1
|
Callan A, Jha S, Valdez L, Baldado L, Tsin A. TGF-β Signaling Pathways in the Development of Diabetic Retinopathy. Int J Mol Sci 2024; 25:3052. [PMID: 38474297 PMCID: PMC10932130 DOI: 10.3390/ijms25053052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-β (TGF-β) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-β signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-β superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-β signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-β and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-β superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Tsin
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.C.); (S.J.); (L.V.); (L.B.)
| |
Collapse
|
2
|
Rabby MG, Rahman MH, Islam MN, Kamal MM, Biswas M, Bonny M, Hasan MM. In silico identification and functional prediction of differentially expressed genes in South Asian populations associated with type 2 diabetes. PLoS One 2023; 18:e0294399. [PMID: 38096208 PMCID: PMC10721103 DOI: 10.1371/journal.pone.0294399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the major metabolic disorders in humans caused by hyperglycemia and insulin resistance syndrome. Although significant genetic effects on T2D pathogenesis are experimentally proved, the molecular mechanism of T2D in South Asian Populations (SAPs) is still limited. Hence, the current research analyzed two Gene Expression Omnibus (GEO) and 17 Genome-Wide Association Studies (GWAS) datasets associated with T2D in SAP to identify DEGs (differentially expressed genes). The identified DEGs were further analyzed to explore the molecular mechanism of T2D pathogenesis following a series of bioinformatics approaches. Following PPI (Protein-Protein Interaction), 867 potential DEGs and nine hub genes were identified that might play significant roles in T2D pathogenesis. Interestingly, CTNNB1 and RUNX2 hub genes were found to be unique for T2D pathogenesis in SAPs. Then, the GO (Gene Ontology) showed the potential biological, molecular, and cellular functions of the DEGs. The target genes also interacted with different pathways of T2D pathogenesis. In fact, 118 genes (including HNF1A and TCF7L2 hub genes) were directly associated with T2D pathogenesis. Indeed, eight key miRNAs among 2582 significantly interacted with the target genes. Even 64 genes were downregulated by 367 FDA-approved drugs. Interestingly, 11 genes showed a wide range (9-43) of drug specificity. Hence, the identified DEGs may guide to elucidate the molecular mechanism of T2D pathogenesis in SAPs. Therefore, integrating the research findings of the potential roles of DEGs and candidate drug-mediated downregulation of marker genes, future drugs or treatments could be developed to treat T2D in SAPs.
Collapse
Affiliation(s)
- Md. Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Md. Hafizur Rahman
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Khulna, Bangladesh
- Faculty of Food Sciences and Safety, Department of Quality Control and Safety Management, Khulna Agricultural University, Khulna, Bangladesh
| | - Md. Numan Islam
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Md. Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Mrityunjoy Biswas
- Department of Agro Product Processing Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Mantasa Bonny
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Md. Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Khulna, Bangladesh
| |
Collapse
|
3
|
Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy. Cells 2022; 12:cells12010123. [PMID: 36611916 PMCID: PMC9818905 DOI: 10.3390/cells12010123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs which mediate some of the pathological mechanisms of diabetic retinopathy. The aim of this study was to identify differentially expressed miRNAs in the vitreal exosomes of proliferative diabetic retinopathy (PDR) patients and non-diabetic controls. Exosomes were extracted from the vitreous samples of 10 PDR patients and 10 controls. The expression of 372 miRNAs was determined using a quantitative polymerase chain reaction (qPCR) panel. We have demonstrated a significant dysregulation in 26 miRNAs. The most remarkable findings include a profound attenuation of the miR-125 family, as well as enhanced miR-21-5p expression in the diabetic samples. We also showed the downregulation of miR-204-5p and the upregulation of let-7g in PDR compared to the controls. This study identified miR-125 and miR-21 as potential targets for further functional analysis regarding their putative role in the pathogenesis of PDR.
Collapse
|
4
|
Rau CS, Kuo PJ, Lin HP, Wu CJ, Wu YC, Chien PC, Hsieh TM, Liu HT, Huang CY, Hsieh CH. The Network of miRNA-mRNA Interactions in Circulating T Cells of Patients Following Major Trauma - A Pilot Study. J Inflamm Res 2022; 15:5491-5503. [PMID: 36172547 PMCID: PMC9512539 DOI: 10.2147/jir.s375881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Following major trauma, genes involved in adaptive immunity are downregulated, which accompanies the upregulation of genes involved in systemic inflammatory responses. This study investigated microRNA (miRNA)-mRNA interactome dysregulation in circulating T cells of patients with major trauma. Patients and Methods This study included adult trauma patients who had an injury severity score ≥16 and required ventilator support for more than 48 h in the intensive care unit. Next-generation sequencing was used to profile the miRNAs and mRNAs expressed in CD3+ T cells isolated from patient blood samples collected during the injury and recovery stages. Results In the 26 studied patients, 9 miRNAs (hsa-miR-16-2-3p, hsa-miR-16-5p, hsa-miR-185-5p, hsa-miR-192-5p, hsa-miR-197-3p, hsa-miR-23a-3p, hsa-miR-26b-5p, hsa-miR-223-3p, and hsa-miR-485-5p) were significantly upregulated, while 58 mRNAs were significantly downregulated in T cells following major trauma. A network consisting of 8 miRNAs and 22 mRNAs interactions was revealed by miRWalk, with three miRNAs (hsa-miR-185-5p, hsa-miR-197-3p, and hsa-miR-485-5p) acting as hub genes that regulate the network. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that “chemokine signaling pathway” was the predominant pathway. Conclusion The study revealed a miRNA-mRNA interactome consisting of 8 miRNAs and 22 mRNAs that are predominantly involved in chemokine signaling in circulating T cells of patients following major trauma.
Collapse
Affiliation(s)
- Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Peng-Chen Chien
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Zeng L, Zhang P, Fang Z, Liu D, Li H, Qu X, Chu S, Zhao H, Liu X, Lee M. The Construction and Analysis of Infiltrating Immune Cell and ceRNA Networks in Diabetic Foot Ulcer. Front Endocrinol (Lausanne) 2022; 13:836152. [PMID: 35909542 PMCID: PMC9329527 DOI: 10.3389/fendo.2022.836152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a severe complication characterized by low-grade infectious inflammation and probably associated with specific competitive endogenous RNAs (ceRNAs) and infiltrating immune cells. Nonetheless, no reliable biomarkers are used for detecting infectious inflammation in DFU. Therefore, it is essential to explore potential biomarkers for the accurate diagnosis and treatment of DFU. METHODS The gene expression profile was retrieved from Gene Expression Omnibus (GEO) database and divided into two groups, namely, standard samples and DFU samples. To establish the ceRNA networks, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were utilized to analyze differential expression genes (DEGs). The cell type identification was achieved by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm to screen-specific immune-infiltrating cells associated with DFU. RESULTS A ceRNA network was constructed with 20 differential expression circRNA (DEcircRNAs), 11 differential expression microRNAs (DEmiRNAs), and 9 differential expression mRNAs (DEmRNAs). Functional enrichment analysis demonstrated that DFU was mainly enriched in vascular endothelial growth factor (VEGF) and T-cell receptor signaling. In addition, CIBERSORT estimation indicated that CD8+ T cells and Monocytes were significantly related to the expression of IL-6, a DFU-specific infectious inflammation factor. CONCLUSION This study identified that some significant ceRNAs (JUNB, GATA3, hsa-circ-0049271 and hsa-circ-0074559) and infiltrating immune cells (CD8+ T cells and monocytes) might be related to DFU infectious inflammation.
Collapse
Affiliation(s)
- Lin Zeng
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Pengxiang Zhang
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zebin Fang
- Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- *Correspondence: Deliang Liu, ; Huilin Li,
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- *Correspondence: Deliang Liu, ; Huilin Li,
| | - Xin Qu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Shufang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Hengxia Zhao
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xuemei Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Maosheng Lee
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
6
|
Guo J, Zhou P, Liu Z, Dai F, Pan M, An G, Han J, Du L, Jin X. The Aflibercept-Induced MicroRNA Profile in the Vitreous of Proliferative Diabetic Retinopathy Patients Detected by Next-Generation Sequencing. Front Pharmacol 2021; 12:781276. [PMID: 34938191 PMCID: PMC8685391 DOI: 10.3389/fphar.2021.781276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: Vascular endothelial growth factor-A (VEGF-A) is an important pathogenic factor in proliferative diabetic retinopathy (PDR), and aflibercept (Eylea) is one of the widely used anti-VEGF agents. This study investigated the microRNA (miRNA) profiles in the vitreous of 5 idiopathic macular hole patients (non-diabetic controls), 5 untreated PDR patients (no-treatment group), and 5 PDR patients treated with intravitreal aflibercept injection (treatment group). Methods: Next-generation sequencing was performed to determine the miRNA profiles. Deregulated miRNAs were validated with quantitative real-time PCR (qRT-PCR) in another cohort. The mRNA profile data (GSE160310) of PDR patients were retrieved from the Gene Expression Omnibus (GEO) database. The function of differentially expressed miRNAs and mRNAs was annotated by bioinformatic analysis and literature study. Results: Twenty-nine miRNAs were significantly dysregulated in the three groups, of which 19,984 target mRNAs were predicted. Hsa-miR-3184-3p, hsa-miR-24-3p, and hsa-miR-197-3p were validated to be remarkably upregulated in no-treatment group versus controls, and significantly downregulated in treatment group versus no-treatment group. In the GSE160310 profile, 204 deregulated protein-coding mRNAs were identified, and finally 179 overlapped mRNAs between the 19,984 target mRNAs and 204 deregulated mRNAs were included for further analysis. Function analysis provided several roles of aflibercept-induced miRNAs, promoting the alternation of drug sensitivity or resistance-related mRNAs, and regulating critical mRNAs involved in angiogenesis and retinal fibrosis. Conclusion: Hsa-miR-3184-3p, hsa-miR-24-3p, and hsa-miR-197-3p were highly expressed in PDR patients, and intravitreal aflibercept injection could reverse this alteration. Intravitreal aflibercept injection may involve in regulating cell sensitivity or resistance to drug, angiogenesis, and retinal fibrosis.
Collapse
Affiliation(s)
- Ju Guo
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyi Zhou
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenhui Liu
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Dai
- People’s Hospital of Zhengzhou University and Henan Eye Institute, Zhengzhou, China
| | - Meng Pan
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangqi An
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Han
- People’s Hospital of Zhengzhou University and Henan Eye Institute, Zhengzhou, China
| | - Liping Du
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemin Jin
- Department of Ophthalmology, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|