1
|
Bucur MP, Radulescu MC, Bucur B, Radu GL. Acetylcholinesterase and butyrylcholinesterase co-immobilized on a copper containing Prussian blue modified electrode for the broad screening of insecticides. Anal Bioanal Chem 2024; 416:5059-5070. [PMID: 39009770 DOI: 10.1007/s00216-024-05443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
We have developed a bienzymatic biosensor that contains acetylcholinesterase together with butyrylcholinesterase co-immobilized on the same electrode modified with a stabilized copper containing Prussian blue electrodeposited on electrodes coated with 4-aminothiophenol monolayer using diazonium chemistry and copper nanoparticles for improved sensitivity. There are organophosphorus and carbamate neurotoxic insecticides that inhibit only one of the two enzymes, e.g., pirimicarb inhibits butyrylcholinesterase at much lower concentrations than acetylcholinesterase while methomyl inhibits only acetylcholinesterase. Our system is simple and in a single measurement provides a sensitive signal for insecticides' presence based on the inhibition of the enzyme with the highest affinity for each toxic compound. The limits of detection are 50 ng/mL pirimicarb for the bienzymatic biosensor in comparison with 400 ng/mL pirimicarb for the acetylcholinesterase biosensor and 6 ng/mL methomyl for the bienzymatic biosensor, while inhibition is obtained for the butyrylcholinesterase biosensor at 700 ng/mL.
Collapse
Affiliation(s)
- Madalina-Petruta Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296, Splaiul Independentei, 060031, Bucharest, Romania
| | - Maria-Cristina Radulescu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296, Splaiul Independentei, 060031, Bucharest, Romania
| | - Bogdan Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296, Splaiul Independentei, 060031, Bucharest, Romania.
| | - Gabriel Lucian Radu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296, Splaiul Independentei, 060031, Bucharest, Romania
| |
Collapse
|
2
|
Karishma BR, Manasa G, Bhakta AK, Maiyalagan T, Mascarenhas RJ, Shetti NP. Electrocatalytic barium-oxide decorated MWCNT amperometric sensor for the quantification of anesthetic drug Procaine. Colloids Surf B Biointerfaces 2023; 227:113363. [PMID: 37269576 DOI: 10.1016/j.colsurfb.2023.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Procaine hydrochloride (P.HCl) is one of the earliest and most well-established local anesthetic drugs used in medicine. Though it is employed frequently for effective clinical nerve blocks during surgeries, its immoderate administration has often shown reports of systemic toxicity. To prevent such repercussions, developing a sensor for the drug is crucial to enable real-time monitoring of the drug and assist in quality control procedures during its industrial preparations. Thus, in this work, we have fabricated a simple yet highly selective and sensitive amperometric sensor for P.HCl detection based on a Barium-oxide multi-wall carbon nanotube-modified carbon paste electrode (BaO-MWCNT/CPE). Herein, we have adopted a novel approach devoid of sophisticated procedures and pretreatments for rapidly determining P.HCl. Furthermore, experimental conditions, including supporting electrolytes, pH, and scan rate, were optimized to achieve a well-defined P.HCl anodic peak current at 631 mV, which is lower than the previously reported peak potentials, indicating an advantage of reduced overpotential. Besides, a striking 66-fold rise in current responsiveness to P.HCl was achieved upon modification with BaO-MWCNT. Such an intense signal enhancement upon electrode modification compared to bare CPE was due to the strong electrocatalytic feature of BaO-MWCNT, which was verified using surface morphology studies with scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Additionally, the charge transfer kinetics analyzed via electrochemical impedance spectroscopy (EIS) justified the enhancement of electrocatalytic activity upon electrode modification. The developed sensor exhibited a remarkable analytical performance over a wide linear dynamic range of 2.0-100.0 µM with a detection limit of 0.14 µM. Moreover, a significant merit of this sensor is its excellent selectivity towards P.HCl even in the presence of various common interferants. Finally, the versatility of the sensor was further validated by implementing it for the trace analysis of urine and blood serum real samples.
Collapse
Affiliation(s)
- B R Karishma
- Electrochemistry Research Group, St. Joseph's University, Lalbagh Road, Bengaluru 560027, Karnataka, India
| | - G Manasa
- Electrochemistry Research Group, St. Joseph's University, Lalbagh Road, Bengaluru 560027, Karnataka, India
| | - Arvind K Bhakta
- Electrochemistry Research Group, St. Joseph's University, Lalbagh Road, Bengaluru 560027, Karnataka, India
| | - T Maiyalagan
- Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ronald J Mascarenhas
- Electrochemistry Research Group, St. Joseph's University, Lalbagh Road, Bengaluru 560027, Karnataka, India.
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Punjab, India.
| |
Collapse
|
3
|
Tango R, Koeda A, Nagamine K, Tokito S, Niwa O, Ishikawa S, Sugimoto M. Development of a highly sensitive Prussian-blue-based enzymatic biosensor for L-carnitine employing the thiol/disulfide exchange reaction. ANAL SCI 2022; 38:963-968. [PMID: 35578012 DOI: 10.1007/s44211-022-00122-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 11/01/2022]
Abstract
This is the first report of conducting proof-of-concept study for amperometric acetyltransferase-based L-carnitine sensor by employing the thiol/disulfide exchange reaction. The carnitine acetyltransferase (CrAT) catalyzes the reaction between acetyl-CoA and L-carnitine to produce CoA which is difficult to detect directly by electrochemical methods owing to steric hindrance and electrostatic effect of CoA. The thiol/disulfide exchange reaction between CoA and cystamine was mediated in the enzymatic reaction to produce electrochemically detectable low molecular weight of cationic cysteamine. The sensor exhibited high sensitivity and selectivity for L-carnitine in the concentration range 0.28-50 µM with a limit of detection of 0.28 µM. This is a promising strategy for L-carnitine sensing in point-of-care testing applications.
Collapse
Affiliation(s)
- Ryota Tango
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Aya Koeda
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Kuniaki Nagamine
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan.
| | - Shizuo Tokito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Osamu Niwa
- Saitama Institute of Technology, 1690, Fusaiji, Fukaya, 369-0293, Saitama, Japan
| | - Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, 2-2-2, lida-nishi, Yamagata, 990-9585, Japan
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, 6-1-1, Shinjuku, Tokyo, 160-0023, Japan
| |
Collapse
|
4
|
Saikrithika S, Shaju A, Dinesh B, Kumar AS. In-situ scanning electrochemical microscopy interrogation on open-circuit release of toxic Ni2+ ion from Ni-containing carbon nanomaterials and nickel-hexacyanoferrate formation in physiological pH and its thiol-electrocatalysis relevance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Jeong CY, Kubota T, Tajima K. Flexible electrochromic devices based on tungsten oxide and Prussian blue nanoparticles for automobile applications. RSC Adv 2021; 11:28614-28620. [PMID: 35478538 PMCID: PMC9038161 DOI: 10.1039/d1ra05280b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
Smart windows, which control the amount of light entering buildings, houses, and automobiles, are promising in terms of energy conservation and their low environmental impact. Particularly, a next-generation smart window for automobiles will require high optical modulation, along with flexibility to adapt to various intelligent designs. We have previously fabricated electrochromic devices (ECDs) by wet coating glass substrates with nanoparticles (NPs), such as water-dispersive ink containing tungsten oxide (WO3), and Prussian blue (PB), and have evaluated and confirmed the various electrochromic (EC) properties, such as optical modulation, cyclic durability, and colouration efficiency, of the ECDs. However, glass substrates are heavy and difficult to adapt by deformation to meet the demand of next-generation automobiles. In this study, we aim to prepare complementary ECDs by wet coating WO3 and PB thin films on indium tin oxide (ITO)-coated flexible polyethylene terephthalate (PET) substrates. Chromaticity and haze of ECDs were investigated in detail as evaluation indexes to verify specifications for practical use in automotive applications. Repeated switching, bending, and twisting did not degrade the ECD properties, thereby demonstrating its durability and mechanical robustness. These excellent electrochromic properties of the flexible ECDs suggest that they are promising materials for application in next-generation smart windows for automobiles. Next-generation flexible ECD using nanoparticles water-dispersion ink.![]()
Collapse
Affiliation(s)
- Chan Yang Jeong
- National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Kitami Institute of Technology (KIT) 165 Koen-cho Kitami Hokkaido 090-8507 Japan
| | - Takashi Kubota
- National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Kazuki Tajima
- National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
6
|
Attaallah R, Elfadil D, Amine A. Screening study of enzymatic inhibition of medicinal plants for the treatment of diabetes using a glucometer biosensor approach and optical method. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Suprun EV, Karpova EV, Khmeleva SA, Radko SP, Karyakin AA. Advanced electrochemical detection of nitrogenous bases, synthetic oligonucleotides, and single-stranded DNA through flow injection analysis and catalytic oxidation on Prussian Blue. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Maheshwari H, Vilà N, Herzog G, Walcarius A. Selective Detection of Cysteine at a Mesoporous Silica Film Electrode Functionalized with Ferrocene in the Presence of Glutathione. ChemElectroChem 2020. [DOI: 10.1002/celc.202000396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Himanshu Maheshwari
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| |
Collapse
|
9
|
Henríquez C, Cerdà V. Construction of a New Flow‐through Cell for Screen Printed Electrodes. ELECTROANAL 2020. [DOI: 10.1002/elan.202000011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Suprun EV, Karpova EV, Radko SP, Karyakin AA. Advanced electrochemical detection of amino acids and proteins through flow injection analysis and catalytic oxidation on Prussian Blue. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Nisha S, Kumar AS. Electrochemical conversion of triamterene-diuretic drug to hydroxybenzene-triamterene intermediate mimicking the pharmacokinetic reaction on multiwalled carbon nanotube surface and its electrocatalytic oxidation function of thiol. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Bagheri N, Cinti S, Caratelli V, Massoud R, Saraji M, Moscone D, Arduini F. A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosens Bioelectron 2019; 134:97-102. [PMID: 30959394 DOI: 10.1016/j.bios.2019.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
In the last decades, there is a growing search for analytical strategies to ensure clinical analysis without the need of laboratory set-up and skilled personnel. Indeed, user-friendly and low-cost devices are highly valued in the era of sustainability for their capability to be applied in low-resource contexts, such as developing countries. To address this issue, herein we report a 96-well paper-based and laboratory setup-free optical platform for the detection of butyrylcholinesterase enzyme (BChE) activity in human serum. We used chromatographic paper to realize a novel analytical tool exploiting its porous structure for reagentless synthesize Prussian Blue Nanoparticles (the sensing element), as well to load all the reagents required for the measurement. The principle of BChE activity detection relies on the reaction between the enzymatic product thiocholine and Prussian Blue, giving the Prussian White with subsequently Prussian Blue's fading, detected by a common office scanner supported by ImageJ software. Using this novel paper-based optical platform, BChE activity was linearly detected in the 2-15 U/mL range with a detection limit down to 0.8 U/mL. The accuracy was successfully demonstrated by recovery study with spiked serum and by comparing the data with the gold standard method.
Collapse
Affiliation(s)
- Neda Bagheri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Stefano Cinti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Veronica Caratelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
13
|
A novel ZnO/reduced graphene oxide and Prussian blue modified carbon paste electrode for the sensitive determination of Rutin. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9353-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Bucur MP, Bucur B, Radu GL. Simple, selective and fast detection of acrylamide based on glutathione S-transferase. RSC Adv 2018; 8:23931-23936. [PMID: 35540272 PMCID: PMC9081860 DOI: 10.1039/c8ra02252f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/24/2018] [Indexed: 11/21/2022] Open
Abstract
Acrylamide (AA) is a toxic compound formed in thermally prepared foods by Maillard reaction. Besides foods, AA may be found in cosmetic products as an impurity of the widely-used non-toxic polyacrylamide. We present a novel, fast and selective detection method based on the amperometric monitoring of the coupling reaction between reduced glutathione (GSH) and AA catalyzed by glutathione S-transferase (GST) to produce an electrochemically inactive compound. We have used electrodes modified with cobalt-phthalocyanine to monitor the decrease of GHS concentration at +300 mV. Our system is simple, does not require supplementary substrates such as 1-chloro-2,4-dinitrobenzene (CDNB) nor have disadvantageous competitive kinetics characteristic to inhibition like signals. Using the optimum concentration of 100 μM GSH we have obtained a linear calibration graph from 7 to 50 μM AA and a limit of detection of 5 μM AA. The method is not affected by interfering compounds usually found in foods and was applied for real sample analysis.
Collapse
Affiliation(s)
- Madalina-Petruta Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis 296, Splaiul Independentei 060031 Bucharest Romania +(40)212200900 +(40)212200900
| | - Bogdan Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis 296, Splaiul Independentei 060031 Bucharest Romania +(40)212200900 +(40)212200900
| | - Gabriel-Lucian Radu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis 296, Splaiul Independentei 060031 Bucharest Romania +(40)212200900 +(40)212200900
| |
Collapse
|
15
|
Cinti S, Minotti C, Moscone D, Palleschi G, Arduini F. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens Bioelectron 2017; 93:46-51. [DOI: 10.1016/j.bios.2016.10.091] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
|
16
|
Kaur N, Prabhakar N. Current scenario in organophosphates detection using electrochemical biosensors. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Fang CS, Oh KH, Park JK, Yang H. Rapid and Sensitive Electrochemical Detection of Carbaryl Based on Enzyme Inhibition and Thiocholine Oxidation Mediated by a Ruthenium(III) Complex. ELECTROANAL 2016. [DOI: 10.1002/elan.201600308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chiew San Fang
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 609-735 Korea
| | - Kyung Hwan Oh
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 609-735 Korea
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 609-735 Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials; Pusan National University; Busan 609-735 Korea
| |
Collapse
|
18
|
Affiliation(s)
- Šárka Štěpánková
- Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, University of Pardubice, Pardubice, Czech Republic
| | - Katarína Vorčáková
- Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, University of Pardubice, Pardubice, Czech Republic
| |
Collapse
|
19
|
A nano-silver enzyme electrode for organophosphorus pesticide detection. Anal Bioanal Chem 2016; 408:5819-5827. [DOI: 10.1007/s00216-016-9694-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/29/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
20
|
Yue P, Tricard S, He S, Wang N, Zhao J, Fang J, Shen W. Prussian Blue and Chitosan Modified Carbon Cloth Electrode as a High Performance Sensor of Ascorbic Acid. ELECTROANAL 2016. [DOI: 10.1002/elan.201501036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Singh VV. Recent Advances in Electrochemical Sensors for Detecting Weapons of Mass Destruction. A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201501088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron 2015; 65:23-30. [DOI: 10.1016/j.bios.2014.10.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 11/16/2022]
|
23
|
Vandeput M, Parsajoo C, Vanheuverzwijn J, Patris S, Yardim Y, le Jeune A, Sarakbi A, Mertens D, Kauffmann JM. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis. J Pharm Biomed Anal 2015; 102:267-75. [DOI: 10.1016/j.jpba.2014.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022]
|
24
|
PINO F, IVANDINI TA, NAKATA K, FUJISHIMA A, MERKOÇI A, EINAGA Y. Magnetic Enzymatic Platform for Organophosphate Pesticide Detection Using Boron-doped Diamond Electrodes. ANAL SCI 2015; 31:1061-8. [DOI: 10.2116/analsci.31.1061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Flavio PINO
- Nanobioelectronics & Biosensors Group, ICN2 - Institut Català de Nanociencia i Nanotecnologia (CERCA-CSIC-UAB)
| | - Tribidasari A. IVANDINI
- Department of Chemistry, Faculty of Mathematics and Science, University of Indonesia, Kampus UI Depok
| | - Kazuya NAKATA
- Research Institute for Science and Technology, Photocatalysis International Research Center, Tokyo University of Science
| | - Akira FUJISHIMA
- Research Institute for Science and Technology, Photocatalysis International Research Center, Tokyo University of Science
| | - Arben MERKOÇI
- Nanobioelectronics & Biosensors Group, ICN2 - Institut Català de Nanociencia i Nanotecnologia (CERCA-CSIC-UAB)
- ICREA, Institució Catalana de Recerca i Estudis Avançats
| | | |
Collapse
|
25
|
Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1370-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Newton LAA, Sandhu K, Livingstone C, Leslie R, Davis J. Clinical diagnostics for homocysteine: a rogue amino acid? Expert Rev Mol Diagn 2014; 10:489-500. [DOI: 10.1586/erm.10.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Development of an acetylcholinesterase immobilized flow through amperometric detector based on thiocholine detection at a silver electrode. Talanta 2013; 109:116-20. [DOI: 10.1016/j.talanta.2013.01.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 11/21/2022]
|
28
|
Arduini F, Amine A. Biosensors based on enzyme inhibition. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:299-326. [PMID: 23934362 DOI: 10.1007/10_2013_224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present chapter describes the use of biosensors based on enzyme inhibition as analytical tools. The parameters that affect biosensor sensitivity, such as the amount of immobilized enzyme, incubation time, and immobilization type, were critically evaluated, highlighting how the knowledge of enzymatic kinetics can help researchers optimize the biosensor in an easy and fast manner. The applications of these biosensors demonstrating their wide application have been reported. The objective of this survey is to give a critical description of biosensors based on enzyme inhibition, of their assembly, and their application in the environmental, food, and pharmaceutical fields.
Collapse
Affiliation(s)
- Fabiana Arduini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy,
| | | |
Collapse
|
29
|
Lucarelli F, Ricci F, Caprio F, Valgimigli F, Scuffi C, Moscone D, Palleschi G. GlucoMen Day continuous glucose monitoring system: a screening for enzymatic and electrochemical interferents. J Diabetes Sci Technol 2012; 6:1172-81. [PMID: 23063044 PMCID: PMC3570852 DOI: 10.1177/193229681200600522] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND While most of the common drugs with the potential to interfere with continuous glucose monitoring (CGM) systems are accessible over the counter and can be assumed by CGM patients without medical supervision, many other chemicals are frequently used to treat critically ill patients. Continuous glucose monitoring reading accuracy may also be compromised in patients characterized by abnormally high concentrations of physiological interferents. In this article, 22 species selected from endogenous and exogenous chemicals were screened as possible interferents of GlucoMen®Day (GMD), the new microdialysis-based CGM system from A. Menarini Diagnostics. METHOD Interference testing was performed according to the EP7-A2 guideline (Clinical and Laboratory Standards Institute 2005). Interference was evaluated at two levels of glucose, with each interferent additionally tested at two concentrations. Furthermore, two configurations of the GMD disposable sensor kit--one designed for subcutaneous application, the other for direct intravascular CGM--were challenged with interferent-spiked serum and blood samples, respectively. RESULTS With the exception of dopamine (however, at very high, nonphysiological concentrations), no interference was observed for all the tested substances. Interestingly, none of the common electrochemical interferents (including ascorbic acid, acetaminophen, and salicylic acid, which represent the major specificity issue for the competing CGM systems) significantly affected the system's output. CONCLUSIONS These results provide clear insights into the advantages offered by the use of a microdialysis-based CGM system that additionally relies on the detection of hydrogen peroxide at low operating potential. GlucoMen Day may become the CGM system of choice for those patients who require either regular administration of drugs or their glycemia to be tightly controlled in the intensive care unit or similar environments.
Collapse
Affiliation(s)
- Fausto Lucarelli
- Scientific and Technology Affairs, A. Menarini Diagnostics, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang L, Zhang A, Du D, Lin Y. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. NANOSCALE 2012; 4:4674-4679. [PMID: 22732870 DOI: 10.1039/c2nr30976a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe(3+) and [Fe(CN)(6)]((3)-) in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicating the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The over-potential decreases ∼460 mV compared to that on a bare electrode, suggesting that PBNCs/rGO has a high electrocatalytic activity towards the oxidation of thiocholine. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos with a linear range from 1.0 to 600 ng mL(-1) and a detection limit of 0.1 ng mL(-1). These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | | | | | | |
Collapse
|
31
|
Efficient immobilization of glucose oxidase by in situ photo-cross-linking for glucose biosensing. Talanta 2012; 97:438-44. [PMID: 22841105 DOI: 10.1016/j.talanta.2012.04.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/26/2012] [Accepted: 04/30/2012] [Indexed: 11/23/2022]
Abstract
A glucose biosensor was fabricated based on electrostatic self-assembly in combination with in situ photo-cross-linking of glucose oxidase (GOx) and diazoresin-chitosan (DAR-CS) on Prussian blue deposited multi-walled carbon nanotubes (PB-MWNTs) backbone. It was demonstrated that GOx was initially ionically deposited and subsequently covalently photo-cross-linked onto the PB-MWNTs backbone using photosensitive DAR-CS as the assembly interlayer. The modified electrode exhibited good electrical conductivity and effective electron transfer mediation toward H(2)O(2) reduction due to the employment of PB-MWNTs as the fabrication backbone. The biosensor showed high sensitivity of 77.9 μA mM(-1) cm(-2) to glucose in the linear concentration range from 1.0×10(-5) to 1.1×10(-3) M with fast response time of 10s, detection limit of 3.1×10(-6) M, and good anti-interference ability. More importantly, the biosensor exhibited greatly improved biosensing stability in comparison with the non-photo-cross-linked biosensor attributed to the conversion of weak ionic bonds to strong covalent ones for enzyme immobilization by the proposed strategy. The results for glucose determination in real serum samples with the biosensor were found to be in good agreement with those obtained by the conventional clinical procedure.
Collapse
|
32
|
Henríquez C, Laglera LM, Alpizar MJ, Calvo J, Arduini F, Cerdà V. Cadmium determination in natural water samples with an automatic multisyringe flow injection system coupled to a flow-through screen printed electrode. Talanta 2012; 96:140-6. [PMID: 22817941 DOI: 10.1016/j.talanta.2012.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/15/2011] [Accepted: 01/14/2012] [Indexed: 11/16/2022]
Abstract
Heavy metals, as cadmium, attract a rising attention in environmental studies due to their increasing release by human activities and acute toxicity. In situ analytical methods are needed to minimize current uncertainties caused by the transport and conservation of samples. Here, we present the completely automatic determination of Cd in natural waters using a newly developed screen printed electrode sensor (SPE), inserted in a homemade purpose-built flow cell coupled to a Multi-Syringe Flow Injection Analysis system (MSFIA). The working electrode of SPEs was constituted by a carbon film modified with Nafion. Cd was plated on an in situ bismuth film and determined using Square Wave Anodic Stripping Voltammetry. Different chemical conditions of deposition and stripping were studied. A sample/acetic buffer mixture was found to be a well suited medium to form the Bi film and perform the analysis. Cd was quantified via calibration by on line standard additions. The limit of detection was found to be 0.79μgL(-1), well below the limit stipulated by the European directive (5μgL(-1)). Good sample throughput (14h(-1)) and low consumption of reagent and sample (1.3mL) were also obtained in line with previous works in Cd flow analysis.
Collapse
Affiliation(s)
- C Henríquez
- Dep. Chemistry, University of the Balearic Islands, Ctra Valldemossa km 7, 5, 07122 Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Recent advances in polymeric materials used as electron mediators and immobilizing matrices in developing enzyme electrodes. SENSORS 2012; 12:923-53. [PMID: 22368503 PMCID: PMC3279247 DOI: 10.3390/s120100923] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 11/26/2022]
Abstract
Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.
Collapse
|
34
|
Arduini F, Neagu D, Dall'Oglio S, Moscone D, Palleschi G. Towards a Portable Prototype Based on Electrochemical Cholinesterase Biosensor to be Assembled to Soldier Overall for Nerve Agent Detection. ELECTROANAL 2012. [DOI: 10.1002/elan.201100540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Huang K, Bulik IW, Martí AA. Time-resolved photoluminescence spectroscopy for the detection of cysteine and other thiol containing amino acids in complex strongly autofluorescent media. Chem Commun (Camb) 2012; 48:11760-2. [DOI: 10.1039/c2cc36588j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Gahlaut A, Gothwal A, Chhillar AK, Hooda V. Electrochemical Biosensors for Determination of Organophosphorus Compounds: Review. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojab.2012.11001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Disposable Electrochemical Biosensor Based on Cholinesterase Inhibition with Improved Shelf-Life and Working Stability for Nerve Agent Detection. PORTABLE CHEMICAL SENSORS 2012. [DOI: 10.1007/978-94-007-2872-1_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Kowalska M, Tian F, Šmehilová M, Galuszka P, Frébort I, Napier R, Dale N. Prussian Blue acts as a mediator in a reagentless cytokinin biosensor. Anal Chim Acta 2011; 701:218-23. [PMID: 21801891 DOI: 10.1016/j.aca.2011.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 04/19/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
39
|
A novel biosensor based on acetylecholinesterase/prussian blue–chitosan modified electrode for detection of carbaryl pesticides. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.06.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Jubete E, Żelechowska K, Loaiza OA, Lamas PJ, Ochoteco E, Farmer KD, Roberts KP, Biernat JF. Derivatization of SWCNTs with cobalt phthalocyanine residues and applications in screen printed electrodes for electrochemical detection of thiocholine. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.01.123] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Muthirulan P, Velmurugan R. Direct electrochemistry and electrocatalysis of reduced glutathione on CNFs–PDDA/PB nanocomposite film modified ITO electrode for biosensors. Colloids Surf B Biointerfaces 2011; 83:347-54. [DOI: 10.1016/j.colsurfb.2010.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
42
|
Jha N, Ramaprabhu S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. NANOSCALE 2010; 2:806-810. [PMID: 20648328 DOI: 10.1039/b9nr00336c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A disposable and sensitive biosensor has been fabricated for the detection of the organophosphorous (OP) compound paraoxon using an amperometric technique. For the measurements, gold nanoparticles dispersed on the outer surface of multiwalled carbon nanotubes (Au-MWNTs) has been used as the electrode material, as it possesses high electron transfer rates and provides large immobilization sites for the bioenzymes, which combines with the high electrocatalytic activity of MWNTs for thiocholine oxidation at low potential. Au-MWNTs have been synthesized by chemically reducing Au salt over functionalized MWNTs, and the same has been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution transmission electron microscopic (HRTEM) techniques. The ability of the Au-MWNTs nanocomposite-based biosensor has been demonstrated to reliably measure the concentration of paraoxon in the nanomolar range.
Collapse
Affiliation(s)
- Neetu Jha
- Alternative Energy and Nanotechnology Laboratory (AENL), Nano-Functional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
| | | |
Collapse
|
43
|
Song W, Zhang L, Shi L, Li DW, Li Y, Long YT. Simultaneous determination of cadmium(II), lead(II) and copper(II) by using a screen-printed electrode modified with mercury nano-droplets. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0354-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0317-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Ovalle M, Stoytcheva M, Zlatev R, Valdez B. Electrochemical study of rat brain acetylcholinesterase inhibition by chlorofos: Kinetic aspects and analytical applications. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Rotating disk electrode study of electrocatalytic oxidation of ascorbate at Prussian blue modified electrode. OPEN CHEM 2009. [DOI: 10.2478/s11532-009-0061-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractElectrooxidation of ascorbate has been studied with the use of a rotating disk electrode. The results obtained show an efficient electrocatalytic oxidation of ascorbate at the Prussian blue (PB) modified electrode to proceed in solutions of pH 5.5 and 7.3. Depending on solution pH, the onset potential for ascorbate electrooxidation at PB modified electrode appears shifted by 0.1–0.2 V to lower values, as compared to an unmodified glassy carbon electrode. Within the electrode potential window of 0.3 to 0.5 V vs. Ag/AgCl, and electrode rotation velocity of 50–2000 rpm, the catalytic current obeys Koutecky-Levich equation at a submillimolar ascorbate concentration. Kinetic current densities, obtained from the data treatment, are higher for a pH 5.5 solution, and also at higher electrode potential.
Collapse
|
47
|
Arduini F, Cassisi A, Amine A, Ricci F, Moscone D, Palleschi G. Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2008.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Palchetti I, Laschi S, Mascini M. Electrochemical biosensor technology: application to pesticide detection. Methods Mol Biol 2009; 504:115-126. [PMID: 19159094 DOI: 10.1007/978-1-60327-569-9_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In recent years, electrochemical sensors and biosensors are becoming an accepted part of analytical chemistry since they satisfy the expanding need for rapid and reliable measurements. An area in which electrochemical biosensors perhaps show the greatest diversity and potential for development involves the measurement of environmentally significant parameters. The increasing number of pollutants in the environment calls for fast and cost-effective analytical requirements. In this context, biosensors appear as suitable alternative or complementary analytical tools. The aim of this chapter is to review some basic concept concerning the electrochemical biosensors and to illustrate a protocol for the detection of environmental organic pollutants on the basis of electrochemical biosensors. In particular, a method based on the inhibition of the enzyme acetylcholinesterase (AChE) for the detection of organophosphorus and carbamate pesticides will be described in detail.
Collapse
Affiliation(s)
- Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | | | | |
Collapse
|
49
|
Mukherjee J, Lumibao CY, Kirchhoff JR. Application of a thiol-specific electrocatalytic electrode for real-time amperometric monitoring of enzymatic hydrolysis. Analyst 2009; 134:582-6. [DOI: 10.1039/b817676k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Zuo S, Teng Y, Yuan H, Lan M. Development of a Novel Silver Nanoparticles-Enhanced Screen-Printed Amperometric Glucose Biosensor. ANAL LETT 2008. [DOI: 10.1080/00032710802052361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|