1
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Electrochemical determination of 6-Tioguanine by using modified screen-printed electrode: magnetic core–shell Fe3O4@SiO2/MWCNT nanoparticles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Mostafazadeh R, Karimi-Maleh H, Ghaffarinejad A, Tajabadi F, Hamidian Y. Highly sensitive electrochemical sensor based on carbon paste electrode modified with graphene nanoribbon-CoFe 2O 4@NiO and ionic liquid for azithromycin antibiotic monitoring in biological and pharmaceutical samples. APPLIED NANOSCIENCE 2023; 13:1-10. [PMID: 36710715 PMCID: PMC9870783 DOI: 10.1007/s13204-023-02773-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
In this report, Azithromycin (Azi) antibiotic was measured by carbon paste electrode (CPE) improved by graphene nanoribbon-CoFe2O4@NiO nanocomposite and 1-hexyl-3 methylimidazolium hexafluorophosphate (HMIM PF6) as an ionic liquid binder. The electrochemical behavior of Azi on the graphene nanoribbon-CoFe2O4@NiO/HMIM PF6/CPE is investigated by voltammetric methods, and the results showed that the modifiers improve the conductivity and electrochemical activity of the CPE. According to obtained data, the electrochemical behavior of Azi is related to pH. under optimum conditions, the sensor has linear ranges from 10 µM to 2 mM with a LOD of 0.66 µM. The effect of scan rate and chronoamperometry were studied, which showed that the Azi electro-oxidation is diffusion controlled with the diffusion coefficient of 9.22 × 10-6 cm2/s. The reproducibility (3.15%), repeatability (2.5%), selectivity, and stability (for 30 days) tests were investigated, which results were acceptable. The actual sample analysis confirmed that the proposed sensor is an appropriate electrochemical tool for Azi determination in urine and Azi capsule.
Collapse
Affiliation(s)
- Reza Mostafazadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People’s Republic of China
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
| | - Fariba Tajabadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Yasamin Hamidian
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, 16315-1618 Iran
| |
Collapse
|
4
|
Ali AMBH, Rageh AH, Abdel-aal FA, Mohamed AMI. Anatase titanium oxide nanoparticles and multi-walled carbon nanotubes-modified carbon paste electrode for simultaneous determination of avanafil and doxorubicin in plasma samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Ganesh PS, Teradale AB, Kim SY, Ko HU, Ebenso EE. Electrochemical sensing of anti-inflammatory drug mesalazine in pharmaceutical samples at polymerized-congo red modified carbon paste electrode. Chem Phys Lett 2022; 806:140043. [DOI: 10.1016/j.cplett.2022.140043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Teradale AB, Ganesh PS, Lamani SD, Swamy BEK, Das SN. Electrochemical investigation of allopurinol polymerised carbon paste electrode interface for epinephrine and folic acid sensing in pharmaceutical samples. MATERIALS RESEARCH INNOVATIONS 2022; 26:295-302. [DOI: 10.1080/14328917.2021.1975988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/29/2021] [Indexed: 07/23/2024]
Affiliation(s)
- Amit. B. Teradale
- PG Department of Chemistry, BLDEA’s S.B. Arts and K.C.P. Science College, Vijayapur, Karnataka, India
| | - Pattan Siddappa Ganesh
- Department of PG Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, India
| | - Shekar. D. Lamani
- PG Department of Chemistry, BLDEA’s S.B. Arts and K.C.P. Science College, Vijayapur, Karnataka, India
| | - B. E. K Swamy
- Department of PG Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, India
| | - Swastika. N. Das
- Department of Chemistry, BLDEA’s College of Engineering and Technology, Vijayapur- 586103, Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India
| |
Collapse
|
7
|
Yaghoobi A, Abiri R, Alvandi A, Arkan E, Mohammadi G, Farshadnia T, Jalalvand AR. An efficiently engineered electrochemical biosensor as a novel and user-friendly electronic device for biosensing of Streptococcus Pneumoniae bacteria. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Karimi-Maleh H, Beitollahi H, Senthil Kumar P, Tajik S, Jahani PM, Karimi F, Karaman C, Vasseghian Y, Baghayeri M, Rouhi J, Show PL, Rajendran S, Fu L, Zare N. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol 2022; 164:112961. [PMID: 35395340 DOI: 10.1016/j.fct.2022.112961] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/24/2023]
Abstract
Azo dyes as widely applied food colorants are popular for their stability and affordability. On the other hand, many of these dyes can have harmful impacts on living organs, which underscores the need to control the content of this group of dyes in food. Among the various analytical approaches for detecting the azo dyes, special attention has been paid to electro-analytical techniques for reasons such as admirable sensitivity, excellent selectivity, reproducibility, miniaturization, green nature, low cost, less time to prepare and detect of specimens and the ability to modify the electrode. Satisfactory results have been obtained so far for carbon-based nanomaterials in the fabrication of electrochemical sensing systems in detecting the levels of these materials in various specimens. The purpose of this review article is to investigate carbon nanomaterial-supported techniques for electrochemical sensing systems on the analysis of azo dyes in food samples in terms of carbon nanomaterials used, like carbon nanotubes (CNT) and grapheme (Gr).
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, India.
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, 1775, Arica, Chile
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| |
Collapse
|
9
|
Arikan K, Burhan H, Bayat R, Sen F. Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel-cobalt nanocomposites on f-MWCNT. CHEMOSPHERE 2022; 291:132720. [PMID: 34743867 DOI: 10.1016/j.chemosphere.2021.132720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
NiCo (Nickel-cobalt) nanoparticles were obtained by the chemical reduction method on functionalized multi-walled carbon nanotubes. After this process, chronoamperometry, cyclic voltammetry, and amperometric methods were used to investigate the electrochemical and electrocatalytic behavior of NiCo@f-MWCNT against glucose oxidation. In addition, the NiCo@f-MWCNT nanocomposites were analyzed by characterization techniques such as X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) in terms of the morphological and atomic structure of prepared nanomaterials. The sensitivity and limit of detection the non-enzymatic glucose sensor (NiCo@f-MWCNT) were calculated as 10,015 μA/mM-1 cm-2 0.26 μM, respectively. As a result of these studies and experiments, the NiCo@f-MWCNT nanocomposite is a really good sensor and their stability showed that the current nanomaterials expressed to be new material for the electrochemical detection of glucose.
Collapse
Affiliation(s)
- Kubilay Arikan
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Celebi Campus, 43100, Kutahya, Turkey
| | - Hakan Burhan
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Celebi Campus, 43100, Kutahya, Turkey
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Celebi Campus, 43100, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Celebi Campus, 43100, Kutahya, Turkey.
| |
Collapse
|
10
|
Mousazadeh F, Mohammadi SZ, Akbari S, Mofidinasab N, Aflatoonian MR, Shokooh-Saljooghi A. Recent Advantages of Mediator Based Chemically Modified Electrodes;
Powerful Approach in Electroanalytical Chemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017999201224124347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Modified electrodes have advanced from the initial studies aimed at understanding
electron transfer in films to applications in areas such as energy production and analytical
chemistry. This review emphasizes the major classes of modified electrodes with mediators
that are being explored for improving analytical methodology. Chemically modified electrodes
(CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in
bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been
extensively employed to engineer adapted electrode surfaces for the detection of different compounds.
Also, the characteristics of the materials that improve the electrocatalytic activity of the
modified surfaces are discussed.
Objective:
Improvement and promotion of pragmatic CMEs have generated a diversity of novel
and probable strong detection prospects for electroanalysis. While the capability of handling the
chemical nature of the electrode/solution interface accurately and creatively increases , it is predictable
that different mediators-based CMEs could be developed with electrocatalytic activity and
completely new applications be advanced.
Collapse
Affiliation(s)
| | | | - Sedighe Akbari
- Islamic Azad University, Shahrbabak Branch, Shahrbabak,Iran
| | | | - Mohammad Reza Aflatoonian
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | | |
Collapse
|
11
|
Khorablou Z, Shahdost-Fard F, Razmi H. Voltammetric determination of pethidine in biofluids at a carbon cloth electrode modified by carbon selenide nanofilm. Talanta 2021; 239:123131. [PMID: 34920261 DOI: 10.1016/j.talanta.2021.123131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022]
Abstract
Developing a sensitive portable sensor for the screening of illicit drugs is always challenging. Due to the importance of pethidine (PTD) tracking in addiction diagnosis, many demands have recently increased for a selective and real-time sensor. Herein, a simple electrochemical sensor has been developed based on conductive carbon cloth (CC) modified with carbon selenide nanofilms (CSe2NF) to provide a CSe2NF/CC electrode as a novel PTD sensing tool. Profiting from the ingenious design of doping strategy during the synthesis process, Se was doped in the carbonaceous skeleton of the CC. Thus, the active surface area of the CSe2NF (4.61 cm2) increased respect to the unmodified CC (0.094 cm2) to embed a suitable sensing interface in the fast PTD assay. By optimizing some effective experimental parameters such as pH, supporting electrolyte, Se powder amount, scan rate and accumulation time, the sensor catalyzed efficiently the oxidation reaction of PTD at 0.97 V. Based on peak current variations, the PTD was measured over a broad concentration range from 29 nM up to 181.8 μM with a limit of detection (LOD) as low as 19.3 nM compared to the other reported PTD sensors. The developed flexible sensor recognized the spiked PTD concentrations in some biofluids, including human blood, urine and saliva. The results of PTD analysis in the non-spiked and spiked blood, urine and saliva samples as the real samples by the developed sensor were validated by HPLC analysis as the reference method using t-test statistical method at confidence level of 5%. This sensing strategy based on the binder-free electrode could be promising for designing some sizable wearable sensors at a low cost. The high sensitivity of the sensor, which is a bonus for the rapid and on-site measurement of PTD, may open up a route for noninvasive routine analysis in clinical samples.
Collapse
Affiliation(s)
- Zeynab Khorablou
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | | | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| |
Collapse
|
12
|
Mezzasalma SA, Grassi L, Grassi M. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112480. [PMID: 34857266 DOI: 10.1016/j.msec.2021.112480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
The open border between non-living and living matter, suggested by increasingly emerging fields of nanoscience interfaced to biological systems, requires a detailed knowledge of nanomaterials properties. An account of the wide spectrum of phenomena, belonging to physical chemistry of interfaces, materials science, solid state physics at the nanoscale and bioelectrochemistry, thus is acquainted for a comprehensive application of carbon nanotubes interphased with neuron cells. This review points out a number of conceptual tools to further address the ongoing advances in coupling neuronal networks with (carbon) nanotube meshworks, and to deepen the basic issues that govern a biological cell or tissue interacting with a nanomaterial. Emphasis is given here to the properties and roles of carbon nanotube systems at relevant spatiotemporal scales of individual molecules, junctions and molecular layers, as well as to the point of view of a condensed matter or materials scientist. Carbon nanotube interactions with blood-brain barrier, drug delivery, biocompatibility and functionalization issues are also regarded.
Collapse
Affiliation(s)
- Stefano A Mezzasalma
- Ruder Bošković Institute, Materials Physics Division, Bijeniška cesta 54, 10000 Zagreb, Croatia; Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University, IDEON Building, Delta 5, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Lucia Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
13
|
Song P, Li Y, Yin S, Tang Y, Wang Z. Simulation-based evaluation of homogeneous electrocatalytic reaction within a thin layer modified electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Zhang A, Zhang H, Hu B, Wang M, Zhang S, Jia Q, He L, Zhang Z. The intergrated nanostructure of bimetallic CoNi-based zeolitic imidazolate framework and carbon nanotubes as high-performance electrochemical supercapacitors. J Colloid Interface Sci 2021; 608:1257-1267. [PMID: 34739989 DOI: 10.1016/j.jcis.2021.10.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
In this study, a series of one-dimensional (1D)/two-dimensional (2D) heterostructure hybrids were fabricated through the in situ growth of a Co and Ni bimetallic zeolitic imidazolate framework (CoNi-ZIF) around N-doped carbon nanotubes (N-CNTs). The hybrids were further exploited as effective supercapacitor materials. The N-CNTs were prepared by carbonizing a mixture of glucose and the melamine-cyanuric acid complex at a high temperature (900 °C) under N2 atmosphere and applied as the template for the in situ synthesis of CoNi-ZIF nanosheets (NSs). The 1D N-CNTs in the hybrids can act as the high-way for charge transfer to boost the faradaic reactions. Changing the usage of metal precursors not only provided abundant redox reaction sites in 2D CoNi-ZIF NSs but also modulated the microstructures and chemical components of the hybrids. The integration of the features of N-CNTs and CoNi-ZIF NSs can result in a synergistic effect between N-CNTs and CoNi-ZIF NSs. Therefore, the obtained CoNi-ZIFs and N-CNTs hybrid (CoNi-ZIF@N-CNT) exhibited superior electrochemical capacitive performance. Comparison revealed that the CoNi-ZIF@N-CNT-2 hybrid, which was prepared with a 1:1 mass ratio of Co(NO3)2·6H2O and Ni(NO3)2·6H2O, displayed the largest specific capacitance of 1118F g-1 at 1 A g-1, which was higher than the capacitance of most reported metal-organic framework (MOF)-based supercapacitor electrodes. Moreover, the asymmetric supercapacitor based on the CoNi-ZIF@N-CNT-2 electrode exhibited a high energy density of 51.1 Wh kg-1 at the power density of 860.1 W kg-1 and good cycle stability. This work can provide a facile and effective way for the fabrication of heterostructured 1D/2D nanostructures based on 2D MOFs for advanced energy storage.
Collapse
Affiliation(s)
- Aiqin Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Huan Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Bin Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuai Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Qiaojuan Jia
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Ünlüer ÖB, Altunkök N, Özkütük EB, Ersöz A. Graphenoxide Cross-Linker Based Potentiometric Biosensor Design For Sarcosine Determination. Protein Pept Lett 2021; 28:1303-1311. [PMID: 34629039 DOI: 10.2174/0929866528666211008160111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sarcosine, also known as N-methyl glycine, is a natural amino acid that is an intermediate and by product in glycine synthesis and degradation. Recently found in many peptides, sarcosine has been researched as a newly accepted prostate cancer marker. The increased concentration of sarcosine in blood serum and the urine showed that malignancy of measured prostate cancer cells is active. OBJECTIVE In this article, we aimed to design a potentiometric biosensor for detection of sarcosine with a low detection limit, high selectivity, short response time, wide linear range, and satisfactory long-term stability. METHODS In this article, we developed a new Graphene oxide (GFOX) photosensitive cross- linker based potentiometric biosensor based on the AmiNoAcid (monomer) Decorated and Light Underpinning Conjugation Approach (ANADOLUCA) method. The functional groups determined using Raman, FT-IR, XPS analyzes, and surface characterization, the morphology of synthesized GFOX photosensitive cross-linker were determined by TEM and AFM studies. Then, the performance of the GFOX based potentiometric biosensor has been evaluated. RESULTS When the usage of the developed GFOX doped potentiometric biosensor against sarcosine determination, it was found that 10 -4 mM sarcosine was determined in 60 seconds in the solution. In addition, the detection limit of the GFOX doped potentiometric biosensor was found to be 9.45x10 -7 mM, and the linear potentiometric biosensor was found to be in the concentration range of 10 -1 to 10 -5 mM. The selectivity studies of the developed potentiometric biosensor were investigated using glycine solutions, and it was determined that GFOX doped potentiometric biosensor was more selective against sarcosine. Besides this, a reusability test using 10 -3 mM sarcosine solution showed that reproducible studies were performed without the loss of potential of designed potentiometric biosensor and no loss of sensitivity. CONCLUSION After applying the framework, we get a new potentiometric biosensor for sarcosine determination. GFOX photosensitive cross-linker was used in designing potentiometric biosensors, and this increased the stability and efficiency of the biosensor. Therefore, the developed potentiometric biosensor for sarcosine determination could be easily used for the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Özlem Biçen Ünlüer
- Department of Chemistry, Faculty of Sciences, Eskişehir Technical University, Eskişehir. Turkey
| | - Nazire Altunkök
- Department of Chemistry, Faculty of Sciences and Literature, Eskişehir Osmangazi University, Eskişehir. Turkey
| | - Ebru Birlik Özkütük
- Department of Chemistry, Faculty of Sciences and Literature, Eskişehir Osmangazi University, Eskişehir. Turkey
| | - Arzu Ersöz
- Department of Chemistry, Faculty of Sciences, Eskişehir Technical University, Eskişehir. Turkey
| |
Collapse
|
16
|
Cheuquepan W, Hernandez S, Perez-Estebanez M, Romay L, Heras A, Colina A. Electrochemical generation of surface enhanced Raman scattering substrates for the determination of folic acid. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Rossi TS, Tenório LN, Guedes-Sobrinho D, Winnischofer H, Vidotti M. Influence of electrosynthesis methods in the electrocatalytical and morphological properties of cobalt and nickel hexacyanoferrate films. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Ultra-sensitive detection of commercial vitamin B9 and B12 by graphene nanobuds through inner filter effect. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Skinner WS, Ong KG. Modern Electrode Technologies for Ion and Molecule Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4568. [PMID: 32823973 PMCID: PMC7472249 DOI: 10.3390/s20164568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
In high concentrations, ionic species can be toxic in the body, catalyzing unwanted bioreactions, inhibiting enzymes, generating free radicals, in addition to having been associated with diseases like Alzheimer's and cancer. Although ionic species are ubiquitous in the environment in trace amounts, high concentrations of these metals are often found within industrial and agricultural waste runoff. Therefore, it remains a global interest to develop technologies capable of quickly and accurately detecting trace levels of ionic species, particularly in aqueous environments that naturally contain other competing/inhibiting ions. Herein, we provide an overview of the technologies that have been developed, including the general theory, design, and benefits/challenges associated with ion-selective electrode technologies (carrier-doped membranes, carbon-based varieties, enzyme inhibition electrodes). Notable variations of these electrodes will be highlighted, and a brief overview of associated electrochemical techniques will be given.
Collapse
Affiliation(s)
- William S Skinner
- Department of Chemistry, University of Oregon, Eugene, OR 97403, USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Keat Ghee Ong
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
20
|
Naderi Asrami P, Aberoomand Azar P, Saber Tehrani M, Mozaffari SA. Glucose Oxidase/Nano-ZnO/Thin Film Deposit FTO as an Innovative Clinical Transducer: A Sensitive Glucose Biosensor. Front Chem 2020; 8:503. [PMID: 32760694 PMCID: PMC7374262 DOI: 10.3389/fchem.2020.00503] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022] Open
Abstract
In the present research, a new biocompatible electrode is proposed as a rapid and direct glucose biosensing technique that improves on the deficiencies of fast clinical devices in laboratory investigations. Nano-ZnO (nanostructured zinc oxide) was sputtered by reactive direct current magnetron sputtering system on a precovered fluorinated tin oxide (FTO) conductive layer. Spin-coated polyvinyl alcohol (PVA) at optimized instrumental deposition conditions was applied to prepare the effective medium for glucose oxidase enzyme (GOx) covalent immobilization through cyanuric chloride (GOx/nano-ZnO/PVA/FTO). The electrochemical behavior of glucose on the fabricated GOx/nano-ZnO/PVA/FTO biosensor was investigated by I-V techniques. In addition, field emission scanning electron microscopy and electrochemical impedance spectroscopy were applied to assess the morphology of the modified electrode surface. The I-V results indicated good sensitivity for glucose detection (0.041 mA per mM) within 0.2-20 mM and the limit of detection was 2.0 μM. We believe that such biodevices have good potential for tracing a number of biocompounds in biological fluids along with excellent accuracy, selectivity, and precise analysis. The fast response time of the fabricated GOx/nano-ZnO/PVA/FTO biosensor (less than 3 s) could allow most types of real-time analysis.
Collapse
Affiliation(s)
- Padideh Naderi Asrami
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Saber Tehrani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sayed Ahmad Mozaffari
- Thin Layer and Nanotechnology Laboratory, Institute of Chemical Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
21
|
Mani V, Balamurugan T, Huang ST. Rapid One-Pot Synthesis of Polydopamine Encapsulated Carbon Anchored with Au Nanoparticles: Versatile Electrocatalysts for Chloramphenicol and Folic Acid Sensors. Int J Mol Sci 2020; 21:ijms21082853. [PMID: 32325883 PMCID: PMC7215351 DOI: 10.3390/ijms21082853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
Designing and engineering nanocomposites with tailored physiochemical properties through teaming distinct components is a straightforward strategy to yield multifunctional materials. Here, we describe a rapid, economical, and green one-pot microwave synthetic procedure for the preparation of ternary nanocomposites carbon/polydopamine/Au nanoparticles (C/PDA/AuNPs; C = carbon nanotubes (CNTs), reduced graphene oxide (rGO)). No harsh reaction conditions were used in the method, as are used in conventional hydrothermal or high-temperature methods. The PDA unit acts as a non-covalent functionalizing agent for carbon, through π stacking interactions, and also as a stabilizing agent for the formation of AuNPs. The CNTs/PDA/AuNPs modified electrode exhibited excellent electrocatalytic activity to oxidize chloramphenicol and the resulting sensor exhibited a low detection limit (36 nM), wide linear range (0.1–534 μM), good selectivity (against 5-fold excess levels of interferences), appreciable reproducibility (3.47%), good stability (94.7%), and practicality (recoveries 95.0%–98.4%). Likewise, rGO/PDA/AuNPs was used to fabricate a sensitive folic acid sensor, which exhibits excellent analytical parameters, including wide linear range (0.1–905 μM) and low detection limit (25 nM). The described synthetic route includes fast reaction time (5 min) and a readily available household microwave heating device, which has the potential to significantly contribute to the current state of the field.
Collapse
Affiliation(s)
- Veerappan Mani
- Correspondence: (V.M.); (S.-T.H.); Tel.: +886-2271-2171-2525 (V.M. & S.-T.H.); Fax: +886-02-2731-7117 (S.-T.H.)
| | | | - Sheng-Tung Huang
- Correspondence: (V.M.); (S.-T.H.); Tel.: +886-2271-2171-2525 (V.M. & S.-T.H.); Fax: +886-02-2731-7117 (S.-T.H.)
| |
Collapse
|
22
|
Mohadeseh Safaei, Beitollahi H, Shishehbore MR. Amplified Electrochemical Sensor Employing Fe3O4@SiO2/graphene Nanocomposite for Selective Determination of Folic Acid. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Li W, Zhang X, Miao C, Li R, Ji Y. Fluorescent paper-based sensor based on carbon dots for detection of folic acid. Anal Bioanal Chem 2020; 412:2805-2813. [PMID: 32078004 DOI: 10.1007/s00216-020-02507-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Paper-based devices have been very much in the foreground of analytical science recently. This work innovatively proposed a fluorescent paper-based sensor (FPS) constructed on a hybrid polydimethylsiloxane (PDMS)/paper platform where cellulose papers functionalized with carbon dots (CDs) as fluorophores by Schiff base chemistry were loaded on the grooves array of a designed PDMS plate. As a proof of concept, the performance of FPS was investigated with folic acid (FA) as the target analyte. Under optimal conditions, FPS enabled a rapid fluorescence quenching response to FA via inner filter effect in a wide range of 1-300 μmol L-1 with the limit of detection of 0.28 μmol L-1. The feasibility of FPS was further verified by the detection of FA in orange juice and urine samples with satisfactory results. The covalent modification of CDs on paper endowed the FPS with good assay reproducibility and stability. Interestingly, FPS achieved a more sensitive assay of FA than the conventional strategy, by which the same CDs were directly used to detect FA in a solution-based system. The FPS illuminated a novel strategy for construction of reliable and sensitive assays based on paper-based devices. It is of paramount importance for its practical application in biosensing and clinical diagnosis. Graphical abstract.
Collapse
Affiliation(s)
- Wang Li
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, Jiangsu, China
| | - Xiaoyue Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, Jiangsu, China
| | - Chunyue Miao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, Jiangsu, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, Jiangsu, China.
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
24
|
Dokur E, Gorduk O, Sahin Y. Differential Pulse Voltammetric Determination of Folic Acid Using a Poly(Cystine) Modified Pencil Graphite Electrode. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1728540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ebrar Dokur
- Faculty of Arts and Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Ozge Gorduk
- Faculty of Arts and Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Yucel Sahin
- Faculty of Arts and Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
25
|
|
26
|
Ashoka N, Swamy BK, Jayadevappa H, Sharma S. Simultaneous electroanalysis of dopamine, paracetamol and folic acid using TiO2-WO3 nanoparticle modified carbon paste electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Karthika A, Suganthi A, Rajarajan M. An in-situ synthesis of novel V2O5/G-C3N4/PVA nanocomposite for enhanced electrocatalytic activity toward sensitive and selective sensing of folic acid in natural samples. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
28
|
Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. CHEM REC 2019; 20:682-692. [PMID: 31845511 DOI: 10.1002/tcr.201900092] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Analysis of food, pharmaceutical, and environmental compounds is an inevitable issue to evaluate quality of the compounds used in human life. Quality of drinking water, food products, and pharmaceutical compounds is directly associated with human health. Presence of forbidden additives in food products, toxic compounds in water samples and drugs with low quality lead to important problems for human health. Therefore, attention to analytical strategy for investigation of quality of food, pharmaceutical, and environmental compounds and monitoring presence of forbidden compounds in materials used by humans has increased in recent years. Analytical methods help to identify and quantify both permissible and unauthorized compounds present in the materials used in human daily life. Among analytical methods, electrochemical methods have been shown to have more advantages compared to other analytical methods due to their portability and low cost. Most of big companies have applied this type of analytical methods because of their fast and selective analysis. Due to simple operation and high diversity of electroanalytical sensors, these types of sensors are expected to be the future generation of analytical systems. Therefore, many scientists and researchers have focused on designing and fabrication of electroanalytical sensors with good selectivity and high sensitivity for different types of compounds such as drugs, food, and environmental pollutants. In this paper, we described the mechanism and different examples of DNA, enzymatic and electro-catalytic methods for electroanalytical determination of drug, food and environmental compounds.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, P.R. China.,Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Fatemeh Karimi
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, P.R. China.,Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Marzieh Alizadeh
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | | |
Collapse
|
29
|
Elumalai S, Mani V, Jeromiyas N, Ponnusamy VK, Yoshimura M. A composite film prepared from titanium carbide Ti 3C 2T x (MXene) and gold nanoparticles for voltammetric determination of uric acid and folic acid. Mikrochim Acta 2019; 187:33. [PMID: 31814085 DOI: 10.1007/s00604-019-4018-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/09/2019] [Indexed: 11/26/2022]
Abstract
In this study, a solution-processing based galvanic deposition approach is described for in-situ deposition of gold nanoparticles (AuNP) on delaminated titanium Ti3C2Tx nanosheets under ultrasonication. The nanocomposite (AuNP@Ti3C2Tx) was placed on a glassy carbon electrode (GCE) and then applied to electrochemically with label-free, and simultaneously sense uric acid (UA), and folic acid (FA) at physiological pH. The modified GCE has attractive figures of merit: (i) The working potentials for UA and AA are well separated (+0.35 V and 0.70 V vs. Ag|AgCl); (ii) wide linear responses (from 0.03-1520 μM for UA and from 0.02-3580 μM for FA; (iii) good electrochemical sensitivities for both UA and FA (0.53 and 0.494 μAμM-1.cm-2, respectively), and (iv) detection limits of 11.5 nM (UA) and 6.20 nM (FA). The electrode exhibited good repeatability (RSD = 4.4%), acceptable reproducibility (RSD = 4.1%), and excellent stability (91.8% over one-month storage). The method was applied to analyze spiked serum samples, and modified GCE is shown appreciable recoveries (97.1-98.8% and 96.8-98.0% for UA, and FA, respectively). Graphical abstractA photograph (top left) of colloidal suspension of gold nanoparticles (AuNPs). They were grown on the delaminated titanium carbide Ti3C2Tx MXene nanosheet via galvanic displacement deposition method, and their corresponding a low-resolution transmission electron microscopy micrograph (top right) of AuNP@Ti3C2Tx. The graphical representation of AuNP@Ti3C2Tx drop-casted on glassy carbon electrode (GCE) (bottom left), and their voltammetric measurement were applied in the presence of both uric acid and folic acid with increasing the concentration of both analytes (bottom right).
Collapse
Affiliation(s)
- Satheeshkumar Elumalai
- Department of Material Science and Engineering, Promotion Center for Global Materials Research (PCGMR), National Cheng Kung University, Tainan, 701, Taiwan.
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong, 21210, Thailand.
| | - Veerappan Mani
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Nithiya Jeromiyas
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Masahiro Yoshimura
- Department of Material Science and Engineering, Promotion Center for Global Materials Research (PCGMR), National Cheng Kung University, Tainan, 701, Taiwan.
- Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| |
Collapse
|
30
|
Chen Y, Zhou W, Ma J, Ruan F, Qi X, Cai Y. Potential of a sensitive uric acid biosensor fabricated using hydroxyapatite nanowire/reduced graphene oxide/gold nanoparticle. Microsc Res Tech 2019; 83:268-275. [PMID: 31729094 DOI: 10.1002/jemt.23410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
In this study, a ternary nanocomposite consisting of gold nanoparticles (AuNPs), hydroxyapatite (HAP) nanowires, and reduced graphene oxide (rGO) is synthesized by a simple one-step hydrothermal method, which is used to modify glassy carbon electrode (GCE) for detecting uric acid. The nanocomposite is characterized through various methods such as scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Electrochemical measurements of the modified GCE are performed in a conventional three-electrode system. Experimental results show that the obtained HAP nanowire and rGO are mixed homogeneously, and the AuNPs are deposited into this matrix. The GCE modified by the nanocomposites have superior electrocatalytic activities for uric acid. The peak current intensities of UAO (uricase)/HAP-rGO/AuNPs sensing system linearly increase as the uric acid concentration increases substantially in a range of 1.95 × 10-5 to 6.0 × 10-3 M (R2 = .9943), with a detection limit of 3.9 × 10-6 M (S/N = 3) and analytical sensitivity of 13.86 mA/M. The biosensor performs well in determining uric acid concentration in human urine samples.
Collapse
Affiliation(s)
- Yao Chen
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wencui Zhou
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiahui Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Feixia Ruan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuezhen Qi
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
31
|
Gęca I, Korolczuk M. Sensitive Determination of Folic Acid using a Solid Bismuth Microelectrode by Adsorptive Stripping Voltammetry. ELECTROANAL 2019. [DOI: 10.1002/elan.201900514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Iwona Gęca
- Faculty of ChemistryMaria Curie Sklodowska University 20-031 Lublin Poland
| | | |
Collapse
|
32
|
Affiliation(s)
| | - Özgul Haklı
- Muğla Sıtkı Koçman UniversityFaculty of Science, Chemistry Department 48000- Kötekli Mugla TURKEY
| | - Ülkü Anik
- Muğla Sıtkı Koçman UniversityFaculty of Science, Chemistry Department 48000- Kötekli Mugla TURKEY
| |
Collapse
|
33
|
Nigović B, Mornar A, Brusač E, Jeličić ML. Selective sensor for simultaneous determination of mesalazine and folic acid using chitosan coated carbon nanotubes functionalized with amino groups. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Shoja Y, Kermanpur A, Karimzadeh F, Ghodsi J, Rafati AA, Adhami S. Electrochemical molecularly bioimprinted siloxane biosensor on the basis of core/shell silver nanoparticles/EGFR exon 21 L858R point mutant gene/siloxane film for ultra-sensing of Gemcitabine as a lung cancer chemotherapy medication. Biosens Bioelectron 2019; 145:111611. [PMID: 31550632 DOI: 10.1016/j.bios.2019.111611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 11/16/2022]
Abstract
In search for improvements in bioanalysis electrochemical sensors, for better assessment of anti-cancer drugs, it is necessary for their detection limits to be minimized and the sensitivity and selectivity to be surpassed simultaneously; whereas, resolving any probable interfering with other medical treatments are considered. In this work, a novel approach was adopted for detection and assessment of Gemcitabine (GEM) as an anti-cancer drug based on evaluating its interaction with EGFR exon 21-point mutant gene. An electrochemical nanobiosensor was invented based on a new molecularly bioimprinted siloxane polymer (MBIS) strategy; in which the EGFR exon 21 acts as an identification probe. The roles of multi-walled carbon nanotubes and Ag nanoparticles (NPs) are to perform as a signal amplifier. The MBIS film was prepared by acid-catalysed hydrolysis/condensation of the sample solution, containing Ag NPs, ds-DNA of EGFR exon 21 point mutant gene, GEM as a template molecule, 3-(aminopropyl) trimethoxysilane (APTMS) and tetraethoxysilane. The interaction between the dsDNA and GEM was investigated by employing the modified biosensor and monitoring oxidation signal of guanine and adenine. The produced biosensor was characterized by XRD, FE-SEM, EDS, FT-IR and differential pulse voltammetry. The oxidation signals of adenine and guanine were in linear range when the device was subjected to various concentrations of GEM, from 1.5 to -93 μM, where a low detection limit 12.5 nmol L-1, and 48.8 nmol L-1 were recorded by guanine and adenine respectively. The developed biosensor did perform very well when employed for the actual samples; the stability was also approved which was acceptable for a reasonable time.
Collapse
Affiliation(s)
- Yalda Shoja
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ahmad Kermanpur
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Javad Ghodsi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O.Box 65174, Hamedan, Iran.
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O.Box 65174, Hamedan, Iran
| | - Siavash Adhami
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
35
|
Shpigun LK, Andryukhina EY. A New Electrochemical Sensor for Direct Detection of Purine Antimetabolites and DNA Degradation. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1572526. [PMID: 30984441 PMCID: PMC6431463 DOI: 10.1155/2019/1572526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
The development of a reliable electrochemical sensor using a hybrid nanocomposite consisting of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) functionalized graphene oxide (GrO-IL) and gold nanoparticles (AuNPs) stabilized by chitosan (Chit) was described. The new sensor, labelled as GrO-IL-AuNPs-Chit/CSE, exhibited an improved electrocatalytic response to cancer drugs such as purine antimetabolites (6-thioguanine, 6-mercaptopurine, and azathioprine) in a wide concentration range with a low detection limit (20-40 nmol·L-1, S/N = 3), and satisfactory recoveries (97.1-103.0%). The sensor has been also successfully used for cyclic voltammetric study of a salmon sperm double-stranded DNA degradation and DNA-6-mercaptopurine interaction in aqueous solutions (pH 7.4).
Collapse
Affiliation(s)
- Liliya K. Shpigun
- Institute of General & Inorganic Chemistry of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Yu. Andryukhina
- Institute of General & Inorganic Chemistry of Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
36
|
Amjadi M, Hallaj T, Salari R. A sensitive colorimetric probe for detection of 6-thioguanine based on its protective effect on the silver nanoprisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:30-35. [PMID: 30428429 DOI: 10.1016/j.saa.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
In this work a non-aggregated colorimetric probe for detection of chemotherapeutic drug, 6-thioguanine (6-TG), is introduced. It is based on the protective effect of 6-TG on silver nanoprisms (AgNPRs) against the iodide-induced etching reaction. Iodide ions can attack the corners of AgNPRs and etch them, leading to the morphological transition from nanoprisms to nanodiscs. As a consequence, the solution color changes from blue to pink. However, in the presence of 6-TG, due to its protective effect on the corners of AgNPRs, I- ions cannot etch the prisms and the blue color of solution remains unchanged. Using this effect, selective sensor was designed for detection of 6-TG in the range of 2.5-500 μg L-1, with a detection limit of 0.95 μg L-1. Since with varying the concentration of 6-TG in this range, the color variation from pink to blue can be easily observed, the designed sensing scheme can be used as a colorimetric probe. The method was used for analysis of human plasma samples.
Collapse
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
37
|
Zaidi SA. Molecular Imprinting Prevents Environmental Contamination and Body Toxicity from Anticancer Drugs: An Update. Crit Rev Anal Chem 2019; 49:324-335. [PMID: 30601038 DOI: 10.1080/10408347.2018.1527207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cancer has been responsible for high morbidity and mortality globally. The treatment of cancer is possible using different kinds of therapies using anticancer drugs if it is diagnosed at the right time. Nevertheless, their appropriate administration for maximum therapeutic effect and their elimination from the patient's body causing environmental problems are two big issues which could be successfully abated using molecular imprinted polymers (MIPs) owing to their unique features. In this review, we have compiled and discussed the works on the determination and controlled release of anticancer drugs based on MIPs. We also highlighted the current challenges and remedies, and the future direction of MIPs in this area.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- a Department of Chemistry , Kwangwoon University , Nowon-Gu , Seoul , Korea
| |
Collapse
|
38
|
Karimi-Maleh H, Sheikhshoaie M, Sheikhshoaie I, Ranjbar M, Alizadeh J, Maxakato NW, Abbaspourrad A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. NEW J CHEM 2019. [DOI: 10.1039/c8nj05581e] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study suggests a carbon paste electrode modified with CuO nanoparticles andn-hexyl-3-methylimidazolium hexafluorophosphate (CPE/CuO-NPs/HMIPF6) as a powerful tool for the analysis of epinine for the first time.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- Department of Chemical Engineering
- Laboratory of Nanotechnology
- Quchan University of Advanced Technology
- Quchan
- Iran
| | - Mahdieh Sheikhshoaie
- Department of Chemistry, Shahid Bahonar University
- Kerman
- Iran
- Young Research Society
- Shahid Bahonar University of Kerman
| | | | | | - Javad Alizadeh
- Young Research Society
- Shahid Bahonar University of Kerman
- Kerman
- Iran
| | | | | |
Collapse
|
39
|
Zaidi SA. Effective imprinting of an anticancer drug, 6-thioguanine,viamussel-inspired self-polymerization of dopamine over reduced graphene oxide. Analyst 2019; 144:2345-2352. [DOI: 10.1039/c8an02348d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apart from being a vital catecholamine molecule responsible for the proper functioning of the central nervous system (CNS), hormonal and renal systems, dopamine (DA) has also been increasingly employed as a functional monomer in the fabrication of surface molecular imprinting polymers (MIPs) for valuable analytes.
Collapse
|
40
|
Shpigun LK, Andryukhina EY. Electrochemical Sensor Based on Nanocomposite of Ionic Liquid Modified Graphene Oxide - Chitosan and its Application for Flow Injection Detection of Anticancer Thiopurine Drugs. ELECTROANAL 2018. [DOI: 10.1002/elan.201800358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liliya K. Shpigun
- Institute of General & Inorganic Chemistry of Russian Academy of Sciences; 119991 Moscow Russia
| | - Elena Yu. Andryukhina
- Institute of General & Inorganic Chemistry of Russian Academy of Sciences; 119991 Moscow Russia
| |
Collapse
|
41
|
Dilgin DG, Ertek B, Dilgin Y. A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1335-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Garg D, Mehta A, Mishra A, Basu S. A sensitive turn on fluorescent probe for detection of biothiols using MnO 2@carbon dots nanocomposites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:411-419. [PMID: 29197275 DOI: 10.1016/j.saa.2017.11.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 05/15/2023]
Abstract
Presently, the combination of carbon quantum dots (CQDs) and metal oxide nanostructures in one frame are being considered for the sensing of purine compounds. In this work, a combined system of CQDs and MnO2 nanostructures was used for the detection of anticancer drugs, 6-Thioguanine (6-TG) and 6-Mercaptopurine (6-MP). The CQDs were synthesized through microwave synthesizer and the MnO2 nanostructures (nanoflowers and nanosheets) were synthesized using facile hydrothermal technique. The CQDs exhibited excellent fluorescence emission at 420nm when excited at 320nm wavelength. By combining CQDs and MnO2 nanostructures, quenching of fluorescence was observed which was attributed to fluorescence resonance energy transfer (FRET) mechanism, where CQDs act as electron donor and MnO2 act as acceptor. This fluorescence quenching behaviour disappeared on the addition of 6-TG and 6-MP due to the formation of Mn-S bond. The detection limit for 6-TG (0.015μM) and 6-MP (0.014μM) was achieved with the linear range of concentration (0-50μM) using both MnO2 nanoflowers and nanosheets. Moreover, the as-prepared fluorescence-sensing technique was successfully employed for the detection of bio-thiol group in enapril drug. Thus a facile, cost-effective and benign chemistry approach for biomolecule detection was designed.
Collapse
Affiliation(s)
- Dimple Garg
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Akansha Mehta
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Amit Mishra
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India.
| |
Collapse
|
43
|
Zeng H, Li L, Ding Y, Zhuang Q. Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta 2018; 178:879-885. [DOI: 10.1016/j.talanta.2017.09.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 02/07/2023]
|
44
|
Kıranşan KD, Topçu E. Free-standing and Flexible MoS2
/rGO Paper Electrode for Amperometric Detection of Folic Acid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700778] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kader Dağcı Kıranşan
- Department of Chemistry, Sciences Faculty; Atatürk University; Erzurum 25240 Turkey
| | - Ezgi Topçu
- Department of Chemistry, Sciences Faculty; Atatürk University; Erzurum 25240 Turkey
| |
Collapse
|
45
|
Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H. Gold nanoparticles and reduced graphene oxide-amplified label-free DNA biosensor for dasatinib detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj03783c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dasatinib or sprycel is an anticancer drug for treatment of chronic myelogenous leukemia, prostate cancer, and some of the other cancers with several adverse effects.
Collapse
Affiliation(s)
- Fahimeh Tahernejad-Javazmi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Kashan
- Kashan
- Islamic Republic of Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Kashan
- Kashan
- Islamic Republic of Iran
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering
- Laboratory of Nanotechnology
- Quchan University of Technology
- Quchan
- Islamic Republic of Iran
| |
Collapse
|
46
|
Zanato N, Talamini L, Silva TR, Vieira IC. Microcystin-LR label-free immunosensor based on exfoliated graphite nanoplatelets and silver nanoparticles. Talanta 2017; 175:38-45. [DOI: 10.1016/j.talanta.2017.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022]
|
47
|
An electrochemical strategy to determine thiosulfate, 4-chlorophenol and nitrite as three important pollutants in water samples via a nanostructure modified sensor. J Colloid Interface Sci 2017; 507:11-17. [DOI: 10.1016/j.jcis.2017.07.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022]
|
48
|
Wen Y, Chang J, Xu L, Liao X, Bai L, Lan Y, Li M. Simultaneous analysis of uric acid, xanthine and hypoxanthine using voltammetric sensor based on nanocomposite of palygorskite and nitrogen doped graphene. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Wang Z, Wang K, Zhao L, Chai S, Zhang J, Zhang X, Zou Q. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:180-186. [DOI: 10.1016/j.msec.2017.03.227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/04/2016] [Accepted: 03/24/2017] [Indexed: 12/25/2022]
|
50
|
Unal DN, Eksin E, Erdem A. Electrochemical Determination of 6-Thioguanine and Its Interaction with DNA Oligonucleotides Using Disposable Graphite Pencil Electrodes. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1338714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Didem Nur Unal
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Izmir, Turkey
| | - Ece Eksin
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Izmir, Turkey
| | - Arzum Erdem
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Izmir, Turkey
| |
Collapse
|