have provided evidence that MATR3 not only plays a structural role in the nucleus, but that it is also an active protein involved in regulating gene expression at multiple levels, including chromatin organization, DNA transcription, RNA metabolism, and protein translation in the nucleus and cytoplasm. Furthermore, MATR3 may play a critical role in various cellular processes, including DNA damage response, cell proliferation, differentiation, and survival. In addition to the revelation of its biological role, recent studies have reported MATR3's involvement in the context of various diseases, including neurodegenerative and neurodevelopmental diseases, as well as cancer. Moreover, sequencing studies of patients revealed a handful of disease-associated mutations in MATR3 linked to amyotrophic lateral sclerosis (ALS), which further elevated the gene's importance as a topic of study. In this review, we synthesize the current knowledge regarding the diverse functions of MATR3 in DNA- and RNA-related processes, as well as its involvement in various diseases, with a particular emphasis on ALS.
Collapse
Affiliation(s)
- Jhune Rizsan Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeehye Park
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
4
|
He H, Jamal M, Zeng X, Lei Y, Xiao D, Wei Z, Zhang C, Zhang X, Pan S, Ding Q, Tan H, Xie S, Zhang Q. Matrin-3 acts as a potential biomarker and promotes hepatocellular carcinoma progression by interacting with cell cycle-regulating genes. Cell Cycle 2024; 23:15-35. [PMID: 38252499 PMCID: PMC11005806 DOI: 10.1080/15384101.2024.2305535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The oncogenic role of Matrin-3 (MATR3), an a nuclear matrix protein, in HCC remains largely unknown. Here, we document the biological function of MATR3 in HCC based on integrated bioinformatics analysis and functional studies. According to the TCGA database, MATR3 expression was found to be positively correlated with clinicopathological characteristics in HCC. The receiver operating characteristic (ROC) curve and Kaplan-Meier (KM) curve displayed the diagnostic and prognostic potentials of MATR3 in HCC patients, respectively. Pathway enrichment analysis represented the enrichment of MATR3 in various molecular pathways, including the regulation of the cell cycle. Functional assays in HCC cell lines showed reduced proliferation of cells with stable silencing of MATR3. At the same time, the suppressive effects of MATR3 depletion on HCC development were verified by xenograft tumor experiments. Moreover, MATR3 repression also resulted in cell cycle arrest by modulating the expression of cell cycle-associated genes. In addition, the interaction of MATR3 with cell cycle-regulating factors in HCC cells was further corroborated with co-immunoprecipitation and mass spectrometry (Co-IP/MS). Furthermore, CIBERSORT and TIMER analyses showed an association between MATR3 and immune infiltration in HCC. In general, this study highlights the novel oncogenic function of MATR3 in HCC, which could comprehensively address how aberrant changes in the cell cycle promote HCC development. MATR3 might serve as a prognostic predictor and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Di Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zimeng Wei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shan Pan
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qianshan Ding
- School of Medicine, Northwest University, Xian, China
| | - Haiyan Tan
- Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Liu Y, Yang Y, Ni F, Tai G, Yu C, Jiang X, Wang D. Research on radiotherapy related genes and prognostic target identification of rectal cancer based on multi-omics. J Transl Med 2023; 21:856. [PMID: 38012642 PMCID: PMC10680259 DOI: 10.1186/s12967-023-04753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Radiosensitivity of rectal cancer is related to the radiotherapy efficacy and prognosis of patients with rectal cancer, and the genes and molecular mechanisms related to radiosensitivity of rectal cancer have not been clarified. We explored the radiosensitivity related genes of rectal cancer at a multi omics level. METHODS mRNA expression data and rectum adenocarcinoma (READ) data were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus Database (GEO) (GSE150082, GSE60331, GSE46862, GSE46862). Differentially expressed genes between radiotherapy sensitive group and radiotherapy insensitive group were screened. GO analysis and KEGG pathway analysis were performed for differentially expressed genes. Among the differentially expressed genes, five core genes associated with rectal cancer prognosis were selected using random survival forest analysis. For these five core genes, drug sensitivity analysis, immune cell infiltration analysis, TISIDB database immune gene correlation analysis, GSEA enrichment analysis, construction of Nomogram prediction model, transcriptional regulatory network analysis, and qRT-PCR validation was performed on human rectal adenocarcinoma tissue. RESULTS We found that 600 up-regulated genes and 553 down-regulated genes were significantly different between radiotherapy sensitive group and radiotherapy insensitive group in rectal cancer. Five key genes, TOP2A, MATR3, APOL6, JOSD1, and HOXC6, were finally screened by random survival forest analysis. These five key genes were associated with different immune cell infiltration, immune-related genes, and chemosensitivity. A comprehensive transcriptional regulatory network was constructed based on these five core genes. qRT-PCR revealed that MATR3 expression was different in rectal cancer tissues and adjacent non-cancerous tissues, while APOL6, HOXC6, JOSD1, and TOP2A expression was not different. CONCLUSION Five radiosensitivity-related genes related to the prognosis of rectal cancer: TOP2A, MATR3, APOL6, JOSD1, HOXC6, are involved in multiple processes such as immune cell infiltration, immune-related genes, chemosensitivity, signaling pathways and transcriptional regulatory networks and may be potential biomarkers for radiotherapy of rectal cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yanguang Yang
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Feng Ni
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Guomei Tai
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Cenming Yu
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xiaohui Jiang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| | - Ding Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Muys BR, Shrestha RL, Anastasakis DG, Pongor L, Li XL, Grammatikakis I, Polash A, Chari R, Gorospe M, Harris CC, Aladjem MI, Basrai MA, Hafner M, Lal A. Matrin3 regulates mitotic spindle dynamics by controlling alternative splicing of CDC14B. Cell Rep 2023; 42:112260. [PMID: 36924503 PMCID: PMC10132239 DOI: 10.1016/j.celrep.2023.112260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Matrin3 is an RNA-binding protein that regulates diverse RNA-related processes, including mRNA splicing. Although Matrin3 has been intensively studied in neurodegenerative diseases, its function in cancer remains unclear. Here, we report Matrin3-mediated regulation of mitotic spindle dynamics in colorectal cancer (CRC) cells. We comprehensively identified RNAs bound and regulated by Matrin3 in CRC cells and focused on CDC14B, one of the top Matrin3 targets. Matrin3 knockdown results in increased inclusion of an exon containing a premature termination codon in the CDC14B transcript and simultaneous down-regulation of the standard CDC14B transcript. Knockdown of CDC14B phenocopies the defects in mitotic spindle dynamics upon Matrin3 knockdown, and the elongated and misoriented mitotic spindle observed upon Matrin3 knockdown are rescued upon overexpression of CDC14B, suggesting that CDC14B is a key downstream effector of Matrin3. Collectively, these data reveal a role for the Matrin3/CDC14B axis in control of mitotic spindle dynamics.
Collapse
Affiliation(s)
- Bruna R Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | | | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ahsan Polash
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD 21701, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA.
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Durślewicz J, Klimaszewska-Wiśniewska A, Antosik P, Grzanka D. Low Expression of MATR3 Is Associated with Poor Survival in Clear Cell Renal Cell Carcinoma. Biomedicines 2023; 11:biomedicines11020326. [PMID: 36830863 PMCID: PMC9952985 DOI: 10.3390/biomedicines11020326] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Matrin 3 (MATR3) is one of the most abundant inner nuclear matrix proteins involved in multiple nuclear processes. However, to date, the biological role and prognostic relevance of MATR3 in human cancers still need to be explored. Therefore, the present study aimed to examine the expression levels and prognostic significance of MATR3 in clear cell renal cell carcinoma (ccRCC) patients. We assessed MATR3 immunohistochemical staining and RNA-seq data from publicly available data sets, and the results were analyzed with reference to clinicopathological characteristics and the overall survival of patients. Furthermore, the protein-protein interaction (PPI) network for MATR3 and its neighbors was constructed, functionally annotated, and screened for survival-related genes. MATR3 protein and mRNA levels were lower in tumor tissues compared to control tissues. Lower MATR3 protein (HR 2.36, 95%CI 1.41-3.97; p = 0.001) and mRNA (HR 2.01, 95%CI 1.46-2.75; p < 0.0001) expression levels were found to be a significant independent adverse prognostic factor for the patient's overall survival (OS). Moreover, of the candidate genes, the MRPL23 gene was identified as being the most predictive of OS, and combined MRPL23/MATR3 expression status predicted patient survival better than looking at each marker individually (HR 3.15, 95%CI 2.05-4.83; p < 0.0001). In conclusion, the results from the present investigation warrant further research into the biological and prognostic value of MATR3 and MRPL23 in ccRCC patients.
Collapse
|
8
|
Zhu S, Xing C, Li R, Cheng Z, Deng M, Luo Y, Li H, Zhang G, Sheng Y, Peng H, Wang Z. Proteomic profiling of plasma exosomes from patients with B-cell acute lymphoblastic leukemia. Sci Rep 2022; 12:11975. [PMID: 35831551 PMCID: PMC9279438 DOI: 10.1038/s41598-022-16282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
We aimed to comprehensively investigate the proteomic profile and underlying biological function of exosomal proteins associated with B-cell acute lymphoblastic leukemia. Exosomes were isolated from plasma samples collected from five patients with B-ALL and five healthy individuals, and their protein content was quantitatively analyzed by liquid chromatography with tandem mass spectrometry. A total of 342 differentially expressed proteins were identified in patients with B-ALL. The DEPs were mainly associated with protein metabolic processes and protein activity regulation and were significantly enriched in the Notch and autophagy pathways. Furthermore, we found that ADAM17 and ATG3 were upregulated in patients with B-ALL and enriched in the Notch and autophagy pathways, respectively. Further western blot analysis of exosomes collected from additional 18 patients with B-ALL and 10 healthy controls confirmed that both ADAM17 and ATG3 were overexpressed in exosomes derived from patients with B-ALL (p < 0.001). The areas under the curves of ADAM17 and ATG3 were 0.989 and 0.956, respectively, demonstrating their diagnostic potential. In conclusion, ADAM17 and ATG3 in plasma-derived exosomes may contribute to the progression of B-ALL by regulating the Notch and autophagy pathways. Hence, these proteins may represent valuable diagnostic biomarkers and therapeutic targets for B-ALL.
Collapse
Affiliation(s)
- Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunya Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Retzbach EP, Sheehan SA, Krishnan H, Zheng H, Zhao C, Goldberg GS. Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration. Mol Carcinog 2022; 61:677-689. [PMID: 35472679 PMCID: PMC9233000 DOI: 10.1002/mc.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
The Src tyrosine kinase is a strong tumor promotor. Over a century of research has elucidated fundamental mechanisms that drive its oncogenic potential. Src phosphorylates effector proteins to promote hallmarks of tumor progression. For example, Src associates with the Cas focal adhesion adaptor protein to promote anchorage independent cell growth. In addition, Src phosphorylates Cas to induce Pdpn expression to promote cell migration. Pdpn is a transmembrane receptor that can independently increase cell migration in the absence of oncogenic Src kinase activity. However, to our knowledge, effects of Src kinase activity on anchorage independent cell growth and migration have not been examined in the absence of Pdpn expression. Here, we analyzed the effects of an inducible Src kinase construct in knockout cells with and without exogenous Pdpn expression on cell morphology migration and anchorage independent growth. We report that Src promoted anchorage independent cell growth in the absence of Pdpn expression. In contrast, Src was not able to promote cell migration in the absence of Pdpn expression. In addition, continued Src kinase activity was required for cells to assume a transformed morphology since cells reverted to a nontransformed morphology upon cessation of Src kinase activity. We also used phosphoproteomic analysis to identify 28 proteins that are phosphorylated in Src transformed cells in a Pdpn dependent manner. Taken together, these data indicate that Src utilizes Pdpn to promote transformed cell growth and motility in complementary, but parallel, as opposed to serial, pathways.
Collapse
Affiliation(s)
- Edward P. Retzbach
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Stephanie A. Sheehan
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University Stony Brook, NY, 11794-8661, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Gary S. Goldberg
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
10
|
Durślewicz J, Klimaszewska-Wiśniewska A, Jóźwicki J, Antosik P, Kozerawski K, Grzanka D, Braun M. Prognostic significance of MATR3 in stage I and II non-small cell lung cancer patients. J Cancer Res Clin Oncol 2022; 148:3313-3322. [PMID: 35723727 DOI: 10.1007/s00432-022-04097-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Matrin 3 (MATR3) is a nuclear matrix protein involved in mRNA stabilization, nuclear retention of hyper-edited RNAs, and RNA splicing. The role of MATR3 in cancer is still unclear. The present study aimed to investigate expression levels and prognostic significance of MATR3 in stage I and II non-small cell lung cancer (NSCLC) patients. METHODS We examined MATR3 protein immunohistochemically in tumoral and non-tumoral tissue sections from n = 67 NSCLC patients treated at hospital, and MATR3 mRNA from The Cancer Genome Atlas (TCGA) cohort with respect to valid prognostic and predictive features, as well as treatment outcome. RESULTS Significantly higher immunohistochemical levels of MATR3 protein were found in tumor-adjacent tissue compared to cancer (p = 0.049). A decrease in MATR3 protein expression was found to be a significant independent adverse prognostic factor for patients overall survival (p = 0.007). By contrast, we observed higher MATR3 mRNA levels in tumoral tissue compared to control lung tissues (p < 0.001). Based on the TCGA dataset, we reported that high MATR3 mRNA level was significantly associated with worse OS of NSCLC patients (p < 0.001); however, it was not an independent prognostic marker (p = 0.156). The discrepancies in prognostic significance of MATR3 gene mRNA and protein levels imply a need for further investigation. CONCLUSION In conclusion, the present study warrants further investigation into the biological and prognostic value of MATR3 as a potential prognostic marker in early-stage NSCLC patients.
Collapse
Affiliation(s)
- Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Kamil Kozerawski
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|