1
|
Majeed HF, Hamad TI, Bairam LR. Enhancing 3D-printed denture base resins: A review of material innovations. Sci Prog 2024; 107:368504241263484. [PMID: 39043200 PMCID: PMC11271118 DOI: 10.1177/00368504241263484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The limited physical and mechanical properties of polymethyl methacrylate (PMMA), the current gold standard, necessitates exploring improved denture base materials. While three-dimensional (3D) printing offers accuracy, efficiency, and patient comfort advantages, achieving superior mechanics in 3D-printed denture resins remains challenging despite good biocompatibility and esthetics. This review investigates the potential of innovative materials to address the limitations of 3D-printed denture base materials. Thus, this article is organized to provide a comprehensive overview of recent efforts to enhance 3D-printed denture base materials, highlighting advancements. It critically examines the impact of incorporating various nanoparticles (zirconia, titania, etc.) on these materials' physical and mechanical properties. Additionally, it delves into recent strategies for nanofiller surface treatment and biocompatibility evaluation and explores potential future directions for polymeric composites in denture applications. The review finds that adding nanoparticles significantly improves performance compared to unmodified resins, and properties can be extensively enhanced through specific modifications, particularly silanized nanoparticles. Optimizing 3D-printed denture acrylics requires a multifaceted approach, with future research prioritizing novel nanomaterials and surface modification techniques for a novel generation of superior performance, esthetically pleasing, and long-lasting dentures.
Collapse
Affiliation(s)
- Hadeel Fikrat Majeed
- Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Thekra Ismael Hamad
- Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Latifa R Bairam
- Department of Restorative Dentistry, School of Dental Medicine, University of New York at Buffalo, NY, USA
| |
Collapse
|
2
|
Saini RS, Bavabeedu SS, Quadri SA, Gurumurthy V, Kanji MA, Okshah A, Binduhayyim RIH, Alarcón-Sánchez MA, Mosaddad SA, Heboyan A. Mapping the research landscape of nanoparticles and their use in denture base resins: a bibliometric analysis. DISCOVER NANO 2024; 19:95. [PMID: 38814562 PMCID: PMC11139848 DOI: 10.1186/s11671-024-04037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Nanoparticles are increasingly used in dentistry for various applications, including enhancing the mechanical properties of denture base resins. This study aimed to comprehensively review and analyze the research landscape of nanoparticles and their effect on the flexural strength of denture base resins to identify key research areas and trends and to highlight the importance of collaboration between authors and institutions. METHODS A Bibliometric Analysis was conducted using the Keywords "Nanoparticle*" AND "Denture*" OR "CAD/CAM." The literature search from the WOS database was restricted to the publication years 2011 to 2022. RESULTS Key findings encompass an increase in research publications but a decline in citations. Saudi Arabia, China, and Iraq led this research, with specific institutions excelling. Notable journals with high impact factors were identified. Authorship patterns show variations in citation impact. Additionally, keyword analysis revealed that current research trends offer insights into influential authors and their networks. CONCLUSIONS The analysis of nanoparticles and denture base resins reveals a dynamic and evolving landscape that emphasizes the importance of collaboration, staying current with research trends, and conducting high-quality research in this ever-evolving domain.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | - Masroor Ahmed Kanji
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Abdulmajeed Okshah
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Mario Alberto Alarcón-Sánchez
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
3
|
İşisağ Ö. The effect of hydrofluoric acid treatment on the repair strength of polyamide denture base materials: An in vitro study. J Prosthodont 2023. [PMID: 37975406 DOI: 10.1111/jopr.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Although polymethylmethacrylate (PMMA) dentures can be repaired using autopolymerizing acrylic resin, achieving it using polyamides is difficult. This study aimed to achieve acceptable bond strength using autopolymerizing acrylic resin by applying surface treatments to the polyamide denture base material. MATERIALS AND METHODS Thirty-six disc-shaped samples (27 polyamide, 9 PMMA) were prepared. Based on the surface treatment applied, the polyamide samples were divided into three groups: No surface treatment (n = 9), tribochemical silica coating + silane coupling agent (n = 9), and 9% hydrofluoric acid + tribochemical silica coating +silane coupling agent (n = 9). PMMA specimens received no surface treatment. Polyamide and PMMA surfaces had auto-polymerizing acrylic resin bonded on them, and then a shear bond strength test was performed between them after aging. The Kruskal-Wallis test was used, and statistical significance was set at p < 0.05. RESULTS PMMA had the highest shear bond strength, the untreated polyamide group had the lowest shear bond strength, and the difference was significant (p < 0.05). The group treated with 9% hydrofluoric acid, tribochemical silica coating, and silane coupling agent exhibited the highest shear bond strength of the polyamide groups, and the bond strength in this group was comparable to the PMMA specimens (p > 0.05). CONCLUSIONS The polyamide denture repair strength can be improved by 9% hydrofluoric acid, tribochemical silica coating, and silane coupling agent application to the polyamide surface.
Collapse
Affiliation(s)
- Özer İşisağ
- Department of Prosthodontics, Afyonkarahisar University of Health Sciences Faculty of Dentistry, Afyonkarahisar, Turkey
| |
Collapse
|
4
|
Alrabeah GO. Effect of Surface Textures and Fabrication Methods on Shear Bond Strength Between Titanium Framework and Auto-Polymerizing Acrylic Repair Resin. Cureus 2023; 15:e48883. [PMID: 38024043 PMCID: PMC10652233 DOI: 10.7759/cureus.48883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of the study was to evaluate the effect of airborne particle abrasion (using different sizes of alumina particles) on the shear bond strength (SBS) between cast and milled titanium metal frameworks and auto-polymerizing acrylic repair resin. Forty flat cylindrical titanium disks were divided into two main divisions: cast and milled titanium. The two divisions were further subdivided into four groups based on metal surface treatment. Three particle sizes of aluminum oxide air abrasive powders (50µm, 110µm, and 250µm) were used for metal surface treatment by airborne particle abrasion. One group was the control group with no surface treatment. Auto-polymerizing acrylic repair resin was applied to all titanium disks. The specimens were subjected to SBS testing using a universal testing machine (Instron Corporation, Norwood, Massachusetts, United States). Surface evaluation was performed using a scanning electron microscope. One-way ANOVA was used for statistical analysis. The results showed a significant increase in SBS after airborne particle abrasion of both milled and cast titanium groups (p<0.001). The SBS was directly proportional to the size of the aluminum oxide particles. The milled titanium group showed higher SBS values than the cast group when the surface was not treated with alumina particles (p < 0.001) and when the surface was treated with the smaller particle sizes of 50 µm, whereas the cast group demonstrated higher SBS values than the milled group (p < 0.01) when the particle size was increased to 110 µm and 250 µm. It could be concluded that SBS between titanium metal frameworks and auto-polymerizing repair acrylic resin was directly related to the size of the alumina airborne particle abrasives. The fabrication method of the titanium framework also influenced the SBS as the untreated milled frameworks demonstrated favorable SBS values compared to the untreated cast frameworks.
Collapse
Affiliation(s)
- Ghada O Alrabeah
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, SAU
| |
Collapse
|
5
|
Ansarifard E, Zahed M, Azarpira N, Jooyandeh S. Investigating the biocompatibility, flexural strength, and surface roughness of denture base resin containing copper oxide nanoparticles: An in vitro study. Heliyon 2023; 9:e19846. [PMID: 37809470 PMCID: PMC10559242 DOI: 10.1016/j.heliyon.2023.e19846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Aim This study aimed to evaluate the biocompatibility, flexural strength, and surface roughness of polymethyl methacrylate (PMMA) containing Copper Oxide Nanoparticles (CuO NPs) at different concentrations. Methods 25 heat-polymerized PMMA wax patterns fabricated in 5 groups containing 0.5, 5, 50, and 500 μg/ml CuO NPs and nanoparticle (NP)-free PMMA discs were prepared. 5 growth mediums (DMEM with 10% FBS and 1% penicillin-streptomycin) without disks were also incubated similarly to serve as the control groups. The cytotoxicity of the discs was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on cultured Human Gingival Fibroblasts. The number of 1.3 × 104 cells were seeded in each well of 96-well plates (5 wells for the extract of each specimen). Days 1, 3, 5, and 7 were the intervals that the culture media were in direct contact with the PMMA discs for either 24 or 72 h. After that, a total of 40 specimens with 65 × 10 × 2.5 mm dimensions were prepared in five groups (n = 8). The specimens were subjected to a rugosimeter for the evaluation of surface roughness. The flexural strength test was performed using a universal testing machine. Microscopic evaluation was performed for the dispersion of the NPs. Non-parametric Kruskal-Wallis test and parametric one-way ANOVA test were used for data analysis. Results The samples containing 500 μg/ml NPs showed the lowest percentage of cell viability at all incubation periods, while the highest cell viability was observed in NP-free PMMA 24 h after the seventh day of incubation. NPs at 50 and 500 μg/ml concentrations showed strongly significant differences in cytotoxicity compared to the 0 concentration and the control group (p < 0.001). Although all the samples demonstrated an increasing pattern of cell viability on the third, fifth, and seventh days, the percentage of cell viability was significantly lower after 72 h than after 24 h in all incubation periods (p < 0.001). NPs significantly increased flexural strength (p = 0.005) but did not affect the surface roughness of the PMMA discs (p = 0.396). Significance The CuO NPs were cytotoxic only when applied in high concentrations, but presented a descending trend over time. No cytotoxic effect was observed in the experimental groups after seven days of incubation. Furthermore, CuO NPs increased flexural strength, but the surface roughness of the PMMA discs was not affected.
Collapse
Affiliation(s)
- Elham Ansarifard
- Department of Prosthetics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zahed
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Organ Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saghar Jooyandeh
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Yassin SM, Mohamad D, Togoo RA, Sanusi SY, Johari Y. Do nanofillers provide better physicomechanical properties to resin-based pit and fissure sealants? A systematic review. J Mech Behav Biomed Mater 2023; 145:106037. [PMID: 37499522 DOI: 10.1016/j.jmbbm.2023.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The purpose of this study was to systematically review the impact of nanofillers on the physicomechanical properties of resin-based pit and fissure sealants (RBS). This review included in vitro studies with full-length English-language articles reporting on the physicomechanical properties of nanofilled RBS until February 2023. PubMed, Web of Sciences, Scopus, and LILACS databases were accessed for literature searches. The review was formulated based on the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and used the Consolidated Standards of Reporting Trials (CONSORT) guidelines and risk of bias Cochrane tool for quality assessment. The search resulted in 539 papers, of which 22 were eligible to be included in the review. Inorganic, polymeric, core-shell, and composite nanomaterials were used to reinforce the studied RBS. The inherent nature of the nanomaterial used, its morphology, concentration, and volume used were the primary parameters that determined the nanomaterial's success as a filler in RBS. These parameters also influenced their interaction with the resin matrix, which influenced the final physicomechanical properties of RBS. The use of nanofillers that were non-agglomerated and well dispersed in the resin matrix enhanced the physicomechanical properties of RBS.
Collapse
Affiliation(s)
- Syed M Yassin
- Biomaterials and Craniofacial Aesthetics Research Cluster, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Department of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia.
| | - Dasmawati Mohamad
- Biomaterials and Craniofacial Aesthetics Research Cluster, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Rafi Ahmad Togoo
- Department of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia.
| | - Sarliza Yasmin Sanusi
- Biomaterials and Craniofacial Aesthetics Research Cluster, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Yanti Johari
- Biomaterials and Craniofacial Aesthetics Research Cluster, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
7
|
Kaurani P, Hindocha AD, Jayasinghe RM, Pai UY, Batra K, Price C. Effect of addition of titanium dioxide nanoparticles on the antimicrobial properties, surface roughness and surface hardness of polymethyl methacrylate: A Systematic Review. F1000Res 2023; 12:577. [PMID: 37424742 PMCID: PMC10323281 DOI: 10.12688/f1000research.130028.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 07/11/2023] Open
Abstract
Background: Polymethyl Methacrylate (PMMA) denture-base resins have poor surface properties that facilitates microbial adhesion causing denture stomatitis. This systematic review aims to evaluate the effect of different sizes and percentages of titanium dioxide nanoparticles (TiO2NP) on the antimicrobial property, surface roughness and surface hardness of PMMA denture base resin. Methods: A systematic search of English peer-reviewed articles, clinical trial registries, grey literature databases and other online sources was performed using the PRISMA-S Guidelines for In-Vivo and In-Vitro studies. Qualitative data synthesis was performed to analyse sample dimensions, acrylic used, treatments of nanoparticles, methods used for testing and effect of size and percentage of nanoparticle. Risk of bias assessment was done using modified Cochrane risk of bias tool. Results: Out of 1376 articles, 15 were included. TiO 2NP of size less than 30 nm was most frequently used. Both antimicrobial property and surface hardness improved irrespective of the size of the added TiO 2NP. Three studies reported increase in the surface roughness with less than 50 nm TiO 2NP. 3% TiO 2NP was most frequently used. On increasing the percentage, three studies reported an increase in antimicrobial property, while two studies found no change. With TiO 2NP greater than or equal to 3%, six studies reported an increase in surface hardness, while two reported increase in surface roughness. Large methodological variations were observed across studies. All studies except one were of moderate quality. Conclusions: On addition of TiO 2NP to heat polymerized PMMA, the antimicrobial property and surface hardness improved irrespective of the size of the TiO 2NP, however, addition of nanoparticles less than 50 nm increased the surface roughness. Increasing the percentage of TiO 2NP increased the surface hardness but did not always increase the antimicrobial property. Addition of 3% TiO 2NP provided optimum results with regards to antimicrobial effect and surface hardness, but increase in the surface roughness.
Collapse
Affiliation(s)
- Pragati Kaurani
- Department of Prosthodontics, Mahatma Gandhi Dental College and Hospital, Jaipur, Rajasthan, 302022, India
| | - Amit D Hindocha
- Department of Prosthodontics, Sinhgad Dental College and Hospital, Pune, Maharashtra, 411041, India
| | - Rasika Manori Jayasinghe
- Department of Prosthetic Dentistry, Faculty of Dental Sciences , University of Peradeniya, Kandy, Central province, 20400, Sri Lanka
| | - Umesh Y Pai
- Department of Prosthodontics, Manipal College of Dental Sciences, Mangalore, Karnataka, 575004, India
| | - Kavita Batra
- Department of Medical Education, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Nevada, 89102, USA
| | - Carrie Price
- Health Professions Librarian, Albert S. Cook Library, Towson University, Towson, Maryland, 21252, USA
| |
Collapse
|
8
|
Gad MM, Albazroun Z, Aldajani F, Elakel AM, El Zayat M, Akhtar S, Khan SQ, Ali S, Rahoma AM. Repair Bond Strength of Conventionally and Digitally Fabricated Denture Base Resins to Auto-Polymerized Acrylic Resin: Surface Treatment Effects In Vitro. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9062. [PMID: 36556867 PMCID: PMC9785635 DOI: 10.3390/ma15249062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Denture base fracture is one of the most annoying problems for both prosthodontists and patients. Denture repair is considered to be an appropriate solution rather than fabricating a new denture. Digital denture fabrication is widely spreading nowadays. However, the repair strength of CAD-CAM milled and 3D-printed resins is lacking. This study aimed to evaluate the effect of surface treatment on the shear bond strength (SBS) of conventionally and digitally fabricated denture base resins. One l heat-polymerized (Major base20), two milled (IvoCad, AvaDent), and three 3D-printed (ASIGA, NextDent, FormLabs) denture base resins were used to fabricate 10 × 10 × 3.3 acrylic specimens (N = 180, 30/resin, n = 10). Specimens were divided into three groups according to surface treatment; no treatment (control), monomer application (MMA), or sandblasting (SB) surface treatments were performed. Repair resin was bonded to the resin surface followed by thermocycling (5000 cycles). SBS was tested using a universal testing machine where a load was applied at the resin interface (0.5 mm/min). Data were collected and analyzed using ANOVA and a post hoc Tukey test (α = 0.05). SEM was used for failure type and topography of fractured surfaces analysis. The heat-polymerized and CAD-CAM milled groups showed close SBS values without significance (p > 0.05), while the 3D-printed resin groups showed a significant decrease in SBS (p < 0.0001). SBS increased significantly with monomer application (p < 0.0001) except for the ASIGA and NextDent groups, which showed no significant difference compared to the control groups (p > 0.05). All materials with SB surface treatment showed a significant increase in SBS when compared with the controls and MMA application (p < 0.0001). Adhesive failure type was observed in the control groups, which dramatically changed to cohesive or mixed in groups with surface treatment. The SBS of 3D-printed resin was decreased when compared with the conventional and CAD-CAM milled resin. Regardless of the material type, SB and MMA applications increased the SBS of the repaired resin and SB showed high performance.
Collapse
Affiliation(s)
- Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Zainab Albazroun
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatimah Aldajani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ahmed M. Elakel
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mai El Zayat
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soban Q. Khan
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ahmed M. Rahoma
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Lourinho C, Salgado H, Correia A, Fonseca P. Mechanical Properties of Polymethyl Methacrylate as Denture Base Material: Heat-Polymerized vs. 3D-Printed-Systematic Review and Meta-Analysis of In Vitro Studies. Biomedicines 2022; 10:biomedicines10102565. [PMID: 36289826 PMCID: PMC9599137 DOI: 10.3390/biomedicines10102565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The synergy between dentistry and informatics has allowed the emergence of new technologies, specifically 3D printing, which has led to the development of new materials. The aim of this research was to compare the mechanical properties of dental base resins for 3D printing with conventional ones. This systematic review was developed using the PRISMA guidelines, and the electronic literature search was performed with the PubMed/MEDLINE, Web of Science-MEDLINE and EMBASE databases, until 30 April 2022. Two researchers selected the studies independently, and thus eight articles were found eligible for analysis. A meta-analysis was developed to estimate flexural strength. The Cohen's kappa corresponding to this review was 1.00, and the risk assessment was considered low for the included studies. The 3D printing resin presented lower values of flexural strength and hardness compared with the heat-cured resin. Regarding impact strength, a lower value was recorded for the heat-cured resin compared with the 3D printing resin. Three-dimensional printing resins are viable materials for making prosthetic bases but need further clinical research.
Collapse
Affiliation(s)
- Cláudia Lourinho
- Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505 Viseu, Portugal
- Correspondence:
| | - Helena Salgado
- Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505 Viseu, Portugal
| | - André Correia
- Centre of Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505 Viseu, Portugal
| | - Patrícia Fonseca
- Centre of Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505 Viseu, Portugal
| |
Collapse
|
10
|
Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2022; 128:248-330. [PMID: 36096911 DOI: 10.1016/j.prosdent.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2021 dental literature in restorative dentistry to inform busy dentists regarding noteworthy scientific and clinical progress over the past year. Each member of the committee brings discipline-specific expertise to coverage of this broad topical area. Specific subject areas addressed, in order of the appearance in this report, include COVID-19 and the dental profession (new); prosthodontics; periodontics, alveolar bone, and peri-implant tissues; implant dentistry; dental materials and therapeutics; occlusion and temporomandibular disorders; sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence daily dental treatment decisions with an emphasis on future trends in dentistry. With the tremendous volume of dentistry and related literature being published daily, this review cannot possibly be comprehensive. Rather, its purpose is to update interested readers and provide important resource material for those interested in pursuing greater details on their own. It remains our intent to assist colleagues in negotiating the extensive volume of important information being published annually. It is our hope that readers find this work useful in successfully managing the patients and dental problems they encounter.
Collapse
|
11
|
Effect of Reinforced Self-Cured Acrylic Resin on Flexural Strength. Int J Dent 2022; 2022:2698995. [PMID: 36059914 PMCID: PMC9433178 DOI: 10.1155/2022/2698995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction The aim of this study was to determine the effect on the flexural strength of the self-cured acrylic resin by incorporating short E-glass fiber (SEGF) and ultra-high-molecular-weight polyethylene (UHMW-PE) filler in the acrylic resin. Methods Fifty-six rectangular (64 × 10 × 3.3 mm3) (ISO standard 20795–1:2013) self-cured acrylic resin specimens were fabricated and divided into seven groups per test, according to the percent by weight of SEGF and UHMW-PE filler (n = 8). Each testing group entails a control group and an addition of 1% and 2% SEGF, 1% and 2% UHMW-PE, 0.5% SEGF/UHMW-PE, and 1% SEGF/UHMW-PE. A three-point bending test was conducted to obtain the flexural strength of each specimen. The fractured surfaces of the specimens were evaluated, and a scanning electron microscope view was taken. Test results were statistically analyzed with one-way ANOVA and Tukey HSD tests (p value<0.05). Results The flexural strength of self-cured acrylic resin with the addition of 1% SEGF and 1% SEGF/UHMW-PE (50.93, 46.13 MPa) was significantly higher than that of the control group (41.72 MPa) (p < 0.05). Nonetheless, the addition of 1% UHMW-PE (39.34 MPa) showed the lowest flexural strength, significantly lower than other experimental groups, except the control group. Conclusion The addition of 1% SEGF significantly improves the flexural strength of the self-cured acrylic resin denture base.
Collapse
|
12
|
Comparative Effect of Incorporation of ZrO 2, TiO 2, and SiO 2 Nanoparticles on the Strength and Surface Properties of PMMA Denture Base Material: An In Vitro Study. Int J Biomater 2022; 2022:5856545. [PMID: 35528846 PMCID: PMC9072016 DOI: 10.1155/2022/5856545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Objective This study aimed to investigate the effects of nanoparticles (zirconium dioxide (ZrO2), titanium dioxide (TiO2), and silicon dioxide (SiO2)) on the flexural strength, impact strength, hardness, and wear resistance of the acrylic resin denture base material. Materials and Methods Acrylic resin specimens were fabricated in dimensions according to American Dental Association (ADA) specifications per test. Specimens were divided according to nanofiller into four groups; unmodified as control, ZrO2 (Z), TiO2, (T), and SiO2 (S) groups. Each one was subdivided into two subgroups according to nanoparticle concentrations; 3% and 7% (Z3, Z7, T3, T7, S3, and S7). A 3-point bending test, Charpy impact test, and Vickers hardness test were used for flexural strength, impact strength, and hardness measurements, respectively. Wear resistance was measured by the differences in surface roughness of tested specimens before and after the wear test. A scanning electron microscope was used to assess nanoparticle specifications and distributions and for fracture surfaces analysis. ANOVA, Bonferroni's post hoc test, and the Kruskal–Wallis test were applied for data analysis (α = 0.05). Results Regarding the flexural and impact strength, there was a statistically remarkable increase for all tested groups compared with the control group, except for the T7 and S7 groups (P value <0.001, effect size = 0.893) and (P value <0.001, effect size = 0.759), respectively. There was a statistically significant improvement in the hardness of all tested groups compared with the control group (P value <0.001, effect size = 0.67) except T3 and S3. Regarding wear, a statistically significant enhancement was noticed in the wear resistance of all tested groups (P value <0.001, effect size = 0.685), except for the T7 and S7 groups. Conclusion The flexural strength, impact strength, and wear resistance improved with both concentrations of ZrO2 and low TiO2 and SiO2 concentrations. The hardness increased with both concentrations of ZrO2 and high TiO2 and SiO2 concentrations.
Collapse
|
13
|
Chęcińska K, Chęciński M, Sikora M, Nowak Z, Karwan S, Chlubek D. The Effect of Zirconium Dioxide (ZrO2) Nanoparticles Addition on the Mechanical Parameters of Polymethyl Methacrylate (PMMA): A Systematic Review and Meta-Analysis of Experimental Studies. Polymers (Basel) 2022; 14:polym14051047. [PMID: 35267870 PMCID: PMC8914807 DOI: 10.3390/polym14051047] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
The number of studies on the subject of effects of zirconium dioxide (ZrO2) nanoparticles addition on the mechanical parameters of polymethyl methacrylate (PMMA) is still very limited. Therefore, in this research, the authors wanted to assess PMMA modified with the nano-ZrO2 additive in terms of changes in flexural, impact and tensile strength values in relation to PMMA without such component. A systematic review and meta-analysis were performed to evaluate the effect of incorporating nano-ZrO2 into PMMA on individual types of material strength. The obtained numerical data were tabulated and analyzed in the search for percentage changes in those parameters. It was then calculated for each set and the procured model was examined using residual sum of squares (RSS) to assess the discrepancy between the data and the estimation model whilst mean absolute deviation (MAD) was employed to determine robustness. The results of the systematic review were composed of data obtained from individual studies presented in eight independent articles. Overall, the addition of nano-ZrO2 increases the flexural strength of the composite with the PMMA matrix depending on the size of the ZrO2 grains administered. Unfortunately, these conclusions are based on a very limited amount of research and require further verification, especially regarding tensile strength.
Collapse
Affiliation(s)
- Kamila Chęcińska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Maciej Chęciński
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland;
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta 2, 41-800 Zabrze, Poland;
| | - Maciej Sikora
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Zuzanna Nowak
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta 2, 41-800 Zabrze, Poland;
| | - Sławomir Karwan
- Department of Maxillofacial Surgery, Regional Specialized Children’s Hospital, Żołnierska 18a, 10-561 Olsztyn, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|