1
|
Afshari AR, Sanati M, Ahmadi SS, Kesharwani P, Sahebkar A. Harnessing the capacity of phytochemicals to enhance immune checkpoint inhibitor therapy of cancers: A focus on brain malignancies. Cancer Lett 2024; 593:216955. [PMID: 38750720 DOI: 10.1016/j.canlet.2024.216955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Brain cancers, particularly glioblastoma multiforme (GBM), are challenging health issues with frequent unmet aspects. Today, discovering safe and effective therapeutic modalities for brain tumors is among the top research interests. Immunotherapy is an emerging area of investigation in cancer treatment. Since immune checkpoints play fundamental roles in repressing anti-cancer immunity, diverse immune checkpoint inhibitors (ICIs) have been developed, and some monoclonal antibodies have been approved clinically for particular cancers; nevertheless, there are significant concerns regarding their efficacy and safety in brain tumors. Among the various tools to modify the immune checkpoints, phytochemicals show good effectiveness and excellent safety, making them suitable candidates for developing better ICIs. Phytochemicals regulate multiple immunological checkpoint-related signaling pathways in cancer biology; however, their efficacy for clinical cancer immunotherapy remains to be established. Here, we discussed the involvement of immune checkpoints in cancer pathology and summarized recent advancements in applying phytochemicals in modulating immune checkpoints in brain tumors to highlight the state-of-the-art and give constructive prospects for future research.
Collapse
Affiliation(s)
- Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
3
|
Viglianisi G, Polizzi A, Grippaudo C, Cocuzza S, Leonardi R, Isola G. Chemopreventive and Biological Strategies in the Management of Oral Potentially Malignant and Malignant Disorders. Bioengineering (Basel) 2024; 11:65. [PMID: 38247942 PMCID: PMC10813134 DOI: 10.3390/bioengineering11010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) represent a significant global health burden due to their potential for malignant transformation and the challenges associated with their diagnosis and treatment. Chemoprevention, an innovative approach aimed at halting or reversing the neoplastic process before full malignancy, has emerged as a promising avenue for mitigating the impact of OPMD and OSCC. The pivotal role of chemopreventive strategies is underscored by the need for effective interventions that go beyond traditional therapies. In this regard, chemopreventive agents offer a unique opportunity to intercept disease progression by targeting the molecular pathways implicated in carcinogenesis. Natural compounds, such as curcumin, green tea polyphenols, and resveratrol, exhibit anti-inflammatory, antioxidant, and anti-cancer properties that could make them potential candidates for curtailing the transformation of OPMD to OSCC. Moreover, targeted therapies directed at specific molecular alterations hold promise in disrupting the signaling cascades driving OSCC growth. Immunomodulatory agents, like immune checkpoint inhibitors, are gaining attention for their potential to harness the body's immune response against early malignancies, thus impeding OSCC advancement. Additionally, nutritional interventions and topical formulations of chemopreventive agents offer localized strategies for preventing carcinogenesis in the oral cavity. The challenge lies in optimizing these strategies for efficacy, safety, and patient compliance. This review presents an up to date on the dynamic interplay between molecular insights, clinical interventions, and the broader goal of reducing the burden of oral malignancies. As research progresses, the synergy between early diagnosis, non-invasive biomarker identification, and chemopreventive therapy is poised to reshape the landscape of OPMD and OSCC management, offering a glimpse of a future where these diseases are no longer insurmountable challenges but rather preventable and manageable conditions.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Cristina Grippaudo
- Head and Neck Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Salvatore Cocuzza
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia” ENT Section, University of Catania, Via S. Sofia 68, 95124 Catania, Italy;
| | - Rosalia Leonardi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| |
Collapse
|
4
|
Wu SX, Xiong RG, Huang SY, Zhou DD, Saimaiti A, Zhao CN, Shang A, Zhang YJ, Gan RY, Li HB. Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review. Crit Rev Food Sci Nutr 2023; 63:12422-12440. [PMID: 35852215 DOI: 10.1080/10408398.2022.2101428] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a severe public health problem. Resveratrol is a famous natural compound that has various bioactivities, such as antioxidant, anti-inflammatory, antidiabetic and antiaging activities. Especially, resveratrol could prevent and treat various cancers, such as oral, thyroid, breast, lung, liver, pancreatic, gastric, colorectal, bladder, prostate and ovarian cancers. The underlying mechanisms have been widely studied, such as inhibiting cell proliferation, suppressing metastasis, inducing apoptosis, stimulating autophagy, modulating immune system, attenuating inflammation, regulating gut microbiota and enhancing effects of other anticancer drugs. In this review, we summarize effects and mechanisms of resveratrol on different cancers. This paper is helpful to develop resveratrol, crude extract containing resveratrol, or foods containing resveratrol into functional food, dietary supplements or auxiliary agents for prevention and management of cancers.
Collapse
Affiliation(s)
- Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yun-Jian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Luo L, Lin C, Wang P, Cao D, Lin Y, Wang W, Zhao Y, Shi Y, Gao Z, Kang X, Zhang Y, Wang S, Wang J, Xu M, Liu H, Liu SL. Combined Use of Immune Checkpoint Inhibitors and Phytochemicals as a Novel Therapeutic Strategy against Cancer. J Cancer 2023; 14:2315-2328. [PMID: 37576404 PMCID: PMC10414047 DOI: 10.7150/jca.85966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has dramatically changed cancer treatment, opening novel opportunities to cure malignant diseases. To date, most prevalently targeted immune checkpoints are programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), with many others being under extensive investigations. However, according to available data, only a fraction of patients may respond to ICI therapy. Additionally, this therapy may cause severe adverse immune-related side effects, such as diarrhea, headache, muscle weakness, rash, hepatitis and leucopenia, although most of them are not fatal, they can affect the patient's treatment outcome and quality of life. On the other hand, growing evidence has shown that phytochemicals with anticancer effects may combine ICI therapy to augment the safety and effectiveness of the treatment against cancer while reducing the adverse side effects. In this review, we summarize the state of art in the various experiments and clinical application of ICIs plus phytochemicals, with a focus on their combined use as a novel therapeutic strategy to cure cancer.
Collapse
Affiliation(s)
- LingJie Luo
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Caiji Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Pengfei Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Danli Cao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yiru Lin
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Wenxue Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yufan Zhao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yongwei Shi
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zixiang Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xin Kang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yuanyuan Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuang Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jiaxing Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Mengzhi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Huidi Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
7
|
Lalani AR, Fakhari F, Radgoudarzi S, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023; 50:353-368. [PMID: 36786378 DOI: 10.1111/1440-1681.13760] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.
Collapse
Affiliation(s)
- Armineh Rezagholi Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им), Moscow, Russia
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Moloudi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Wu L, Xu S, Yang B, Yang J, Yee C, Cirillo N. The Hypothalamic-Pituitary-Thyroid Axis Equivalent in Normal and Cancerous Oral Tissues: A Scoping Review. Int J Mol Sci 2022; 23:ijms232214096. [PMID: 36430573 PMCID: PMC9695915 DOI: 10.3390/ijms232214096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis is crucial in regulating thyroid hormone levels that contribute to the development and homeostasis of the human body. Current literature supports the presence of a local HPT axis equivalent within keratinocytes of the skin, with thyroid hormones playing a potential role in cancer progression. However, this remains to be seen within oral tissue cells. An electronic search of Scopus and PubMed/Medline databases was conducted to identify all original publications that reported data on the production or effects of HPT axis components in normal or malignant cells of the oral cavity. The search identified 221 studies, of which 14 were eligible. Eight studies were retrospective analyses of clinical samples, one study involved both in vivo and in vitro experiments, and the remaining five studies were conducted in vitro using cell lines. The search identified evidence of effects of HPT components on oral cancer cells. However, there were limited data for the production of HPT axis components by oral tissues. We conclude that a possible role of the local HPT axis equivalent in the oral mucosa may not be established at present. The gaps in knowledge identified in this scoping review, particularly regarding the production of HPT components by oral tissues, warrant further investigation.
Collapse
|
9
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
10
|
Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 2022; 154:113618. [DOI: 10.1016/j.biopha.2022.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022] Open
|
11
|
Su KW, Lin HY, Chiu HC, Shen SY, ChangOu CA, Crawford DR, Yang YCSH, Shih YJ, Li ZL, Huang HM, Whang-Peng J, Ho Y, Wang K. Thyroid Hormone Induces Oral Cancer Growth via the PD-L1-Dependent Signaling Pathway. Cells 2022; 11:cells11193050. [PMID: 36231010 PMCID: PMC9563246 DOI: 10.3390/cells11193050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Oral cancer is a fatal disease, and its incidence in Taiwan is increasing. Thyroid hormone as L-thyroxine (T4) stimulates cancer cell proliferation via a receptor on integrin αvβ3 of plasma membranes. It also induces the expression of programmed death-ligand 1 (PD-L1) and cell proliferation in cancer cells. Thyroid hormone also activates β-catenin-dependent cell proliferation in cancer cells. However, the relationship between PD-L1 and cancer proliferation is not fully understood. In the current study, we investigated the role of inducible thyroid hormone-induced PD-L1-regulated gene expression and proliferation in oral cancer cells. Thyroxine bound to integrin αvβ3 to induce PD-L1 expressions via activation of ERK1/2 and signal transducer and activator of transcription 3 (STAT3). Inactivated STAT3 inhibited PD-L1 expression and nuclear PD-L1 accumulation. Inhibition of PD-L1 expression reduced β-catenin accumulation. Furthermore, nuclear PD-L1 formed a complex with nuclear proteins such as p300. Suppression PD-L1 expression by shRNA blocked not only expression of PD-L1 and β-catenin but also signal transduction, proliferative gene expressions, and cancer cell growth. In summary, thyroxine via integrin αvβ3 activated ERK1/2 and STAT3 to stimulate the PD-L1-dependent and β-catenin-related growth in oral cancer cells.
Collapse
Affiliation(s)
- Kuan-Wei Su
- Department of Dentistry, Hsinchu MacKay Memorial Hospital, Hsinchu City 30071, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei 11490, Taiwan
| | - Shin-Yu Shen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun A. ChangOu
- Core Facility, Taipei Medical University, Taipei 11031, Taiwan
| | - Dana R. Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Lin Li
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jaqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6113)
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Venkidasamy B, Govindasamy R, Krishnan M, Thiruvengadam M. Nanoformulated bioactive compounds: A potential approach for cancer therapy. Chem Biol Interact 2022; 366:110118. [PMID: 36027946 DOI: 10.1016/j.cbi.2022.110118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Murugesan Krishnan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, 77, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
13
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Delmas D, Hermetet F, Aires V. PD-1/PD-L1 Checkpoints and Resveratrol: A Controversial New Way for a Therapeutic Strategy. Cancers (Basel) 2021; 13:cancers13184509. [PMID: 34572736 PMCID: PMC8467857 DOI: 10.3390/cancers13184509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Over the last decade, immunotherapies using antibodies targeting the programmed cell death 1 (PD-1) checkpoint or its ligand, programmed death ligand 1 (PD-L1), have emerged as promising therapeutic strategies against cancer. However, some current limitations include a relatively low rate of “responders”, the high cost of the treatment, and a rare risk of hyper-progression. Currently, the main challenge is, therefore, to improve these therapies, for instance, by using combined approaches. Here, we summarize the accumulating evidence that resveratrol (RSV) plays a role in the modulation of the PD-1/PD-L1 axis in cancer cells, suggesting the potential of therapeutic strategies combining RSV with PD-L1 or anti-PD-1 inhibitors. We then discuss the therapeutic potential of polyphenols such as RSV to be used in combination with PD-L1 or PD-1 inhibitors for the management of cancer patients. Abstract Immune checkpoints refer to a range of immunoregulatory molecules that modulate the immune response. For example, proteins expressed at the surface of T-cells (including PD-1 and CTLA-4) and their ligands (PD-L1 and B7-1/B7-2, respectively), expressed by cancer cells and antigen-presenting cells, are needed to prevent excessive immune responses. However, they dampen anti-tumor immunity by limiting T-cell activity, making them promising therapeutic targets in cancer. Although immunotherapies using checkpoint blocking/neutralizing antibodies targeting PD-L1 or PD-1 have proven their superiority over conventional chemotherapies or targeted therapies by enhancing T-cell-mediated anti-tumor immunity, some limitations have emerged. These include a relatively low rate of “responders” (<50%; irrespective of cancer type), the high cost of injections, and a rare risk of hyper-progression. For clinicians, the current challenge is thus to improve the existing therapies, potentially through combinatory approaches. Polyphenols such as resveratrol (RSV), a trihydroxystilbene found in various plants and an adjuvant in numerous nutraceuticals, have been proposed as potential therapeutic targets. Beyond its well-known pleiotropic effects, RSV affects PD-L1 and PD-1 expression as well as PD-L1 subcellular localization and post-translational modifications, which we review here. We also summarize the consequences of PD-1/PD-L1 signaling, the modalities of their blockade in the context of cancer, and the current status and limitations of these immunotherapies. Finally, we discuss their potential use in combination with chemotherapies, and, using RSV as a model, we propose polyphenols as adjuvants to enhance the efficacy of anti-PD-1/anti-PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France;
- Bioactive Molecules and Health Research Group, Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
- Correspondence: ; Tel.: +33-380-39-32-26
| | - François Hermetet
- Cancer Campus Gustave Roussy, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1287, “Hematopoietic Stem Cells and the Development of Myeloid Malignancies” Team, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif, France;
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France;
- Bioactive Molecules and Health Research Group, Institut National de la Santé et de la Recherche Médicale (INSERM) Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
| |
Collapse
|
15
|
Lee J, Han Y, Wang W, Jo H, Kim H, Kim S, Yang KM, Kim SJ, Dhanasekaran DN, Song YS. Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy. Biomolecules 2021; 11:1107. [PMID: 34439774 PMCID: PMC8393583 DOI: 10.3390/biom11081107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction of immune checkpoint molecules in the tumor microenvironment reduces the anti-tumor immune response by suppressing the recognition of T cells to tumor cells. Immune checkpoint inhibitor (ICI) therapy is emerging as a promising therapeutic option for cancer treatment. However, modulating the immune system with ICIs still faces obstacles with severe immunogenic side effects and a lack of response against many cancer types. Plant-derived natural compounds offer regulation on various signaling cascades and have been applied for the treatment of multiple diseases, including cancer. Accumulated evidence provides the possibility of efficacy of phytochemicals in combinational with other therapeutic agents of ICIs, effectively modulating immune checkpoint-related signaling molecules. Recently, several phytochemicals have been reported to show the modulatory effects of immune checkpoints in various cancers in in vivo or in vitro models. This review summarizes druggable immune checkpoints and their regulatory factors. In addition, phytochemicals that are capable of suppressing PD-1/PD-L1 binding, the best-studied target of ICI therapy, were comprehensively summarized and classified according to chemical structure subgroups. It may help extend further research on phytochemicals as candidates of combinational adjuvants. Future clinical trials may validate the synergetic effects of preclinically investigated phytochemicals with ICI therapy.
Collapse
Affiliation(s)
- Juwon Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- SK Biopharmaceuticals Co., Ltd., Seongnam-si 13494, Korea
| | - Wenyu Wang
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea
| | - HyunA Jo
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Heeyeon Kim
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94304, USA;
| | - Kyung-Min Yang
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea; (K.-M.Y.); (S.-J.K.)
| | - Seong-Jin Kim
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea; (K.-M.Y.); (S.-J.K.)
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Korea
| | - Danny N. Dhanasekaran
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.L.); (Y.H.); (W.W.); (H.J.); (H.K.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University, Seoul 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
16
|
Chen L, Musa AE. Boosting immune system against cancer by resveratrol. Phytother Res 2021; 35:5514-5526. [PMID: 34101276 DOI: 10.1002/ptr.7189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 01/16/2023]
Abstract
Modulation of the immune system is a critical part of anticancer therapies including immunotherapy, chemotherapy, and radiotherapy. The aim of immunomodulation in cancer therapy is boosting immune system cells including CD8+ T lymphocytes and natural killer (NK) cells, as well as suppression of immunosuppressive responses by macrophages and regulatory T cells (Tregs). Usually, using single or dual modality can induce immune system responses against cancer. However, immunosuppressive responses attenuate antitumor immunity following cancer therapy. Using some agents to boost immune system's function against cancer can increase therapeutic efficiency of anticancer therapy. Resveratrol, as a natural agent, has shown ability to modulate the immune system to potentiate antitumor immunity. Resveratrol has been shown to induce the release of anticancer cytokines such as IFN-γ and TNF-α and also inhibits the release of TGF-β. It also can stimulate the polarization of CD4+ T cells and macrophages toward anticancer cells and reduce infiltration and polarization of immunosuppressive cells. Furthermore, resveratrol can sensitize cancer cells to the released dead signals by anticancer immune cells. This review explains how resveratrol can boost the immune system against cancer via modulation of immune cell responses within tumor.
Collapse
Affiliation(s)
- Libo Chen
- School of Pharmaceutical and Environmental Technology, Jilin Vocational College of Industry and Technology, Jilin, China
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Recent Advancements on Immunomodulatory Mechanisms of Resveratrol in Tumor Microenvironment. Molecules 2021; 26:molecules26051343. [PMID: 33802331 PMCID: PMC7959117 DOI: 10.3390/molecules26051343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol’s effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.
Collapse
|
18
|
Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells. J Cancer Res Clin Oncol 2021; 147:1101-1113. [PMID: 33471184 PMCID: PMC7954741 DOI: 10.1007/s00432-021-03510-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Purpose Recent clinical trials with agents targeting immune checkpoint pathway have emerged as an important therapeutic approach for a broad range of cancer types. Resveratrol has been shown to possess cancer preventive and therapeutic effects and has potential to be chemotherapeutic agent/adjuvant. Here, we assessed the effect of resveratrol on immune checkpoint pathways. Methods The expression patterns of Wnt components and PD-L1 were examined by Western blot, Chromatin immunoprecipitation (ChIP) was used for analysis of DNA–protein interaction, the promoter activity was determined by luciferase reporter assay, apoptosis was analyzed by flow cytometry and the ability of the resveratrol to modulate T cell function was assessed in a co-culture system. Results Although the dose-, and cell-type dependent effects of resveratrol on PD-L1 expression have been reported, we show here that resveratrol dose-dependently upregulates PD-L1 expression at the range of pharmacologic-achievable concentrations in lung cancer cells and that is essential for suppression of T-cell-mediated immune response. We also found that Wnt pathway is critical for mediating resveratrol-induced PD-L1 upregulation. Mechanistically, resveratrol activates SirT1 deacetylase to deacetylate and stabilize transcriptional factor Snail. Snail in turn inhibits transcription of Axin2, which leads in disassembly of destruction complex and enhanced binding of β-catenin/TCF to PD-L1 promoter. Conclusion We conclude that resveratrol is capable to suppress anti-tumor immunity by controlling mainly PD-L1 expression. This finding will extend the understanding of resveratrol in regulation of tumor immunity and is relevant to the debate on resveratrol supplements for lung cancer patients.
Collapse
|
19
|
Zhang Q, Huang H, Zheng F, Liu H, Qiu F, Chen Y, Liang CL, Dai Z. Resveratrol exerts antitumor effects by downregulating CD8 +CD122 + Tregs in murine hepatocellular carcinoma. Oncoimmunology 2020; 9:1829346. [PMID: 33150044 PMCID: PMC7588216 DOI: 10.1080/2162402x.2020.1829346] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment restrain antitumor immunity, resulting in tumor aggression and poor survival in hepatocellular carcinoma (HCC). CD8+CD122+ Tregs have been previously shown to be more potent in immunosuppression than are CD4+Foxp3+ Tregs. Previous studies have demonstrated that resveratrol exerts its anti-cancer effects by downregulating CD4+Foxp3+ and M2-like macrophages, two key immunoregulatory cells that maintain the immunosuppressive tumor microenvironment. In this study, we found that resveratrol inhibited the tumor growth in a subcutaneous Hepa1-6 HCC model and decreased the frequency of CD8+CD122+ Tregs in the tumor as well as lymph nodes and spleen of the tumor-bearing mice. It also increased the percentage of IFN-γ-expressing CD8+ T cells in the tumor and peripheral lymphoid organs. The antitumor effects of resveratrol were partially reversed by the adoptive transfer of exogenous CD8+CD122+ Tregs into the tumor-bearing mice. Meanwhile, resveratrol treatment downregulated immunosuppressive cytokines, including TGF-β1 and interleukin-10, in the tumor while elevating antitumor cytokines, TNF-α and IFN-γ. It also inhibited the activation of STAT3 signaling in the tumor. As expected, resveratrol reduced the percentage of M2-like macrophages in the mice. Importantly, resveratrol suppressed orthotopic H22 tumor growth and decreased the frequency of CD8+CD122+ Tregs and M2-like macrophages in the tumor-bearing mice. Furthermore, our studies showed that resveratrol, at non-cytotoxic concentrations, inhibited CD8+CD122+ Treg differentiation from CD8+CD122− T cells in vitro. Thus, our studies unveiled a new immune mechanism underlying the immunosuppressive tumor microenvironment and demonstrated that resveratrol could help reverse it by diminishing CD8+CD122+ Tregs.
Collapse
Affiliation(s)
- Qunfang Zhang
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Haiding Huang
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Fang Zheng
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Feifei Qiu
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
21
|
Wine Consumption and Oral Cavity Cancer: Friend or Foe, Two Faces of Janus. Molecules 2020; 25:molecules25112569. [PMID: 32486484 PMCID: PMC7321235 DOI: 10.3390/molecules25112569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
The health benefits of moderate wine consumption have been extensively studied during the last few decades. Some studies have demonstrated protective associations between moderate drinking and several diseases including oral cavity cancer (OCC). However, due to the various adverse effects related to ethanol content, the recommendation of moderate wine consumption has been controversial. The polyphenolic components of wine contribute to its beneficial effects with different biological pathways, including antioxidant, lipid regulating and anti-inflammatory effects. On the other hand, in the oral cavity, ethanol is oxidized to form acetaldehyde, a metabolite with genotoxic properties. This review is a critical compilation of both the beneficial and the detrimental effects of wine consumption on OCC.
Collapse
|
22
|
Ashrafizadeh M, Javanmardi S, Moradi-Ozarlou M, Mohammadinejad R, Farkhondeh T, Samarghandian S, Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Biosci Rep 2020; 40:BSR20200257. [PMID: 32163546 PMCID: PMC7133519 DOI: 10.1042/bsr20200257] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoumeh Moradi-Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
23
|
Gianchecchi E, Fierabracci A. Insights on the Effects of Resveratrol and Some of Its Derivatives in Cancer and Autoimmunity: A Molecule with a Dual Activity. Antioxidants (Basel) 2020; 9:antiox9020091. [PMID: 31978952 PMCID: PMC7070243 DOI: 10.3390/antiox9020091] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the interest in natural compounds exerting immunoregulatory effects has enormously increased. Among these, the polyphenol resveratrol, found in a variety of foods and beverages, including red grapes and red wine, has been demonstrated to exert both in vitro and in vivo biological activities. More specifically, it has antiaging, cardioprotective, antioxidant, immunomodulatory, anti-inflammatory and chemopreventive activities. Due to its anti-proliferative, pro-apoptotic and immunoregulatory effects, resveratrol has gained substantial attention for the treatment of cancer or autoimmunity, which represent frequently diagnosed diseases with important consequences for the health of the patients affected. The aim of the present review is to focus on the role of resveratrol in the modulation of cancer as well as of several organ-specific or systemic autoimmune diseases, including autoimmune hepatitis, type 1 diabetes mellitus, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy;
- Infectivology and Clinical Trials Research Department, Children’s Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children’s Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
24
|
Yang YCS, Li ZL, Shih YJ, Bennett JA, Whang-Peng J, Lin HY, Davis PJ, Wang K. Herbal Medicines Attenuate PD-L1 Expression to Induce Anti-Proliferation in Obesity-Related Cancers. Nutrients 2019; 11:nu11122979. [PMID: 31817534 PMCID: PMC6949899 DOI: 10.3390/nu11122979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pro-inflammatory hormones and cytokines (leptin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6) rise in obesity. Elevated levels of hormones and cytokines are linked with several comorbidities such as diabetes, heart disease, and cancer. The checkpoint programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) plays an important role in obesity and cancer proliferation. L-thyroxine (T4) and steroid hormones up-regulate PD-L1 accumulation and promote inflammation in cancer cells and diabetics. On the other hand, resveratrol and other herbal medicines suppress PD-L1 accumulation and reduce diabetic effects. In addition, they induce anti-cancer proliferation in various types of cancer cells via different mechanisms. In the current review, we discuss new findings and visions into the antagonizing effects of hormones on herbal medicine-induced anti-cancer properties.
Collapse
Affiliation(s)
- Yu-Chen S.H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - James A. Bennett
- Center for Immunology and Microbial Diseases, Albany Medical College, Albany, NY 12208, USA;
| | - Jaqueline Whang-Peng
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wang-Fan Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wang-Fan Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12208, USA;
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (Y.-J.S.); (J.W.-P.); (K.W.)
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|