1
|
Galibert-Guijarro A, Noon A, Toufaily J, Hamieh T, Besson E, Gastaldi S, Lalevée J, Feray L. Furan-Indole-Chromenone-Based Organic Photocatalyst for α-Arylation of Enol Acetate and Free Radical Polymerization Under LED Irradiation. Molecules 2025; 30:265. [PMID: 39860135 PMCID: PMC11767514 DOI: 10.3390/molecules30020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative (FIC) as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate group in the presence of bis-(4-tert-butylphenyl)iodonium hexafluorophosphate (Iod) as an additive, or in the presence of both Iod and ethyl-4-(dimethyl amino) benzoate (EDB) under LED irradiation at 365 nm. The photochemical properties of this new light-sensitive compound are described, and the wide redox window (3.27 eV) and the high excited-state potentials FIC*/FIC●- (+2.64 V vs. SCE) and FIC●+/FIC* (-2.41 V vs. SCE) offered by this photocatalyst are revealed. The chemical mechanisms that govern the radical chemistry are discussed by means of different techniques, including fluorescence-quenching experiments, UV-visible absorption and fluorescence spectroscopy, and cyclic voltammetry analysis.
Collapse
Affiliation(s)
| | - Adel Noon
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (A.N.); (T.H.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Doctoral School of Sciences and Technology (EDST), Lebanese University, Beirut 6573-14, Lebanon;
| | - Joumana Toufaily
- Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Doctoral School of Sciences and Technology (EDST), Lebanese University, Beirut 6573-14, Lebanon;
| | - Tayssir Hamieh
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (A.N.); (T.H.)
- Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Doctoral School of Sciences and Technology (EDST), Lebanese University, Beirut 6573-14, Lebanon;
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Eric Besson
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France; (A.G.-G.); (E.B.); (S.G.)
| | - Stéphane Gastaldi
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France; (A.G.-G.); (E.B.); (S.G.)
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (A.N.); (T.H.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Laurence Feray
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France; (A.G.-G.); (E.B.); (S.G.)
| |
Collapse
|
2
|
Li A, Wei X, Xie Y, Ren Y, Zhu X, Liu M, Liu S. Light exposure and its applications in human health. JOURNAL OF BIOPHOTONICS 2024; 17:e202400023. [PMID: 38576140 DOI: 10.1002/jbio.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.
Collapse
Affiliation(s)
- Angze Li
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Xiaoling Wei
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yajia Xie
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Xi Zhu
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Takeuchi EV, Costa JLDSG, Silva CLDA, Barros APO, Machado BL, Casarin HH, Besegato JF, Kuga MC, Silva CM. Influence of blue and violet LED and infrared laser on the temperature of bleaching protocols in different concentrations of hydrogen peroxide. Photodiagnosis Photodyn Ther 2024; 45:104006. [PMID: 38336149 DOI: 10.1016/j.pdpdt.2024.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The photo-acceleration of bleaching gels by lights has been extensively researched. However, the induced temperature increase during this process needs to be further evaluated to prevent damage to the dental pulp. Therefore, the objective of this study was to evaluate the surface and intrapulpal temperature kinetics of different concentrations of hydrogen peroxide (HP) gels photo-accelerated by blue or violet light and infrared laser. METHODS The whitening gels at concentrations of HP35, HP15, and HP6 % were irradiated with blue and violet LED/laser on the surface of a human canine tooth. The surface temperature variation (∆Ts) was evaluated using a pH meter, while the intrapulpal temperature variation (∆Ti) was assessed using a digital thermometer at intervals of 1, 15, and 30 min. Statistical analysis was conducted using a Two-way repeated measures ANOVA test, and Bonferroni post-test was applied at a significance level of 5 %. RESULTS All violet LED photo-accelerated groups showed a higher increase in ∆Ts compared to the blue LED/laser groups. However, there were no significant differences between the groups for ∆Ti. CONCLUSION Although the photo-acceleration of HP35 and HP15 % gels with violet LED/laser has a greater increase in surface temperature compared to HP6 % gel, the different light systems do not significantly increase the intrapulpal temperature.
Collapse
Affiliation(s)
- Elma Vieira Takeuchi
- Department of Dental Materials of the Postgraduate Program in Dentistry, Federal University of Pará - UFPA, Belém, PA, Brazil
| | | | | | - Antonia Patricia Oliveira Barros
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Barbara Leite Machado
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Heitor Hussni Casarin
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - João Felipe Besegato
- School of Dentistry, Federal University of Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Milton Carlos Kuga
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Cecy Martins Silva
- Department of Dental Materials of the Postgraduate Program in Dentistry, Federal University of Pará - UFPA, Belém, PA, Brazil
| |
Collapse
|
4
|
Nimma V, Bayani M, Lingam AS, Ramaswami E, Reddy L, Kadam S. Evaluation of Eye Safety Protocol in the Dental Office. Indian J Occup Environ Med 2024; 28:38-40. [PMID: 38783886 PMCID: PMC11111147 DOI: 10.4103/ijoem.ijoem_28_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 05/25/2024] Open
Abstract
Background Ocular health is significant as undetected and untreated eye conditions can lead to vision loss and blindness. Usually, dentists, dental assisting staff, and patients undergoing frequent dental corrections are likely affected by eye injuries. Methods This survey aimed to evaluate eye safety protocols in the dental fraternity. A prevalidated questionnaire was given to practicing graduate and postgraduate dentists to obtain details of the eye safety protocol they adopted. Results A total of 150 dentists approached; only 125 chose to participate in the survey and answered our questionnaire. Although most dentists used eye protection for themselves, primarily personal eyeglasses and face shields, eye injury was quite common in them. Conclusion Data from this study revealed that the use of eye safety practices among the respondents could be improved. Clinicians should be aware that they are responsible for providing adequate eye protection for themselves and their assisting staff and patients.
Collapse
Affiliation(s)
- Vijayalaxmi Nimma
- Department of Oral Medicine and Radiology, Government Dental College, Mumbai, Maharashtra, India
| | - Maitri Bayani
- Department of Oral Medicine and Radiology, Government Dental College, Mumbai, Maharashtra, India
| | - Amara S. Lingam
- Department of Surgical and Diagnostic Sciences, Dar Al Uloom College of Dentistry, Riyadh, Saudi Arabia
| | - Easwaran Ramaswami
- Department of Oral Medicine and Radiology, Government Dental College, Mumbai, Maharashtra, India
| | - Lavanya Reddy
- Department of Oral Medicine and Radiology, Government Dental College and Hospital, Hyderabad, Telangana, India
| | - Sonali Kadam
- Department of Oral Medicine and Radiology, Government Dental College, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Ghanemi M, Salehi-Vaziri A, Pourhajibagher M, Bahador A. Physico-mechanical and antimicrobial properties of an elastomeric ligature coated with reduced nanographene oxide-nano curcumin subjected to dual-modal photodynamic and photothermal inactivation against Streptococcus mutans biofilms. Photodiagnosis Photodyn Ther 2023; 44:103866. [PMID: 37890811 DOI: 10.1016/j.pdpdt.2023.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND White spot lesions (WSLs) are a common side effect of fixed orthodontic treatment. Streptococcus mutans is the primary causative agent of WSLs and dental caries on the teeth during treatment. According to the unique features of reduced graphene oxide-nano curcumin (rGO-nCur), this study aimed to investigate the mechanical properties and antimicrobial potency of rGO-nCur coated orthodontic elastomeric ligatures as a novel coating composite following dual-modal photodynamic inactivation (PDI) and photothermal inactivation (PTI) against S. mutans biofilms. METHODS After confirmation of rGO-nCur synthesis and coating elastomeric ligatures with different concentration levels of 1.25, 2.5, 5, 7.5, and 10 % of rGO-nCur, tensile strength, force decay, extension to tensile strength, and contact angle of the coated elastomeric ligatures were measured using universal testing machine and sessile drop method, respectively. To investigate the mechanism through which irradiated rGO-nCur can inhibit the formation of S. mutans biofilms, intracellular reactive oxygen species (ROS) generation, and increase in temperature of rGO-nCur solutions under the 450 and 980 nm laser irradiation, respectively, were measured. The anti-biofilm activity and inhibition of water-insoluble extracellular polysaccharide (EPS) production ability of irradiated rGO-nCur coated elastomeric ligatures using a 450 nm diode laser (195 J/cm2), a 980 nm diode laser (195 J/cm2), and a combination of both (78 J/cm2 of irradiation from each one) (i.e., PDI, PTI, and dual-modal PDI/PTI, respectively) were determined. Also, the expression of virulence genes involved in biofilm formation (comDE, gtfD, and smuT) was assessed by quantitative real-time polymerase chain reaction (RT-qPCR) following the mentioned treatment. One-way ANOVA test and Tukey post-hoc test at a p-value equal to/or less than 0.05 were used to analyze the obtained data. RESULTS The synthesis of GO nano-sheets in a layered structure with a thickness of 0.76 nm was confirmed by AFM analysis. FESEM showed that the exfoliated sheet of synthesized GO had several micrometers in lateral size. DLS revealed that the mean particle size and density index of synthesized nCur were 57.47 ± 2.14 nm and 10 % respectively. In DLS analysis, rGO-nCur showed more positive surface charge (24 mV) than the nano-sheets of GO. FESEM confirmed the coating of rGO-nCur on elastomeric ligatures. ANOVA revealed that tensile strength of 1.25, 2.5, and 5 % rGO-nCur coated elastomeric ligatures were not decreased statistically significantly (P > 0.05). Mean tensile strength and recorded force of 7.5 and 10 % rGO-nCur coated elastomeric ligatures decreased significantly after 14 days' immersion in the artificial saliva (P < 0.05). On the 28th day of the study, the mean of the tensile strength of elastomeric ligatures coated with 10 % rGO-nCur (13.03 ± 0.10 N) was recorded as 55.90 % of the initial tensile strength (23.31 ± 0.41 N in uncoated elastomeric ligatures), while the mean tensile strength of elastomeric ligatures coated with 7.5 % rGO-nCur (16.01 ± 0.10 N) was measured as 68.94 % of the initial tensile strength (23.22 ± 0.09 N in uncoated elastomeric ligatures). When comparing the coated elastomeric ligatures at 7.5 % and 10 % to the original uncoated elastomeric ligatures at similar time intervals, statistically significant decreases in extension to tensile strength (0.42 to 0.71 mm or 3.02 to 5.05 %; all P < 0.05) were observed. The largest contact angle was measured in elastomeric ligatures coated by 10 % rGO-nCur followed by 7.5 and 5 % rGO-nCur (128 ± 2.19°, 117 ± 2.23°, and 99 ± 1.83°; respectively). The results revealed a rise of 6.4-fold in intracellular ROS and an 11.2 °C increase in the temperature of rGO-nCur solutions following the 450 nm and 980 nm laser irradiation, respectively. The 5 % rGO-nCur coated elastomeric ligature mediated dual-modal PDI/PTI showed the most inhibition of the biofilm formation of S. mutans by 83.62 % (P = 0.00). Significant reductions in water-insoluble EPS were detected in biofilm cultures of S. mutans on 1.25 % rGO-nCur coated elastomeric ligatures following irradiation with dual waves of the 450 nm and 980 nm diode lasers (i.e., dual-modal PDI/PTI; 96.17 %; P = 0.00). The expression levels of comDE, gtfD, and smuT virulence genes were significantly downregulated (7.52-, 13.92-, and 8.23-fold, respectively) in the biofilm cultures of S. mutans on 1.25 % rGO-nCur coated elastomeric ligatures following dual-modal PDI/PTI in comparison with biofilm cultures on non-coated elastomeric ligatures. CONCLUSION 5 % rGO-nCur coated elastomeric ligatures following irradiation with dual waves of the 450 and 980 nm diode lasers (dual-modal PDI/PTI), without adverse effects on the physico-mechanical properties of elastomeric ligatures, can be used to inhibit the formation of S. mutans biofilms on the coated elastomeric ligatures around orthodontic brackets.
Collapse
Affiliation(s)
- Marzieh Ghanemi
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Abbas Salehi-Vaziri
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
6
|
Thery T, Beney L, Grangeteau C, Dupont S. Sporicidal efficiency of an ultra-high irradiance (UHI) near UV/visible light treatment: An example of application to infected mandarins. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Watts DC. Light-curing dental resin-based composites: How it works and how you can make it work. FRONTIERS IN DENTAL MEDICINE 2023; 4:1108316. [PMID: 39916906 PMCID: PMC11797893 DOI: 10.3389/fdmed.2023.1108316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2025] Open
Abstract
Aim Clinicians may become quite familiar with the rapid transformation of composite pastes to rigid solids as a routine phenomenon in operative dentistry. But they may still lack scientific understanding of how and why this happens. Efforts to learn scientifically about the interaction between light beams and resin-composites can significantly promote effective clinical placement of restorations. Neglect of such study can result in practical procedures of light curing that are inadequate or even seriously defective. Method This review addresses the underlying science and technology to elucidate how light curing works for dental resin-based composites, including-but not limited to-bulk fill types. This involves questions concerning: (a) the particle-wave understanding of light; (b) how photons can penetrate sufficiently deeply into bulk fill composites; (c) the necessary technology of LED light-curing units (LCUs); (d) the criteria for absorption of photons by photoinitiators to initiate free-radical addition polymerisation. Conclusions The implications for clinical practice are surveyed. These include design variables and selection criteria for LED-LCUs and guidelines on their use. This is to guide practitioners towards safe and effective light-curing procedures so that they can achieve optimal result for their patients.
Collapse
Affiliation(s)
- David C. Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Luchian I, Budală DG, Baciu ER, Ursu RG, Diaconu-Popa D, Butnaru O, Tatarciuc M. The Involvement of Photobiology in Contemporary Dentistry-A Narrative Review. Int J Mol Sci 2023; 24:ijms24043985. [PMID: 36835395 PMCID: PMC9961259 DOI: 10.3390/ijms24043985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Light is an emerging treatment approach that is being used to treat many diseases and conditions such as pain, inflammation, and wound healing. The light used in dental therapy generally lies in visible and invisible spectral regions. Despite many positive results in the treatment of different conditions, this therapy still faces some skepticism, which has prevented its widespread adoption in clinics. The main reason for this skepticism is the lack of comprehensive information about the molecular, cellular, and tissular mechanisms of action, which underpin the positive effects of phototherapy. However, there is currently promising evidence in support of the use of light therapy across a spectrum of oral hard and soft tissues, as well as in a variety of important dental subspecialties, such as endodontics, periodontics, orthodontics, and maxillofacial surgery. The merging of diagnostic and therapeutic light procedures is also seen as a promising area for future expansion. In the next decade, several light technologies are foreseen as becoming integral parts of modern dentistry practice.
Collapse
Affiliation(s)
- Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dana Gabriela Budală
- Department of Prosthodontics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (D.G.B.); (E.-R.B.)
| | - Elena-Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (D.G.B.); (E.-R.B.)
| | - Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Diana Diaconu-Popa
- Department of Dental Technology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Monica Tatarciuc
- Department of Dental Technology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
9
|
A Review on Recently Proposed Oxime Ester Photoinitiators. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
10
|
Abstract
This article focuses on the current understanding and concerns over the blue-light hazard when using dental light-curing units. It also provides information and safety protocols to guide the practitioner in making important decisions regarding dental personnel's health and the quality of dental restorations.
Collapse
Affiliation(s)
- Dayane Oliveira
- Center for Dental Biomaterials, Department of Restorative Dental Sciences, University of Florida - College of Dentistry, 1395 Center Drive D9-6, Gainesville, FL 32610, USA
| | - Mateus Garcia Rocha
- Center for Dental Biomaterials, Department of Restorative Dental Sciences, University of Florida - College of Dentistry, 1395 Center Drive D9-6, Gainesville, FL 32610, USA.
| |
Collapse
|
11
|
Gazzani F, Bellisario D, Quadrini F, Danesi C, Alberti A, Cozza P, Pavoni C. Light-curing process for clear aligners' attachment reproduction: comparison between two nanocomposites cured by the auxiliary of a new tool. BMC Oral Health 2022; 22:376. [PMID: 36064526 PMCID: PMC9442987 DOI: 10.1186/s12903-022-02407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Attachments' configuration play an important role during Clear Aligner Treatment (CAT) for aligner retention and control of movements planned. The aims were to compare the macroscopic morphology of attachments reproduced with flowable (FNC) and conventional (CNC) composites and the effects on them of two light-guide tips with different dimensions. METHODS 4 resin casts derived from the initial scan of the same patient were obtained. 10 vestibular attachments were replaced on both upper and lower arches of each model with CNC (Models A, B) and FNC (Models C, D). Each composite was cured by means of the same LED lamp with both regular light-guide (Models A, B) and push and light tool® (Models C, D). The 80 attachments were qualitative analyzed by means of a digital stereo microscope. Surface roughness and waviness measurements were assessed by contact probe surface profiler (TalySurf CLI 2000; Taylor Hobson, Leicester, United Kingdom). Statistical analysis was performed with independent samples t-tests. Significance was established at the P < 0.05 level. RESULTS Model A showed lower values of surface roughness (Ra - 1.41 µm, Rt - 3.46 µm) and waviness (Wa - 2.36 µm, Wt - 10.95 µm) when compared with Model C. Significant reduction of waviness (Wa - 3.85 µm, Wt - 4.90 µm) was observed on Model B when compared with Model D. Significant increase of roughness and waviness parameters (Ra 3.88 µm, Rt 21.07, Wa 2.89 µm, Wt 14.74 µm) was found when CNC sample (Model A) was cured with regular light-guide tip. Higher values (Ra 2.33 µm, Rt 24.07 µm, Wa 1.67 µm, Wt 20.79 µm) were observed after regular light-guide tips curing on FNC sample (Model C). CONCLUSIONS CNC resins determine more regular surfaces of attachments profiles. The additional use of a smaller light- guide of the LED push and light tool® allows to improve the macroscopic morphology of the attachments and to maximize light irradiance delivering by enhancing the polymerization process and the integrity of the features during the treatment.
Collapse
Affiliation(s)
- Francesca Gazzani
- Department of Systems Medicine, University of Rome 'Tor Vergata', Viale Oxford 81, 00133, Rome, Italy.
| | - Denise Bellisario
- Department of Industrial Engineering, University of Rome 'Tor Vergata', Rome, Italy
| | - Fabrizio Quadrini
- Department of Industrial Engineering, University of Rome 'Tor Vergata', Rome, Italy
| | - Carlotta Danesi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Viale Oxford 81, 00133, Rome, Italy
| | - Andrea Alberti
- UniCamillus International Medical University, Rome, Italy.,Department of Dentistry, UNSBC, Tirana, Albania
| | - Paola Cozza
- Department of Systems Medicine, University of Rome 'Tor Vergata', Viale Oxford 81, 00133, Rome, Italy.,Department of Dentistry, UNSBC, Tirana, Albania.,Department of Faculty of Medicine and Surgery, UniCamillus International Medical University, Rome, Italy
| | - Chiara Pavoni
- Department of Systems Medicine, University of Rome 'Tor Vergata', Viale Oxford 81, 00133, Rome, Italy.,Department of Dentistry, UNSBC, Tirana, Albania.,Department of Faculty of Medicine and Surgery, UniCamillus International Medical University, Rome, Italy
| |
Collapse
|
12
|
Lin JT, Lalevee J, Cheng DC. Efficacy analysis of new copper complex for visible light (455, 530 nm) radical/cationic photopolymerization: The synergic effects and catalytic cycle. PLoS One 2022; 17:e0270679. [PMID: 35881581 PMCID: PMC9321381 DOI: 10.1371/journal.pone.0270679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023] Open
Abstract
The kinetics and the conversion features of two 3-component systems (A/B/N), based on the proposed new kinetic schemes of Mokbel and Mau et al, in which a visible LED is used to excite a copper complex to its excited triplet state (G*). The coupling of G* with iodonium salt and ethyl 4-(dimethylamino)benzoate (EDB) produces both free radical polymerization (FRP) of acrylates and the free radical promoted cationic polymerization (CP) of epoxides using various new copper complex as the initiator. Higher FRP and CP conversion can be achieved by co-additive of [B] and N, via the dual function of (i) regeneration [A], and (ii) generation of extra radicals. The interpenetrated polymer network (IPN) capable of initiating both FRP and CP in a blend of TMPTA and EPOX. The synergic effects due to CP include: (i) CP can increase viscosity limiting the diffusional oxygen replenishment; (ii) the cation also acts as a diluting agent for the IPN network, and (iii) the exothermic property of the CP. The catalytic cycle, synergic effects, and the oxygen inhibition are theoretically confirmed to support the experimental hypothesis. The measured results of Mokbel and Mau et al are well analyzed and matching the predicted features of our modeling.
Collapse
Affiliation(s)
| | - Jacques Lalevee
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, Mulhouse, France
| | - Da-Chuan Cheng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichong, Taiwan, ROC
| |
Collapse
|
13
|
Nasrallah H, Douaihy RZ, Telegeiev I, Lebedev OI, Fahs A, EL-Roz M. New Coupling Agent Structures for Preparing Filler-Polymer Hybrid Materials Under Soft Irradiation Conditions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Houssein Nasrallah
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Rita Zakhia Douaihy
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Igor Telegeiev
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| | - Oleg I. Lebedev
- Laboratoire CRISMAT, Normandie Université, ENSICAEN, UNICAEN, CNRS, Caen 14050, France
| | - Armand Fahs
- Laboratoire MAPIEM, Université de Toulon, Toulon 83041, France
| | - Mohamad EL-Roz
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen 14050, France
| |
Collapse
|
14
|
Hammoud F, Hijazi A, Ibrahim-Ouali M, Lalevée J, Dumur F. Chemical engineering around the 5,12-dihydroindolo[3,2-a]carbazole scaffold : Fine tuning of the optical properties of visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Nakayama E, Kushibiki T, Mayumi Y, Azuma R, Ishihara M, Kiyosawa T. Blue Laser Irradiation Decreases the ATP Level in Mouse Skin and Increases the Production of Superoxide Anion and Hypochlorous Acid in Mouse Fibroblasts. BIOLOGY 2022; 11:biology11020301. [PMID: 35205166 PMCID: PMC8869339 DOI: 10.3390/biology11020301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Photobiomodulation studies have reported that blue light irradiation induces the production of reactive oxygen species. We examined the effect of blue laser (405 nm) irradiation on ATP level in the skin and measured the types of reactive oxygen species and reactive nitrogen species. The decrease in the skin ATP level due to blue light irradiation may be caused by oxidative stress due to the generation of reactive oxygen species. These findings highlight the need to consider the effects on the skin when performing photobiomodulation treatment using blue light. Abstract Photobiomodulation studies have reported that blue light irradiation induces the production of reactive oxygen species. We investigated the effect of blue laser (405 nm) irradiation on the ATP levels in mouse skin and determined the types of reactive oxygen species and reactive nitrogen species using cultured mouse fibroblasts. Blue laser irradiation caused a decrease in the ATP level in the mouse skin and triggered the generation of superoxide anion and hypochlorous acid, whereas nitric oxide and peroxynitrite were not detected. Moreover, blue laser irradiation resulted in reduced cell viability. It is believed that the decrease in the skin ATP level due to blue light irradiation results from the increased levels of oxidative stress due to the generation of reactive oxygen species. This method of systematically measuring the levels of reactive oxygen species and reactive nitrogen species may be useful for understanding the effects of irradiation conditions.
Collapse
Affiliation(s)
- Eiko Nakayama
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
- Correspondence: ; Tel.: +81-4-2995-1596
| | - Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Ryuichi Azuma
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, Saitama 3598513, Japan; (T.K.); (Y.M.); (M.I.)
| | - Tomoharu Kiyosawa
- Department of Plastic Surgery, National Defense Medical College, Saitama 3598513, Japan; (R.A.); (T.K.)
| |
Collapse
|
16
|
Chamayou-Robert C, DiGiorgio C, Brack O, Doucet O. Blue light induces DNA damage in normal human skin keratinocytes. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:69-75. [PMID: 34265135 DOI: 10.1111/phpp.12718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The generation of DNA damage by ultra-violet radiations (UV) is well established, and both the nature of the DNA lesions and their respective DNA repair pathways have largely been described. Besides UV rays, visible light constitutes a very important part of the sun spectrum where blue light is considered a significant contributor to premature aging. However, blue light-induced DNA damage has not been deeply explored yet. METHODS In the present study, we assessed in human skin keratinocytes the DNA and chromosome damaging activities of blue light rays (415 nm) as well as their associated DNA repair mechanisms. RESULTS Our results demonstrated that blue light induced dose-dependent DNA damage in human keratinocytes. Both oxidative and cyclobutane-pyrimidine-dimer (CPD) DNA lesions were generated. They were repaired through base excision repair (BER) and nucleotide excision repair (NER) pathways, respectively. Moreover, by using the micronucleus assay we demonstrated, for the first time, that a blue wavelength exerted a clastogenic/aneugenic effect in human keratinocytes, leading to chromosome aberration. CONCLUSION We concluded that, in normal human keratinocytes, blue light creates genotoxic lesions which might accelerate or at least contribute to premature skin aging.
Collapse
Affiliation(s)
| | - Carole DiGiorgio
- Laboratoire de Mutagénèse Environnementale, Aix-Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263, Marseille, France
| | - Olivier Brack
- K.S.I.C., Statistique Industrielle -Khi² - Consulting, 347 rue des sources, Monaco, Monaco
| | - Olivier Doucet
- Coty Lancaster R&D Technology & Innovation Laboratories, Monaco, Monaco
| |
Collapse
|
17
|
Afshar MK, Faryabi R, Afshar MK, Torabi M. Evaluation of the Frequency of Occupational Hazards Among a Group of Iranian General Dentists and its Prevention Criteria. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2022. [DOI: 10.1590/pboci.2022.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Ultra-high irradiance (UHI) blue light: highlighting the potential of a novel LED-based device for short antifungal treatments of food contact surfaces. Appl Microbiol Biotechnol 2021; 106:415-424. [PMID: 34889989 DOI: 10.1007/s00253-021-11718-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Microbial food spoilage is an important cause of health and economic issues and can occur via resilient contamination of food surfaces. Novel technologies, such as the use of visible light, have seen the light of day to overcome the drawbacks associated with surface disinfection treatments. However, most studies report that photo-inactivation of microorganisms with visible light requires long time treatments. In the present study, a novel light electroluminescent diode (LED)-based device was designed to generate irradiation at an ultra-high power density (901.1 mW/cm2). The efficacy of this technology was investigated with the inactivation of the yeast S. cerevisiae. Short-time treatments (below 10 min) at 405 nm induced a ~4.5 log reduction rate of the cultivable yeast population. The rate of inactivation was positively correlated to the overall energy received by the sample and, at a similar energy, to the power density dispatched by the lamp. A successful disinfection of several food contact surfaces (stainless steel, glass, polypropylene, polyethylene) was achieved as S. cerevisiae was completely inactivated within 5 min of treatments. The disinfection of stainless steel was particularly effective with a complete inactivation of the yeast after 2 min of treatment. This ultra-high irradiance technology could represent a novel cost- and time-effective candidate for microbial inactivation of food surfaces. These treatments could see applications beyond the food industry, in segments such as healthcare or public transport. KEY POINTS : • A novel LED-based device was designed to emit ultra-high irradiance blue light • Short time treatments induced high rate of inhibition of S. cerevisiae • Multiple food contact surfaces were entirely disinfected with 5-min treatments.
Collapse
|
19
|
Morgan SD, Yoder-Himes D, Jackson D, Naber J, Berry R, Cash E, Chandran S, Roussel T. Bactericidal effects of high-energy visible light on common otitis media pathogens. J Appl Microbiol 2021; 132:1856-1865. [PMID: 34787955 DOI: 10.1111/jam.15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/16/2021] [Accepted: 11/06/2021] [Indexed: 12/01/2022]
Abstract
AIMS This study assessed the use of high-energy, visible light on the survival rates of three bacteria commonly found in middle ear infections (i.e. otitis media; Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae). METHOD AND RESULTS Bacteria were cultured and then subjected to a single, 4-h treatment of 405 nm wavelength light at two different intensities. All three bacteria species were susceptible to the light at clinically significant rates (>99.9% reduction). Bacteria were susceptible to the high-energy visible (HEV) light in a dose-dependent manner (lower survival rates with increased intensity and duration of exposure). CONCLUSIONS The results suggest that HEV light may provide a non-surgical, non-pharmaceutical approach to the therapeutic treatment of otitis media. SIGNIFICANCE AN IMPACT OF THE STUDY Given the growing concerns surrounding antibiotic resistance, this study demonstrates a rapid, alternative method for effective inactivation of bacterial pathogens partly responsible for instances of otitis media.
Collapse
Affiliation(s)
- Shae D Morgan
- Department of Otolaryngology - Head and Neck Surgery & Communicative Disorders, University of Louisville, Louisville, Kentucky, USA
| | | | - Douglas Jackson
- Department of Electrical and Computer Engineering, University of Louisville, Louisville, Kentucky, USA
| | - John Naber
- Department of Electrical and Computer Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Rachel Berry
- Department of Otolaryngology - Head and Neck Surgery & Communicative Disorders, University of Louisville, Louisville, Kentucky, USA
| | - Elizabeth Cash
- Department of Otolaryngology - Head and Neck Surgery & Communicative Disorders, University of Louisville, Louisville, Kentucky, USA
| | - Swapna Chandran
- Department of Otolaryngology - Head and Neck Surgery & Communicative Disorders, University of Louisville, Louisville, Kentucky, USA
| | - Thomas Roussel
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
20
|
Wang D, Nambu T, Tanimoto H, Iwata N, Yoshikawa K, Okinaga T, Yamamoto K. Interdental Plaque Microbial Community Changes under In Vitro Violet LED Irradiation. Antibiotics (Basel) 2021; 10:antibiotics10111348. [PMID: 34827286 PMCID: PMC8614803 DOI: 10.3390/antibiotics10111348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Oral microbiome dysbiosis has important links to human health and disease. Although photodynamic therapy influences microbiome diversity, the specific effect of violet light irradiation remains largely unknown. In this study, we analyzed the effect of violet light-emitting diode (LED) irradiation on interdental plaque microbiota. Interdental plaque was collected from 12 human subjects, exposed to violet LED irradiation, and cultured in a specialized growth medium. Next-generation sequencing of the 16S ribosomal RNA genes revealed that α-diversity decreased, whereas β-diversity exhibited a continuous change with violet LED irradiation doses. In addition, we identified several operational taxonomic units that exhibited significant shifts during violet LED irradiation. Specifically, violet LED irradiation led to a significant reduction in the relative abundance of Fusobacterium species, but a significant increase in several species of oral bacteria, such as Veillonella and Campylobacter. Our study provides an overview of oral plaque microbiota changes under violet LED irradiation, and highlights the potential of this method for adjusting the balance of the oral microbiome without inducing antibiotic resistance.
Collapse
Affiliation(s)
- Dan Wang
- Department of Operative Dentistry, Graduate School of Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan;
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
- Correspondence: (T.N.); (T.O.)
| | - Hiroaki Tanimoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Naohiro Iwata
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Kazushi Yoshikawa
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
- Correspondence: (T.N.); (T.O.)
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan; (H.T.); (N.I.); (K.Y.); (K.Y.)
| |
Collapse
|
21
|
|
22
|
|
23
|
Hu X, Xie L, Xu Z, Liu S, Tan X, Qian R, Zhang R, Jiang M, Xie W, Tian W. Photothermal-Enhanced Fenton-like Catalytic Activity of Oxygen-Deficient Nanotitania for Efficient and Safe Tooth Whitening. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35315-35327. [PMID: 34291910 DOI: 10.1021/acsami.1c06774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The growing demand for charming smiles has led to the popularization of tooth bleaching procedures. Current tooth bleaching products with high-concentration hydrogen peroxide (HP, 30-40%) are effective but detrimental due to the increased risk of enamel destruction, tooth sensitivity, and gingival irritation. Herein, we reported a less-destructive and efficient tooth whitening strategy with a low-concentration HP, which was realized by the remarkably enhanced Fenton-like catalytic activity of oxygen-deficient TiO2 (TiO2-x). TiO2-x nanoparticles were synthesized with a modified solid-state chemical reduction approach with NaBH4. The Fenton-like activity of TiO2-x was optimized by manipulating oxygen vacancy (OV) concentration and further promoted by the near-infrared (NIR)-induced photothermal effect of TiO2-x. The TiO2-x sample named BT45 was chosen due to the highest methylene blue (MB) adsorption ability and Fenton-like activity among acquired samples. The photothermal property of BT45 under 808 nm NIR irradiation was verified and its enhancement on Fenton-like activity was also studied. The BT45/HP + NIR group performed significantly better in tooth whitening than the HP + NIR group on various discolored teeth (stained by Orange II, tea, or rhodamine B). Excitingly, the same tooth whitening performance as the Opalescence Boost, a tooth bleaching product containing 40% HP, was obtained by a self-produced bleaching gel based on this novel system containing 12% HP. Besides, negligible enamel destruction, safe temperature range, and good cytocompatibility of TiO2-x nanoparticles also demonstrated the safety of this tooth bleaching strategy. This work indicated that the photothermal-enhanced Fenton-like performance of the TiO2-x-based system is highly promising in tooth bleaching application and can also be extended to other biomedical applications.
Collapse
Affiliation(s)
- Xingyu Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhaoyu Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Suru Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruojing Qian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruitao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingyan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenjia Xie
- Department of Prosthodontics I, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Guarnieri FDF, Briso ALF, Ramos FDSES, Esteves LMB, Omoto ÉM, Sundfeld RH, Fagundes TC. Use of auxiliary devices during retreatment of direct resin composite veneers. PLoS One 2021; 16:e0252171. [PMID: 34133430 PMCID: PMC8208554 DOI: 10.1371/journal.pone.0252171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/11/2021] [Indexed: 12/03/2022] Open
Abstract
The removal of direct composite veneers, when the retreatment is necessary, represents a challenge to the clinician, since the healthy dental structure must be preserved. Thus, the aim of this study was to compare the accuracy provided by different auxiliary devices during retreatment of direct composite veneers. Seventy-five bovine teeth were prepared for direct composite veneers, scanned (T1), and restored. Specimens were divided into 5 groups for retreatment: conventional high-speed handpiece without auxiliary device (WD); high-speed handpiece with a white LED (WL); high-speed handpiece with an UV light (UL); electric motor and multiplier 1/5 handpiece (EM); and conventional high-speed handpiece using magnifying loupe (ML). After retreatments, other scanning was performed (T2). Changes on dental wear or composite residues areas, as well as, the average between wear and presence of residues were measured. Data were submitted to Kruskal-Wallis and Dunn’s post-test (p≤ 0.05). There were greater areas of wear for ML, being statistically superior to WD and EM groups. The ML presented smaller residues areas, being statistically lower than the WD and EM groups. Regarding the average between wear and the presence of resin residues, additional wear occurred after re-preparation, regardless of the group. Magnifying loupe promoted greater areas of wear and smaller areas of resin residues than conventional high-speed handpiece and electric motor. Both techniques using light accessories did not differ from other ones.
Collapse
Affiliation(s)
| | - André Luiz Fraga Briso
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Fernanda de Souza e Silva Ramos
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Lara Maria Bueno Esteves
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Érika Mayumi Omoto
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Renato Herman Sundfeld
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Ticiane Cestari Fagundes
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
- * E-mail:
| |
Collapse
|
25
|
Giacoletto N, Dumur F. Recent Advances in bis-Chalcone-Based Photoinitiators of Polymerization: From Mechanistic Investigations to Applications. Molecules 2021; 26:3192. [PMID: 34073491 PMCID: PMC8199041 DOI: 10.3390/molecules26113192] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/01/2023] Open
Abstract
Over the past several decades, photopolymerization has become an active research field, and the ongoing efforts to develop new photoinitiating systems are supported by the different applications in which this polymerization technique is involved-including dentistry, 3D and 4D printing, adhesives, and laser writing. In the search for new structures, bis-chalcones that combine two chalcones' moieties within a unique structure were determined as being promising photosensitizers to initiate both the free-radical polymerization of acrylates and the cationic polymerization of epoxides. In this review, an overview of the different bis-chalcones reported to date is provided. Parallel to the mechanistic investigations aiming at elucidating the polymerization mechanisms, bis-chalcones-based photoinitiating systems were used for different applications, which are detailed in this review.
Collapse
Affiliation(s)
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| |
Collapse
|
26
|
Serrage HJ, Cooper PR, Palin WM, Horstman P, Hadis M, Milward MR. Photobiomodulation of oral fibroblasts stimulated with periodontal pathogens. Lasers Med Sci 2021; 36:1957-1969. [PMID: 33991267 PMCID: PMC8593050 DOI: 10.1007/s10103-021-03331-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Photobiomodulation (PBM) utilises light energy to treat oral disease, periodontitis. However, there remains inconsistency in the reporting of treatment parameters and a lack of knowledge as to how PBM elicits its molecular effects in vitro. Therefore, this study aimed to establish the potential immunomodulatory effects of blue and near infra-red light irradiation on gingival fibroblasts (GFs), a key cell involved in the pathogenesis of periodontitis. GFs were seeded in 96-well plates in media + / - Escherichia coli lipopolysaccharide (LPS 1 μg/ml), or heat-killed Fusobacterium nucleatum (F. nucleatum, 100:1MOI) or Porphyromonas gingivalis (P. gingivalis, 500:1MOI). Cultures were incubated overnight and subsequently irradiated using a bespoke radiometrically calibrated LED array (400-830 nm, irradiance: 24 mW/cm2 dose: 5.76 J/cm2). Effects of PBM on mitochondrial activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and adenosine triphosphate (ATP) assays, total reactive oxygen species production (ROS assay) and pro-inflammatory/cytokine response (interleukin-8 (IL-8) and tumour growth factor-β1 (TGFβ1)) were assessed 24 h post-irradiation. Data were analysed using one-way ANOVA followed by the Tukey test. Irradiation of untreated (no inflammatory stimulus) cultures at 400 nm induced 15%, 27% and 13% increases in MTT, ROS and IL-8 levels, respectively (p < 0.05). Exposure with 450 nm light following application of P. gingivalis, F. nucleatum or LPS induced significant decreases in TGFβ1 secretion relative to their bacterially stimulated controls (p < 0.001). Following stimulation with P. gingivalis, 400 nm irradiation induced 14% increases in MTT, respectively, relative to bacteria-stimulated controls (p < 0.05). These findings could identify important irradiation parameters to enable management of the hyper-inflammatory response characteristic of periodontitis.
Collapse
Affiliation(s)
- H J Serrage
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, UK.
| | - P R Cooper
- School of Dentistry, University of Birmingham, Birmingham, UK
- Faculty of Dentistry, Department of Oral Biology, Sir John Walsh Research Institute University of Otago, Dunedin, New Zealand
| | - W M Palin
- School of Dentistry, University of Birmingham, Birmingham, UK
| | - P Horstman
- Philips Research, Eindhoven, Netherlands
| | - M Hadis
- School of Dentistry, University of Birmingham, Birmingham, UK
| | - M R Milward
- School of Dentistry, University of Birmingham, Birmingham, UK
| |
Collapse
|
27
|
Camphorquinone alters the expression of extracellular proteases in a 3D co-culture model of the oral mucosa. Dent Mater 2020; 37:236-248. [PMID: 33257085 DOI: 10.1016/j.dental.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Objective of our investigation was to determine the influence of CQ on the expression of antioxidant proteins and extracellular proteases in a 3D co-culture model (3DCCM) of the oral mucosa and to analyze the distribution and stability of CQ within 3D-CCMs. METHODS 3D-CCMs consist of confluent keratinocytes (OKF6/TERT2) on cell culture inserts on top of human gingival fibroblasts (HGFs) in collagen. The treatment was carried out by adding CQ to the cell culture inserts at two time points with declining concentrations. Mass spectrometry was used to analyze the CQ concentration above and underneath the OKF6/TERT2-layer. The expression of antioxidant genes was analyzed by qRT-PCR and western blot. The regulation of extracellular proteases from different families was analyzed by qRT-PCR and Proteome Profiler arrays. RESULTS GC/MS analysis showed that CQ was evenly distributed within the model. Heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 (NQO1), and superoxide dismutase 1 were induced on the mRNA and protein level in OKF6/TERT2 cells. In HGFs, only the transcription of NQO1 was induced. The transcription of extracellular proteases was increased mainly in OKF6/TERT2 cells 72 h after the initial treatment. The quantity of ten out of 25 analyzed extracellular proteases in the cell culture supernatant above and six underneath the keratinocyte-layer were modulated by CQ. SIGNIFICANCE Despite its high reactivity, CQ is able to penetrate a dense keratinocyte-layer, presumably across plasma membranes. CQ initially induced the cellular defense machinery against oxidative stress and altered the expression of extracellular proteases. We assume a relationship between both processes.
Collapse
|
28
|
Recent Advances on Copper Complexes as Visible Light Photoinitiators and (Photo) Redox Initiators of Polymerization. Catalysts 2020. [DOI: 10.3390/catal10090953] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metal complexes are used in numerous chemical and photochemical processes in organic chemistry. Metal complexes have not been excluded from the interest of polymerists to convert liquid resins into solid materials. If iridium complexes have demonstrated their remarkable photochemical reactivity in polymerization, their high costs and their attested toxicities have rapidly discarded these complexes for further developments. Conversely, copper complexes are a blooming field of research in (photo) polymerization due to their low cost, easy syntheses, long-living excited state lifetimes, and their remarkable chemical and photochemical stabilities. Copper complexes can also be synthesized in solution and by mechanochemistry, paving the way towards the synthesis of photoinitiators by Green synthetic approaches. In this review, an overview of the different copper complexes reported to date is presented. Copper complexes are versatile candidates for polymerization, as these complexes are now widely used not only in photopolymerization, but also in redox and photoassisted redox polymerization processes.
Collapse
|
29
|
Ouyang X, Yang J, Hong Z, Wu Y, Xie Y, Wang G. Mechanisms of blue light-induced eye hazard and protective measures: a review. Biomed Pharmacother 2020; 130:110577. [PMID: 32763817 DOI: 10.1016/j.biopha.2020.110577] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 07/26/2020] [Indexed: 12/22/2022] Open
Abstract
The risk of blue light exposure to human health has attracted increased research attention. Blue light, with relatively high energy, can cause irreversible photochemical damage to eye tissue. Excessive exposure of the eye to blue light tends to cause a series of alterations, such as oxidative stress, mitochondrial apoptosis, inflammatory apoptosis, mitochondrial apoptosis and DNA damage, resulting in the development of dry eye disease, glaucoma, and keratitis. Accordingly, physical protection, chemical and pharmaceutical protective measures, gene therapy, and other methods are widely used in the clinical treatment of blue light hazard. We reviewed the studies on possible blue light-induced signaling pathways and mechanisms in the eye and summarized the therapeutic approaches to addressing blue light hazard.
Collapse
Affiliation(s)
- Xinli Ouyang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Jing Yang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Zexin Hong
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Yide Wu
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Yongfang Xie
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China.
| | - Guohui Wang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
30
|
Photocatalytic enhancement of antibacterial effects of photoreactive nanohybrid films in an in vitro Streptococcus mitis model. Arch Oral Biol 2020; 117:104837. [PMID: 32673821 DOI: 10.1016/j.archoralbio.2020.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Bacterial adhesion and colonization on implanted devices are major etiological factors of peri-implantitis in dentistry. Enhancing the antibacterial properties of implant surfaces is a promising way to reduce the occurrence of inflammations. In this in vitro study, the antibacterial potential of two nanocomposite surfaces were investigated, as possible new materials for implantology. MATERIAL AND METHODS The structural and photocatalytic properties of the TiO2 and Ag-TiO2 (with 0.001 wt% plasmonic Ag content) photocatalyst containing polymer based composite layers were also studied and compared to the unmodified standard sandblasted and acid etched Ti discs (control). The presence of visible light induced reactive oxygen species was also verified and quantified by luminol based chemiluminescence (CL) probe method. The discs with adhered Streptococcus mitis were illuminated for 5, 10 and 15 min. The antibacterial effect was determined by the metabolic activities of the adhered and proliferated bacterial cells and protein assay at each time point. RESULTS The Ag-TiO2 containing surfaces with obvious photocatalytic activity eliminated the highest amount of the metabolically active bacteria, compared to the control discs in the dark, after 15 min illumination. CONCLUSIONS The plasmonic Ag-enhanced and illuminated surface exhibits significantly better antibacterial activity under harmless visible light irradiation, than the control Ti or TiO2 containing copolymer. The studied surface modifications could be promising for further, more complex investigations associated with dental research on infection prevention in connection with oral implantation.
Collapse
|
31
|
Noirbent G, Dumur F. Recent advances on naphthalic anhydrides and 1,8-naphthalimide-based photoinitiators of polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109702] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Wang Y, Wen X, Jia Y, Huang M, Wang F, Zhang X, Bai Y, Yuan G, Wang Y. Piezo-catalysis for nondestructive tooth whitening. Nat Commun 2020; 11:1328. [PMID: 32165627 PMCID: PMC7067860 DOI: 10.1038/s41467-020-15015-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
The increasing demand for a whiter smile has resulted in an increased popularity for tooth whitening procedures. The most classic hydrogen peroxide-based whitening agents are effective, but can lead to enamel demineralization, gingival irritation, or cytotoxicity. Furthermore, these techniques are excessively time-consuming. Here, we report a nondestructive, harmless and convenient tooth whitening strategy based on a piezo-catalysis effect realized by replacement of abrasives traditionally used in toothpaste with piezoelectric particles. Degradation of organic dyes via piezo-catalysis of BaTiO3 (BTO) nanoparticles was performed under ultrasonic vibration to simulate daily tooth brushing. Teeth stained with black tea, blueberry juice, wine or a combination thereof can be notably whitened by the poled BTO turbid liquid after vibration for 3 h. A similar treatment using unpoled or cubic BTO show negligible tooth whitening effect. Furthermore, the BTO nanoparticle-based piezo-catalysis tooth whitening procedure exhibits remarkably less damage to both enamel and biological cells.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China
| | - Xinrong Wen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China
| | - Yanmin Jia
- School of Science, Xi'an University of Posts and Communications, 710121, Xi'an, China
| | - Ming Huang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China
| | - Feifei Wang
- Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, 200234, Shanghai, China
| | - Xuehui Zhang
- Department of Dental Materials, NMPA Key Laboratory for Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China
| | - Yaojin Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China.
| |
Collapse
|
33
|
Liu X, Chang Q, Ferrer-Espada R, Leanse LG, Goh XS, Wang X, Gelfand JA, Dai T. Photoinactivation of Moraxella catarrhalis Using 405-nm Blue Light: Implications for the Treatment of Otitis Media. Photochem Photobiol 2020; 96:611-617. [PMID: 32105346 PMCID: PMC10125262 DOI: 10.1111/php.13241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/03/2020] [Indexed: 12/30/2022]
Abstract
Moraxella catarrhalis is one of the major otopathogens of otitis media (OM) in childhood. M. catarrhalis tends to form biofilm, which contributes to the chronicity and recurrence of infections, as well as resistance to antibiotic treatment. In this study, we aimed to investigate the effectiveness of antimicrobial blue light (aBL; 405 nm), an innovative nonpharmacological approach, for the inactivation of M. catarrhalis OM. M. catarrhalis either in planktonic suspensions or 24-h old biofilms were exposed to aBL at the irradiance of 60 mW cm-2 . Under an aBL exposure of 216 J cm-2 , a >4-log10 colony-forming units (CFU) reduction in planktonic suspensions and a >3-log10 CFU reduction in biofilms were observed. Both transmission electron microscopy and scanning electron microscopy revealed aBL-induced morphological damage in M. catarrhalis. Ultraperformance liquid chromatography results indicated that protoporphyrin IX and coproporphyrin were the two most abundant species of endogenous photosensitizing porphyrins. No statistically significant reduction in the viability of HaCaT cells was observed after an aBL exposure of up to 216 J cm-2 . Collectively, our results suggest that aBL is potentially an effective and safe alternative therapy for OM caused by M. catarrhalis. Further in vivo studies are warranted before this optical approach can be moved to the clinics.
Collapse
Affiliation(s)
- Xiaojing Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Qihang Chang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Tongji University School of Medicine, Shanghai, China
| | - Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xueping Sharon Goh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jeffrey A Gelfand
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
|
35
|
Fluent MT, Ferracane JL, Mace JG, Shah AR, Price RB. Shedding light on a potential hazard: Dental light-curing units. J Am Dent Assoc 2019; 150:1051-1058. [PMID: 31761019 DOI: 10.1016/j.adaj.2019.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Dental light-curing units (LCUs) are powerful sources of blue light that can cause soft-tissue burns and ocular damage. Although most ophthalmic research on the hazards of blue light pertains to low levels from personal electronic devices, computer monitors, and light-emitting diode light sources, the amount of blue light emitted from dental LCUs is much greater and may pose a "blue light hazard." METHODS The authors explain the potential risks of using dental LCUs, identify the agencies that provide guidelines designed to protect all workers from excessive exposure to blue light, discuss the selection of appropriate eye protection, and provide clinical tips to ensure eye safety when using LCUs. RESULTS While current literature and regulatory standards regarding the safety of blue light is primarily based on animal studies, sufficient evidence exists to suggest that appropriate precautions should be taken when using dental curing lights. The authors found it difficult to find on the U.S. Food and Drug Administration database which curing lights had been cleared for use in the United States or Europe and could find no database that listed which brands of eyewear designed to protect against the blue light has been cleared for use. The authors conclude that more research is needed on the cumulative exposure to blue light in humans. Manufacturers of curing lights, government and regulatory agencies, employers, and dental personnel should collaborate to determine ocular risks from blue light exist in the dental setting, and recommend appropriate eye protection. Guidance on selection and proper use of eye protection should be readily accessible. CONCLUSIONS AND PRACTICAL IMPLICATIONS The Centers for Disease Control and Prevention Guidelines for Infection Control in the Dental Health-Care Setting-2003 and the Occupational Safety and Health Administration Bloodborne Pathogen Standard do not include safety recommendations or regulations that are directly related to blue light exposure. However, there are additional Occupational Safety and Health Administration regulations that require employers to protect their employees from potentially injurious light radiation. Unfortunately, it is not readily evident that these regulations apply to the excessive exposure to blue light. Consequently employers and dental personnel may be unaware that these Occupational Safety and Health Administration regulations exist.
Collapse
|
36
|
Singh G, Sridharan D, Khan M, Seshagiri PB. Mouse embryonic stem cell-derived cardiomyocytes cease to beat following exposure to monochromatic light: association with increased ROS and loss of calcium transients. Am J Physiol Cell Physiol 2019; 317:C725-C736. [PMID: 31314584 DOI: 10.1152/ajpcell.00188.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We earlier established the mouse embryonic stem (ES) cell "GS-2" line expressing enhanced green fluorescent protein (EGFP) and have been routinely using it to understand the molecular regulation of differentiation into cardiomyocytes. During such studies, we made a serendipitous discovery that functional cardiomyocytes derived from ES cells stopped beating when exposed to blue light. We observed a gradual cessation of contractility within a few minutes, regardless of wavelength (nm) ranges tested: blue (~420-495), green (~510-575), and red (~600-700), with green light manifesting the strongest impact. Following shifting of cultures back into the incubator (darkness), cardiac clusters regained beatings within a few hours. The observed light-induced contractility-inhibition effect was intrinsic to cardiomyocytes and not due to interference from other cell types. Also, this was not influenced by any physicochemical parameters or intracellular EGFP expression. Interestingly, the light-induced cardiomyocyte contractility inhibition was accompanied by increased intracellular reactive oxygen species (ROS), which could be abolished in the presence of N-acetylcysteine (ROS quencher). Besides, the increased intracardiomyocyte ROS levels were incidental to the inhibition of calcium transients and suppression of mitochondrial activity, both being essential for sarcomere function. To the best of our knowledge, ours is the first report to demonstrate the monochromatic light-mediated inhibition of contractions of cardiomyocytes with no apparent loss of cell viability and contractility. Our findings have implications in cardiac cell biology context in terms of 1) mechanistic insights into light impact on cardiomyocyte contraction, 2) potential use in laser beam-guided (cardiac) microsurgery, photo-optics-dependent medical diagnostics, 3) transient cessation of hearts during coronary artery bypass grafting, and 4) functional preservation of hearts for transplantation.
Collapse
Affiliation(s)
- Gurbind Singh
- Centre for Stem Cell Research, Christian Medical College Campus, Bagayam, Vellore, India
| | - Divya Sridharan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India
| | - Mahmood Khan
- Department of Emergency Medicine, Wexner Medical Centre, Ohio State University, Columbus, Ohio
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
37
|
Evaluation of Light-Emitting Diodes' Effects on the Expression Level of P53 and EGFR in the Gingival Tissues of Albino Rats. ACTA ACUST UNITED AC 2019; 55:medicina55090605. [PMID: 31540512 PMCID: PMC6780216 DOI: 10.3390/medicina55090605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022]
Abstract
Background and objectives: The light-curing unit is considered an essential piece of equipment in every dental office. This study was conducted to evaluate the effect of Light-Emitting Diodes (LEDs) by the light cure (LC) device on gingival tissues of albino rats histologically and by regarding the expression of P53 and epidermal growth factor receptor (EGFR). Materials and methods: Gingival tissues of the rats were exposed to LEDs for 30 s with an interval of 30 s for periods of 2 and 5 min and were examined after two and four weeks of light exposure. After the set time, histological sections were studied and the P53 and EGFR expressions were evaluated immunohistochemically and by molecular methods. Results: Mild hyperplasia and mild inflammatory response were detected in higher rates after two weeks of exposure when compared to 4 weeks postexposure. Whereas fibrosis was found at a higher rate after four weeks than that found after two weeks postexposure, parakeratosis was seen only in the group that was exposed for 5 min to LC and when biopsies were taken after 2 weeks. We found that the immunohistochemical expression of P53 was not changed. Similarly, the alteration of EGFR expression was statistically nonsignificant (p > 0.05) when compared to the control group. The data obtained from the qRT-PCR reaction was analyzed using the comparative CT (2−ΔΔCT) method. Statistically, there was no significant difference in the expression of EGER and P53 gene transcripts. Conclusions: LED causes no serious alteration in P53 and EGFR expression, and only trivial histopathological changes occurred, most of which recovered after a 4-week interval.
Collapse
|
38
|
Chang LY, Fan SMY, Liao YC, Wang WH, Chen YJ, Lin SJ. Proteomic Analysis Reveals Anti-Fibrotic Effects of Blue Light Photobiomodulation on Fibroblasts. Lasers Surg Med 2019; 52:358-372. [PMID: 31321797 DOI: 10.1002/lsm.23137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES This study was aimed at determining the effects of blue light photobiomodulation on primary adult mouse dermal fibroblasts (AMDFs) and the associated signaling pathways. STUDY DESIGN/MATERIALS AND METHODS Cultured AMDFs from adult C57BL/6 mice were irradiated by blue light from a light-emitting diode (wavelength = 463 ± 50 nm; irradiance = 5 mW/cm2 ; energy density = 4-8 J/cm2 ). The cells were analyzed using mass spectrometry for proteomics/phosphoproteomics, AlamarBlue assay for mitochondrial activity, time-lapse video for cell migration, quantitative polymerase chain reaction for gene expression, and immunofluorescence for protein expression. RESULTS Proteomic/phosphoproteomic analysis showed inhibition of extracellular signal-regulated kinases/mammalian target of rapamycin and casein kinase 2 pathways, cell motility-related networks, and multiple metabolic processes, including carbon metabolism, biosynthesis of amino acid, glycolysis/gluconeogenesis, and the pentose phosphate pathway. Functional analysis demonstrated inhibition of mitochondrial activities, cell migration, and mitosis. Expression of growth promoting insulin-like growth factor 1 and fibrosis-related genes, including transforming growth factor β1 (TGFβ1) and collagen type 1 ɑ2 chain diminished. Protein expression of α-smooth muscle actin, an important regulator of myofibroblast functions, was also suppressed. CONCLUSIONS Low-level blue light exerted suppressive effects on AMDFs, including suppression of mitochondrial activity, metabolism, cell motility, proliferation, TGFβ1 levels, and collagen I production. Low-level blue light can be a potential treatment for the prevention and reduction of tissue fibrosis, such as hypertrophic scar and keloids. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lo-Yu Chang
- School of Medicine, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Sabrina Mai-Yi Fan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yen-Chen Liao
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei 115, Taiwan
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yu-Ju Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei 115, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan.,Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|