1
|
You X, Han J, Del Colle V, Xu Y, Chang Y, Sun X, Wang G, Ji C, Pan C, Zhang J, Gao Q. Relationship between oxide identity and electrocatalytic activity of platinum for ethanol electrooxidation in perchlorate acidic solution. Commun Chem 2023; 6:101. [PMID: 37248368 DOI: 10.1038/s42004-023-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
Water and its dissociated species at the solid‒liquid interface play critical roles in catalytic science; e.g., functions of oxygen species from water dissociation are gradually being recognized. Herein, the relationship between oxide identity (PtOHads, PtOads, and PtO2) and electrocatalytic activity of platinum for ethanol electrooxidation was obtained in perchlorate acidic solution over a wide potential range with an upper potential of 1.5 V (reversible hydrogen electrode, RHE). PtOHads and α-PtO2, rather than PtOads, act as catalytic centers promoting ethanol electrooxidation. This relationship was corroborated on Pt(111), Pt(110), and Pt(100) electrodes, respectively. A reaction mechanism of ethanol electrooxidation was developed with DFT calculations, in which platinum oxides-mediated dehydrogenation and hydrated reaction intermediate, geminal diol, can perfectly explain experimental results, including pH dependence of product selectivity and more active α-PtO2 than PtOHads. This work can be generalized to the oxidation of other substances on other metal/alloy electrodes in energy conversion and electrochemical syntheses.
Collapse
Affiliation(s)
- Xinyu You
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Jiaxing Han
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Vinicius Del Colle
- Department of Chemistry, Federal University of Alagoas-Campus Arapiraca, Av. Manoel Severino Barbosa s/n, Arapiraca, AL, 57309-005, Brazil
| | - Yuqiang Xu
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Yannan Chang
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Xiao Sun
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Guichang Wang
- Department of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China
| | - Chen Ji
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China.
| | - Jiujun Zhang
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China.
- School of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, People's Republic of China.
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China.
| |
Collapse
|
2
|
Fuchs T, Briega-Martos V, Fehrs JO, Qiu C, Mirolo M, Yuan C, Cherevko S, Drnec J, Magnussen OM, Harrington DA. Driving Force of the Initial Step in Electrochemical Pt(111) Oxidation. J Phys Chem Lett 2023; 14:3589-3593. [PMID: 37018542 DOI: 10.1021/acs.jpclett.3c00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step of electrochemical surface oxidation is extraction of a metal atom from its lattice site to a location in a growing oxide. Here we show by fast simultaneous electrochemical and in situ high-energy surface X-ray diffraction measurements that the initial extraction of Pt atoms from Pt(111) is a fast, potential-driven process, whereas charge transfer for the related formation of adsorbed oxygen-containing species occurs on a much slower time scale and is evidently uncoupled from the extraction process. It is concluded that potential plays a key independent role in electrochemical surface oxidation.
Collapse
Affiliation(s)
- Timo Fuchs
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Valentín Briega-Martos
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen 91058, Germany
| | - Jan O Fehrs
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Canrong Qiu
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Marta Mirolo
- Experimental Division, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Chentian Yuan
- Chemistry Department, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Erlangen 91058, Germany
| | - Jakub Drnec
- Experimental Division, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Olaf M Magnussen
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - David A Harrington
- Chemistry Department, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
3
|
Sheyfer D, Mariano RG, Kawaguchi T, Cha W, Harder RJ, Kanan MW, Hruszkewycz SO, You H, Highland MJ. Operando Nanoscale Imaging of Electrochemically Induced Strain in a Locally Polarized Pt Grain. NANO LETTERS 2023; 23:1-7. [PMID: 36541700 DOI: 10.1021/acs.nanolett.2c01015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.
Collapse
Affiliation(s)
- Dina Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ruperto G Mariano
- Department of Chemistry, Stanford University, Stanford, California94305, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02141, United States
| | - Tomoya Kawaguchi
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Institute for Materials Research, Tohoku University, Sendai, 9808577, Japan
| | - Wonsuk Cha
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ross J Harder
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Hoydoo You
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew J Highland
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
4
|
Braunwarth L, Jung C, Jacob T. Potential-Dependent Pt(111)/Water Interface: Tackling the Challenge of a Consistent Treatment of Electrochemical Interfaces. Chemphyschem 2023; 24:e202200336. [PMID: 36123306 PMCID: PMC10092414 DOI: 10.1002/cphc.202200336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Indexed: 01/04/2023]
Abstract
The interface between an electrode and an electrolyte is where electrochemical processes take place for countless technologically important applications. Despite its high relevance and intense efforts to elucidate it, a description of the interfacial structure and, in particular, the dynamics of the electric double layer at the atomic level is still lacking. Here we present reactive force-field molecular dynamics simulations of electrified Pt(111)/water interfaces, shedding light on the orientation of water molecules in the vicinity of the Pt(111) surface, taking into account the influence of potential, adsorbates, and ions simultaneously. We obtain a shift in the preferred orientation of water in the surface oxidation potential region, which breaks with the previously proclaimed strict correlation to the free charge density. Moreover, the characterization is complemented by course of the entropy and the intermolecular ordering in the interfacial region complements the characterization. Our work contributes to the ongoing process of understanding electric double layers and, in particular, the structure of the electrified Pt(111)/water interface, and aims to provide insights into the electrochemical processes occurring there.
Collapse
Affiliation(s)
- Laura Braunwarth
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 47D-89081UlmGermany
| | - Christoph Jung
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 47D-89081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 3640D-76021KarlsruheGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 11D-89081UlmGermany
| | - Timo Jacob
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 47D-89081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 3640D-76021KarlsruheGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 11D-89081UlmGermany
| |
Collapse
|
5
|
Luo M, Koper MTM. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat Catal 2022. [DOI: 10.1038/s41929-022-00810-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractProton-exchange membrane fuel cells demand efficient electrode–electrolyte interfaces to catalyse the oxygen reduction reaction (ORR), the kinetics of which depends on the energetics of surface adsorption and on electrolyte environment. Here we show an unanticipated effect of non-specifically adsorbed anions on the ORR kinetics on a Pt(111) electrode; these trends do not follow the usual ORR descriptor, that is *OH binding energy. We propose a voltammetry-accessible descriptor, namely reversibility of the *O ↔ *OH transition. This descriptor tracks the dependence of ORR rates on electrolyte, including the concentration/identity of anions in acidic media, cations in alkaline media and the effect of ionomers. We propose a model that relates the ORR rate on Pt(111) to the rate of the *O to *OH transition, in addition to the thermodynamic *OH binding energy descriptor. Our model also rationalizes different trends for the ORR rate on stepped Pt surfaces in acidic versus alkaline media.
Collapse
|
6
|
Rizo R, Fernández-Vidal J, Hardwick LJ, Attard GA, Vidal-Iglesias FJ, Climent V, Herrero E, Feliu JM. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat Commun 2022; 13:2550. [PMID: 35538173 PMCID: PMC9090771 DOI: 10.1038/s41467-022-30241-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
The study of the OH adsorption process on Pt single crystals is of paramount importance since this adsorbed species is considered the main intermediate in many electrochemical reactions of interest, in particular, those oxidation reactions that require a source of oxygen. So far, it is frequently assumed that the OH adsorption on Pt only takes place at potentials higher than 0.55 V (versus the reversible hydrogen electrode), regardless of the Pt surface structure. However, by CO displacement experiments, alternating current voltammetry, and Raman spectroscopy, we demonstrate here that OH is adsorbed at more negative potentials on the low coordinated Pt atoms, the Pt steps. This finding opens a new door in the mechanistic study of many relevant electrochemical reactions, leading to a better understanding that, ultimately, can be essential to reach the final goal of obtaining improved catalysts for electrochemical applications of technological interest.
Collapse
Affiliation(s)
- Rubén Rizo
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| | - Julia Fernández-Vidal
- Stephenson Institute for Renewable Energy, University of Liverpool, Peach Street, Liverpool, L69 7ZF, UK
| | - Laurence J Hardwick
- Stephenson Institute for Renewable Energy, University of Liverpool, Peach Street, Liverpool, L69 7ZF, UK
| | - Gary A Attard
- Department of Physics, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | | | - Victor Climent
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, E-03080, Alicante, Spain.
| |
Collapse
|
7
|
Mikkelsen AEG, Kristoffersen HH, Schiøtz J, Vegge T, Hansen HA, Jacobsen KW. Structure and energetics of liquid water-hydroxyl layers on Pt(111). Phys Chem Chem Phys 2022; 24:9885-9890. [PMID: 35416202 DOI: 10.1039/d2cp00190j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions between liquid water and hydroxyl species on Pt(111) surfaces have been intensely investigated due to their importance to fuel cell electrocatalysis. Here we present a molecular dynamics study of their structure and energetics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling. We first study the energetics of hydroxyl formation, where we find a near-linear adsorption energy profile, which exhibits a soft and gradual increase in the differential adsorption energy at high hydroxyl coverages. This is strikingly different from the predictions of the conventional bilayer model, which displays a kink at 1/3ML OH coverage indicating a sizeable jump in differential adsorption energy, but within the statistical uncertainty of previously reported ab initio molecular dynamics studies. We then analyze the structure of the interface, where we provide evidence for the water-OH/Pt(111) interface being hydrophobic at high hydroxyl coverages. We furthermore explain the observed adsorption energetics by analyzing the hydrogen bonding in the water-hydroxyl adlayers, where we argue that the increase in differential adsorption energy at high OH coverage can be explained by a reduction in the number of hydrogen bonds from the adsorbed water molecules to the hydroxyls.
Collapse
Affiliation(s)
- August E G Mikkelsen
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Heine A Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Karsten W Jacobsen
- CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Affiliation(s)
- Zhiyao Duan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| |
Collapse
|
10
|
da Silva KN, Sitta E. Oscillatory dynamics during the methanol electrooxidation reaction on Pt(111). Phys Chem Chem Phys 2021; 23:22263-22272. [PMID: 34644370 DOI: 10.1039/d1cp02490f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite several papers describing the oscillatory methanol electrooxidation reaction (OMOR) catalyzed by polycrystalline Pt, these dynamic instabilities are less explored on single crystalline surfaces. Herein, we observed and mapped for the first time the OMOR on Pt(111) in non-adsorbing anion solutions as well as in the presence of small amounts of sulfate anions. Period 1 oscillations with oscillation frequencies from 1.2 to 2.0 Hz were observed for methanol concentrations higher than 1.0 M, with no evolution to more complex patterns. These oscillations occur in the potential range in which PtOH is partially covering the surface without irreversible oxidation processes. Small changes in both the mean potential (Em) and the poisoning rate along the time-series were observed, the so-called drift, and were explained in terms of the accumulation of intermediates at the interface. The presence of sulfate strongly inhibits the OMOR, and the results are discussed in terms of sulfate adlayer formation on {111} domains.
Collapse
Affiliation(s)
- Kaline Nascimento da Silva
- Chemistry Department, Federal University of Sao Carlos, Rod. Washington Luis, km 235, Sao Carlos, 13565-905, Brazil.
| | - Elton Sitta
- Chemistry Department, Federal University of Sao Carlos, Rod. Washington Luis, km 235, Sao Carlos, 13565-905, Brazil. .,Center for Innovation on New Energies, Campinas, 13083-841, Brazil
| |
Collapse
|
11
|
Shi G, Tano T, Tryk DA, Iiyama A, Uchida M, Kakinuma K. Temperature Dependence of Oxygen Reduction Activity at Pt/Nb-Doped SnO2 Catalysts with Varied Pt Loading. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guoyu Shi
- Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu 400-0021, Japan
| | - Tetsuro Tano
- Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu 400-0021, Japan
| | - Donald A. Tryk
- Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu 400-0021, Japan
| | - Akihiro Iiyama
- Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu 400-0021, Japan
| | - Makoto Uchida
- Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu 400-0021, Japan
| | - Katsuyoshi Kakinuma
- Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu 400-0021, Japan
| |
Collapse
|
12
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
13
|
da Silva KN, Nagao R, Sitta E. Oscillatory ethylene glycol electrooxidation reaction on Pt in alkaline media: The effect of surface orientation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Bertram M, Prössl C, Ronovský M, Knöppel J, Matvija P, Fusek L, Skála T, Tsud N, Kastenmeier M, Matolín V, Mayrhofer KJJ, Johánek V, Mysliveček J, Cherevko S, Lykhach Y, Brummel O, Libuda J. Cobalt Oxide-Supported Pt Electrocatalysts: Intimate Correlation between Particle Size, Electronic Metal-Support Interaction and Stability. J Phys Chem Lett 2020; 11:8365-8371. [PMID: 32909431 DOI: 10.1021/acs.jpclett.0c02233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxide supports can modify and stabilize platinum nanoparticles (NPs) in electrocatalytic materials. We studied related phenomena on model systems consisting of Pt NPs on atomically defined Co3O4(111) thin films. Chemical states and dissolution behavior of model catalysts were investigated as a function of the particle size and the electrochemical potential by ex situ emersion synchrotron radiation photoelectron spectroscopy and by online inductively coupled plasma mass spectrometry. Electronic metal-support interaction (EMSI) yields partially oxidized Ptδ+ species at the metal/support interface of metallic nanometer-sized Pt NPs. In contrast, subnanometer particles form Ptδ+ aggregates that are exclusively accompanied by subsurface Pt4+ species. Dissolution of Cox+ ions is strongly coupled to the presence of Ptδ+ and the reduction of subsurface Pt4+ species. Our findings suggest that EMSI directly affects the integrity of oxide-based electrocatalysts and may be employed to stabilize Pt NPs against sintering and dissolution.
Collapse
Affiliation(s)
- Manon Bertram
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Carolin Prössl
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michal Ronovský
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Julius Knöppel
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Matvija
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Lukáš Fusek
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Tomáš Skála
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Nataliya Tsud
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Maximilian Kastenmeier
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Vladimír Matolín
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Karl J J Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Viktor Johánek
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Josef Mysliveček
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University,V Hole šovičkách 2, 18000 Prague, Czech Republic
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Yaroslava Lykhach
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Olaf Brummel
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
15
|
|
16
|
Mu Z, Yang M, He W, Pan Y, Zhang P, Li X, Wu X, Ding M. On-Chip Electrical Transport Investigation of Metal Nanoparticles: Characteristic Acidic and Alkaline Adsorptions Revealed on Pt and Au Surface. J Phys Chem Lett 2020; 11:5798-5806. [PMID: 32597655 DOI: 10.1021/acs.jpclett.0c01282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal nanocrystals have been extensively explored as efficient and tailorable electrocatalysts for various sustainable energy technologies. Precise understanding of molecular interactions at the electrode-electrolyte interfaces during electrochemical processes, which mostly relies on the interpretation of spectroscopic surface information, is crucial to the innovations in catalyst design and optimization of reaction conditions. Here, we demonstrate the first in situ electrical transport evidence of pH-dependent surface anionic adsorptions on metal nanoparticles (MNPs), enabled by the on-chip electrical transport spectroscopy (ETS) of continuous nanoparticle (NP) thin films. Our results on platinum and gold NPs reveal the significant (and distinct) impacts of acid-base environments on their surface adsorption features, which contributes to the further understanding of gold- and platinum-based electrocatalytic systems. The successful employment of ETS on metal nanoparticles achieves a more general transport-based signaling technique that conveniently fits the abundance of catalytic materials with zero-dimension morphology.
Collapse
Affiliation(s)
- Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Miao Yang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen He
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuefei Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuejun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Waidhas F, Haschke S, Khanipour P, Fromm L, Görling A, Bachmann J, Katsounaros I, Mayrhofer KJJ, Brummel O, Libuda J. Secondary Alcohols as Rechargeable Electrofuels: Electrooxidation of Isopropyl Alcohol at Pt Electrodes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00818] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Sandra Haschke
- Lehrstuhl Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - Peyman Khanipour
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstrasse 3, Erlangen 91058, Germany
| | - Lukas Fromm
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Julien Bachmann
- Lehrstuhl Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, Saint Petersburg 198504, Russia
| | - Ioannis Katsounaros
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstrasse 3, Erlangen 91058, Germany
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstrasse 3, Erlangen 91058, Germany
| | | | | |
Collapse
|
18
|
Li Y, Liu ZF. Solvated proton and the origin of the high onset overpotential in the oxygen reduction reaction on Pt(111). Phys Chem Chem Phys 2020; 22:22226-22235. [DOI: 10.1039/d0cp04211k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For the hydrogenation of O atoms on Pt(111), protonation can be bypassed by hydrolysis as the electrode potential rises.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation
- Chinese University of Hong Kong
- Shatin
- China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation
- Chinese University of Hong Kong
- Shatin
- China
- CUHK Shenzhen Research Institute
| |
Collapse
|
19
|
Shen D, Liu Y, Yang G, Yu H, Peng F. Mechanistic Insights into Cyclic Voltammograms on Pt(111): Kinetics Simulations. Chemphyschem 2019; 20:2791-2798. [PMID: 31509325 DOI: 10.1002/cphc.201900804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Indexed: 11/07/2022]
Abstract
A detailed understanding of the electrochemistry of platinum electrodes is of great importance for the electrochemical oxidation of fuels and electrochemical reduction of dioxygen in fuel cells. The Pt(111) facet is the most representative model mimicking Pt nanoparticles and polycrystals for fundamental studies. Herein, we propose a site-specific model accompanied with the typical elementary steps of the electrochemistry of Pt(111) in non-adsorbing electrolyte within the potential range between 0.05 and 1.15 V versus reversible hydrogen electrode. Simulations were conducted at different scanning rates based on the kinetics models. We reproduce all the anodic and cathodic peaks observed in the reported experimental curves. These results demonstrate the underlying mechanisms of the peak formation in different potential regions.
Collapse
Affiliation(s)
- Dongyan Shen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, China, 510006
| | - Yong Liu
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire, United States, 03824
| | - Guangxing Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China, 510640
| | - Hao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China, 510640
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, China, 510006
| |
Collapse
|
20
|
Li Y, Hart J, Profitt L, Intikhab S, Chatterjee S, Taheri M, Snyder J. Sequential Capacitive Deposition of Ionic Liquids for Conformal Thin Film Coatings on Oxygen Reduction Reaction Electrocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03157] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yawei Li
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19014, United States
| | - James Hart
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, United States
| | - Lauren Profitt
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Saad Intikhab
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19014, United States
| | - Swarnendu Chatterjee
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19014, United States
| | - Mitra Taheri
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19014, United States
| | - Joshua Snyder
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19014, United States
| |
Collapse
|
21
|
Peng M, Zhao Y, Chen D, Tan Y. Free‐Standing 3D Electrodes for Electrochemical Detection of Hydrogen Peroxide. ChemCatChem 2019. [DOI: 10.1002/cctc.201900913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Peng
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Yang Zhao
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Dechao Chen
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Yongwen Tan
- College of Materials Science and EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
22
|
Fraxedas J, Zhang K, Sepúlveda B, Esplandiu MJ, García de Andrés X, Llorca J, Pérez-Dieste V, Escudero C. Water-mediated photo-induced reduction of platinum films. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1288-1293. [PMID: 31274456 DOI: 10.1107/s1600577519004685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Platinum thin films activated ex situ by oxygen plasma become reduced by the combined effect of an intense soft X-ray photon beam and condensed water. The evolution of the electronic structure of the surface has been characterized by near-ambient-pressure photoemission and mimics the inverse two-step sequence observed in the electro-oxidation of platinum, i.e. the surface-oxidized platinum species are reduced first and then the adsorbed species desorb in a second step leading to a surface dominated by metallic platinum. The comparison with measurements performed under high-vacuum conditions suggests that the reduction process is mainly induced by the reactive species generated by the radiolysis of water. When the photon flux is decreased, then the reduction process becomes slower.
Collapse
Affiliation(s)
- Jordi Fraxedas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Kuan Zhang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Borja Sepúlveda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - María José Esplandiu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Xènia García de Andrés
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Virginia Pérez-Dieste
- Alba Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Valle`s, 08290 Barcelona, Spain
| | - Carlos Escudero
- Alba Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Valle`s, 08290 Barcelona, Spain
| |
Collapse
|
23
|
Zhao X, Gunji T, Kaneko T, Yoshida Y, Takao S, Higashi K, Uruga T, He W, Liu J, Zou Z. An Integrated Single-Electrode Method Reveals the Template Roles of Atomic Steps: Disturb Interfacial Water Networks and Thus Affect the Reactivity of Electrocatalysts. J Am Chem Soc 2019; 141:8516-8526. [PMID: 31050410 DOI: 10.1021/jacs.9b02049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A method enabling the accurate and precise correlation between structures and properties is critical to the development of efficient electrocatalysts. To this end, we developed an integrated single-electrode method (ISM) that intimately couples electrochemical rotating disk electrodes, in situ/operando X-ray absorption fine structures, and aberration-corrected transmission electron microscopy on identical electrodes. This all-in-one method allows for the one-to-one, in situ/operando, and atomic-scale correlation between structures of electrocatalysts with their electrochemical reactivities, distinct from common methods that adopt multisamples separately for electrochemical and physical characterizations. Because the atomic step is one of the most fundamentally structural elements in electrocatalysts, we demonstrated the feasibility of ISM by exploring the roles of atomic steps in the reactivity of electrocatalysts. In situ and atomic-scale evidence shows that low-coordinated atomic steps not only generate reactive species at low potentials and strengthen surface contraction but also act as templates to disturb interfacial water networks and thus affect the reactivity of electrocatalysts. This template role interprets the long-standing puzzle regarding why high-index facets are active for the oxygen reduction reaction in acidic media. The ISM as a fundamentally new method for workflows should aid the study of many other electrocatalysts regarding their nature of active sites and operative mechanisms.
Collapse
Affiliation(s)
- Xiao Zhao
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Takao Gunji
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Shinobu Takao
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Kotaro Higashi
- Innovation Research Center for Fuel Cells , The University of Electro-Communications , Chofugaoka, Chofu , Tokyo 182-8585 , Japan
| | - Tomoya Uruga
- Japan Synchrotron Radiation Research Institute , SPring-8 , Sayo , Hyogo 679-5198 , Japan
| | - Wenxiang He
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| | - Jianguo Liu
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , 22 Hankou Road , Nanjing 210093 , P. R. China
| |
Collapse
|
24
|
Bizzotto F, Ouhbi H, Fu Y, Wiberg GKH, Aschauer U, Arenz M. Examining the Structure Sensitivity of the Oxygen Evolution Reaction on Pt Single‐Crystal Electrodes: A Combined Experimental and Theoretical Study. Chemphyschem 2019; 20:3154-3162. [DOI: 10.1002/cphc.201900193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Francesco Bizzotto
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Hassan Ouhbi
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Yongchun Fu
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
- present address: College of Chemistry and Chemical EngineeringHunan University 410082 Changsha China
| | - Gustav K. H. Wiberg
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
- present address: Department of Physical ScienceHarold Washington College, City colleges of Chicago 30 E Lake St Chicago IL 60601 USA
| | - Ulrich Aschauer
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Matthias Arenz
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
25
|
Farias MJS, Feliu JM. Determination of Specific Electrocatalytic Sites in the Oxidation of Small Molecules on Crystalline Metal Surfaces. Top Curr Chem (Cham) 2019; 377:5. [PMID: 30631969 DOI: 10.1007/s41061-018-0228-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/26/2018] [Indexed: 11/28/2022]
Abstract
The identification of active sites in electrocatalytic reactions is part of the elucidation of mechanisms of catalyzed reactions on solid surfaces. However, this is not an easy task, even for apparently simple reactions, as we sometimes think the oxidation of adsorbed CO is. For surfaces consisting of non-equivalent sites, the recognition of specific active sites must consider the influence that facets, as is the steps/defect on the surface of the catalyst, cause in its neighbors; one has to consider the electrochemical environment under which the "active sites" lie on the surface, meaning that defects/steps on the surface do not partake in chemistry by themselves. In this paper, we outline the recent efforts in understanding the close relationships between site-specific and the overall rate and/or selectivity of electrocatalytic reactions. We analyze hydrogen adsorption/desorption, and electro-oxidation of CO, methanol, and ammonia. The classical topic of asymmetric electrocatalysis on kinked surfaces is also addressed for glucose electro-oxidation. The article takes into account selected existing data combined with our original works.
Collapse
Affiliation(s)
- Manuel J S Farias
- Departamento de Química, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, São Luís, Maranhão, CEP 65080-805, Brazil
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
26
|
Kristoffersen HH, Vegge T, Hansen HA. OH formation and H 2 adsorption at the liquid water-Pt(111) interface. Chem Sci 2018; 9:6912-6921. [PMID: 30288234 PMCID: PMC6143996 DOI: 10.1039/c8sc02495b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/21/2018] [Indexed: 11/21/2022] Open
Abstract
The liquid water-Pt(111) interface is studied with constant temperature ab initio molecular dynamics to explore the importance of liquid water dynamics of catalytic reactions such as the oxygen reduction reaction in PEM fuel cells. The structure and energetics of hydroxyls formed at the liquid water-Pt(111) interface are found to be significantly different from those of the hydroxyl formed on a bare Pt(111) surface and the hydroxyl formed on a Pt(111) surface with a static water layer. We identify 1/12 ML *OH, 5/12 ML *OH and 2/3 ML *OH as particularly stable hydroxyl coverages in highly dynamic liquid water environments, which - contrary to static water-hydroxyl models - contain adjacent uncovered Pt sites. Atomic surface oxygen is found to be unstable in the presence of liquid water, in contrast to static atomic level simulations. These results give an improved understanding of hydroxide and surface oxide formation from Pt(111) cyclic voltammetry and allow us to draw detailed connections between the electrostatic potential and the interface structure. The study of hydrogen adsorption at the liquid water-Pt(111) interface finds competitive adsorption between the adsorbed hydrogen atoms and water molecules. This does not adhere with experimental observations, and this indicates that the Pt(111) surface has to be negatively charged for a correct description of the liquid water-Pt(111) interface at potentials where hydrogen adsorption occurs.
Collapse
Affiliation(s)
- Henrik H Kristoffersen
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ; Tel: +45 45 25 82 05
| | - Tejs Vegge
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ; Tel: +45 45 25 82 05
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ; Tel: +45 45 25 82 05
| |
Collapse
|
27
|
HOSHI N, NAKAMURA M. Elucidation of Activity Enhancement Factors for the Oxygen Reduction Reaction on Platinum and Palladium Single Crystal Electrodes. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.18-h0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nagahiro HOSHI
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Masashi NAKAMURA
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| |
Collapse
|
28
|
Partanen L, Murdachaew G, Laasonen K. Oxygen Evolution Reaction Kinetic Barriers on Nitrogen-Doped Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:12892-12899. [PMID: 30405870 PMCID: PMC6203181 DOI: 10.1021/acs.jpcc.8b03269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Indexed: 05/17/2023]
Abstract
We investigate kinetic barriers for the oxygen evolution reaction (OER) on singly and doubly nitrogen-doped single-walled carbon nanotubes (NCNTs) using the climbing image nudged elastic band method with solvent effects represented by a 45-water-molecule droplet. The studied sites were chosen based on a previous study of the same systems utilizing a thermodynamic model which ignored both solvent effects and kinetic barriers. According to that model, the two studied sites, one on a singly nitrogen-doped CNT and the other on a doubly doped CNT, were approximately equally suitable for OER. For the four-step OER process, however, our reaction barrier calculations showed a clear difference in the rate-determining *OOH formation step between the two systems, with barrier heights differing by more than 0.4 eV. Thus, the simple thermodynamic model may alone be insufficient for identifying optimal OER sites. Of the remaining three reaction steps, the two H2O forming ones were found to be barrierless in all cases. We also performed solvent-free barrier calculations on NCNTs and undoped CNTs. Substantial differences were observed in the energies of the intermediates when the solvent was present. In general, the observed low activation energy barriers for these reactions corroborate both experimental and theoretical findings of the utility of NCNTs for OER catalysis.
Collapse
|
29
|
Lopes PP, Tripkovic D, Martins PF, Strmcnik D, Ticianelli EA, Stamenkovic VR, Markovic NM. Dynamics of electrochemical Pt dissolution at atomic and molecular levels. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.09.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Palacio I, Otero-Irurueta G, Alonso C, Martínez JI, López-Elvira E, Muñoz-Ochando I, Salavagione HJ, López MF, García-Hernández M, Méndez J, Ellis GJ, Martín-Gago JA. Chemistry below graphene: decoupling epitaxial graphene from metals by potential-controlled electrochemical oxidation. CARBON 2018; 129:837-846. [PMID: 30190626 PMCID: PMC6120681 DOI: 10.1016/j.carbon.2017.12.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While high-quality defect-free epitaxial graphene can be efficiently grown on metal substrates, strong interaction with the supporting metal quenches its outstanding properties. Thus, protocols to transfer graphene to insulating substrates are obligatory, and these often severely impair graphene properties by the introduction of structural or chemical defects. Here we describe a simple and easily scalable general methodology to structurally and electronically decouple epitaxial graphene from Pt(111) and Ir(111) metal surfaces. A multi-technique characterization combined with ab-initio calculations was employed to fully explain the different steps involved in the process. It was shown that, after a controlled electrochemical oxidation process, a single-atom thick metal-hydroxide layer intercalates below graphene, decoupling it from the metal substrate. This decoupling process occurs without disrupting the morphology and electronic properties of graphene. The results suggest that suitably optimized electrochemical treatments may provide effective alternatives to current transfer protocols for graphene and other 2D materials on diverse metal surfaces.
Collapse
Affiliation(s)
- Irene Palacio
- Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Gonzalo Otero-Irurueta
- Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- Centre for Mechanical Technology and Automation (TEMA), Dept. Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Concepción Alonso
- Dept. Applied Physical Chemistry, Autonomous University of Madrid, 28049 Madrid, Spain
| | - José I. Martínez
- Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Elena López-Elvira
- Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Isabel Muñoz-Ochando
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Horacio J. Salavagione
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María F. López
- Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Mar García-Hernández
- Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Javier Méndez
- Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Gary J. Ellis
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - José A. Martín-Gago
- Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
31
|
Sugimura F, Sakai N, Nakamura T, Nakamura M, Ikeda K, Sakai T, Hoshi N. In situ observation of Pt oxides on the low index planes of Pt using surface enhanced Raman spectroscopy. Phys Chem Chem Phys 2018; 19:27570-27579. [PMID: 28980691 DOI: 10.1039/c7cp04277a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ vibrational spectra of Pt oxides that cannot be measured with IR spectroscopy have been studied on the low index planes of Pt using surface enhanced Raman spectroscopy with bare Au nanoparticles (NPSERS). Two bands appear around 570 and 340 cm-1 at higher potentials in 0.1 M HClO4 saturated with Ar, which are assigned to the stretching vibration of Pt-O(H) and the libration vibration of Pt-O, respectively. NPSERS spectra are measured in O2 saturated solution for the first time. The band intensities of Pt-O(H) and Pt-O in O2 saturated solution are enhanced significantly compared with those in Ar saturated solution. The onset potentials of Pt-O and Pt-O(H) formation are 1.15 V(RHE) on Pt(100) and 1.2 V(RHE) on Pt(111) and Pt(110). The onset potential of Pt-O and Pt-O(H) and band shape differ from the results obtained using shell isolated surface enhanced Raman spectroscopy (SHINERS). The Pt-O and Pt-O(H) band intensities are normalized using COad as an internal standard. The Pt-O(H) band intensity depends on surface structures as Pt(110) < Pt(111) ≪ Pt(100), whereas the Pt-O band gives a different intensity order for Pt(111) and Pt(110) as Pt(111) ≤ Pt(110) ≪ Pt(100) in O2 saturated solution.
Collapse
Affiliation(s)
- Fumiya Sugimura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Cheng T, Goddard WA, An Q, Xiao H, Merinov B, Morozov S. Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells. Phys Chem Chem Phys 2018; 19:2666-2673. [PMID: 28067933 DOI: 10.1039/c6cp08055c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e- water formation is: first, *OOH formation; second, *OOH reduction to H2O and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water. Water formation is the rate-determining step (RDS) for potentials above 0.87 Volt, the normal operating range. Considering the Eley-Rideal (ER) mechanism involving protons from the solvent, we predict the free energy reaction barrier at 298 K for water formation to be 0.25 eV for an external potential below U = 0.87 V and 0.41 eV at U = 1.23 V, in good agreement with experimental values of 0.22 eV and 0.44 eV, respectively. With the mechanism now fully understood, we can use this now validated methodology to examine the changes upon alloying and surface modifications to increase the rate by reducing the barrier for water formation.
Collapse
Affiliation(s)
- Tao Cheng
- Materials and Process Simulation Center (MC139-74), California Institute of Technology, Pasadena, California 91125, USA.
| | - William A Goddard
- Materials and Process Simulation Center (MC139-74), California Institute of Technology, Pasadena, California 91125, USA.
| | - Qi An
- Materials and Process Simulation Center (MC139-74), California Institute of Technology, Pasadena, California 91125, USA.
| | - Hai Xiao
- Materials and Process Simulation Center (MC139-74), California Institute of Technology, Pasadena, California 91125, USA.
| | - Boris Merinov
- Materials and Process Simulation Center (MC139-74), California Institute of Technology, Pasadena, California 91125, USA.
| | - Sergey Morozov
- South Ural State University Lenina, 76, Chelyabinsk, Chelyabinsk Oblast, Russia.
| |
Collapse
|
33
|
Brummel O, Waidhas F, Khalakhan I, Vorokhta M, Dubau M, Kovács G, Aleksandrov HA, Neyman KM, Matolín V, Libuda J. Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Huang YF, Koper MTM. Electrochemical Stripping of Atomic Oxygen on Single-Crystalline Platinum: Bridging Gas-Phase and Electrochemical Oxidation. J Phys Chem Lett 2017; 8:1152-1156. [PMID: 28225278 PMCID: PMC5357804 DOI: 10.1021/acs.jpclett.7b00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
To understand the interaction between Pt and surface oxygenated species in electrocatalysis, this paper correlates the electrochemistry of atomic oxygen on Pt formed in the gas phase with electrochemically generated oxygen species on a variety of single-crystal platinum surfaces. The atomic oxygen adsorbed on single-crystalline Pt electrodes, made by thermal dissociation of molecular oxygen, is used for voltammetry measurements in acidic electrolytes (HClO4 and H2SO4). The essential knowledge of coverage, binding energy, and surface construction of atomic oxygen is correlated with the charge, potential, and shape of voltammograms, respectively. The differences of the voltammograms between the oxide made by thermal dissociation of molecular oxygen and electrochemical oxidation imply that atomic oxygen is not an intermediate of the electrochemical oxidation of Pt(111). The reconstruction of (100) terrace and step and the low-potential stripping of atomic oxygen on (111) step site provide insight into the first stages of degradation of Pt-based electrocatalysts.
Collapse
|
35
|
Ruge M, Drnec J, Rahn B, Reikowski F, Harrington DA, Carlà F, Felici R, Stettner J, Magnussen OM. Structural Reorganization of Pt(111) Electrodes by Electrochemical Oxidation and Reduction. J Am Chem Soc 2017; 139:4532-4539. [DOI: 10.1021/jacs.7b01039] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Ruge
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Jakub Drnec
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Björn Rahn
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Finn Reikowski
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - David A. Harrington
- Department
of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Francesco Carlà
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Roberto Felici
- Experimental
Division, European Synchrotron Radiation Facility, 71 Avenue des
Martyrs, 38000 Grenoble, France
| | - Jochim Stettner
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Olaf M. Magnussen
- Institut
für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| |
Collapse
|
36
|
Ikeshoji T, Otani M. Toward full simulation of the electrochemical oxygen reduction reaction on Pt using first-principles and kinetic calculations. Phys Chem Chem Phys 2017; 19:4447-4453. [DOI: 10.1039/c6cp08466d] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First-principles molecular dynamics gave the kinetic and redox parameters of the oxygen reduction reaction in a fuel cell using a bias control scheme, and gave the current–voltage relationship.
Collapse
Affiliation(s)
- Tamio Ikeshoji
- Fuel Cell Cutting-Edge Research Center Technology Research Association (FC-Cubic)
- Tokyo 135-0064
- Japan
- Research Center for Computational Design of Advanced Functional Materials
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Minoru Otani
- Research Center for Computational Design of Advanced Functional Materials
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba 305-8568
- Japan
| |
Collapse
|
37
|
Drnec J, Ruge M, Reikowski F, Rahn B, Carlà F, Felici R, Stettner J, Magnussen OM, Harrington DA. Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Zinola C, Teliz E, Camargo A. Direct estimation of surface pressures by hydrogen adsorbates on platinum surfaces in perchloric acid. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Chen J, Luo S, Liu Y, Chen S. Theoretical Analysis of Electrochemical Formation and Phase Transition of Oxygenated Adsorbates on Pt(111). ACS APPLIED MATERIALS & INTERFACES 2016; 8:20448-20458. [PMID: 27377100 DOI: 10.1021/acsami.6b04545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The electrochemical oxygenation processes of Pt(111) surface are investigated by combining density functional theory (DFT) calculations and Monto Carlo (MC) simulations. DFT calculations are performed to construct force-field parameters for computing the energy of (√3 × √3)R30°-structured OH*-H2O* hydrogen-bonding networks (differently dissociated water bilayer) on the Pt(111) surface, with which MC simulations are conducted to probe the reversible H2O* ↔ OH* conversion in OH*-H2O* networks. The simulated isotherm (relation between electrode potential and OH* coverage) agrees well with that predicted by the experimental cyclic voltammetry (CV) in the potential region of 0.55-0.85 V (vs RHE). It is suggested that the butterfly shape of CV in this region is due to different variation trends of Pt-H2O* distance in low and high OH* coverages. DFT calculation results indicate that the oxidative voltammetry in the potential region from 0.85 V to ca. 1.07 V is associated with the dissociation of OH* to O*, which yields surface structures consisting of OH*-H2O* networks and (√3 × √3)-structured O* clusters. The high stability of the half-dissociated water bilayer (OH*-H2O* hydrogen-bonding network with equal OH* and H2O* coverages) formed in the butterfly region makes OH* dissociation initially very difficult in energetics, but become facile once starts due to the destabilization of OH* by the formed O* nearby. This explains the experimentally observed nucleation and growth behavior of O* phase formation and the high asymmetry of oxidation-reduction voltammetry in this potential region.
Collapse
Affiliation(s)
- Junxiang Chen
- Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Siwei Luo
- Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Yuwen Liu
- Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, China
| |
Collapse
|
40
|
Lopes PP, Strmcnik D, Tripkovic D, Connell JG, Stamenkovic V, Markovic NM. Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02920] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pietro P. Lopes
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dusan Strmcnik
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dusan Tripkovic
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Justin G. Connell
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Vojislav Stamenkovic
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nenad M. Markovic
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
41
|
Role of the interfacial water structure on electrocatalysis: Oxygen reduction on Pt(1 1 1) in methanesulfonic acid. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Jinnouchi R, Suzuki KKT, Morimoto Y. DFT calculations on electro-oxidations and dissolutions of Pt and Pt–Au nanoparticles. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
|
44
|
Fernández PS, Fernandes Gomes J, Angelucci CA, Tereshchuk P, Martins CA, Camara GA, Martins ME, Da Silva JLF, Tremiliosi-Filho G. Establishing a Link between Well-Ordered Pt(100) Surfaces and Real Systems: How Do Random Superficial Defects Influence the Electro-oxidation of Glycerol? ACS Catal 2015. [DOI: 10.1021/acscatal.5b00451] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pablo S. Fernández
- São
Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| | - Janaina Fernandes Gomes
- São
Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| | - Camilo A. Angelucci
- Center
of Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001 Santo André, Brazil
| | - Polina Tereshchuk
- São
Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| | - Cauê A. Martins
- Faculty
of Exact Sciences and Technology, Federal University of Grande Dourados, 79804-970 Dourados, Mato Grosso
do Sul, Brazil
| | - Giuseppe A. Camara
- Institute
of Chemistry, Federal University of Mato Grosso do Sul, C.P. 549, 79070-900 Campo Grande, Mato
Grosso do Sul Brazil
| | - Marı́a E. Martins
- Physical
Chemistry Research Institute (INIFTA), Exact Sciences Faculty, CCT La Plata-CONICET, C.P. 1900, La Plata, Argentina
| | - Juarez L. F. Da Silva
- São
Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| | - Germano Tremiliosi-Filho
- São
Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
45
|
Zhang Y, Magdaong NM, Shen M, Frank HA, Rusling JF. Efficient Photoelectrochemical Energy Conversion using Spinach Photosystem II (PSII) in Lipid Multilayer Films. ChemistryOpen 2015; 4:111-4. [PMID: 25969807 PMCID: PMC4420581 DOI: 10.1002/open.201402080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 12/01/2022] Open
Abstract
The need for clean, renewable energy has fostered research into photovoltaic alternatives to silicon solar cells. Pigment–protein complexes in green plants convert light energy into chemical potential using redox processes that produce molecular oxygen. Here, we report the first use of spinach protein photosystem II (PSII) core complex in lipid films in photoelectrochemical devices. Photocurrents were generated from PSII in a ∼2 μm biomimetic dimyristoylphosphatidylcholine (DMPC) film on a pyrolytic graphite (PG) anode with PSII embedded in multiple lipid bilayers. The photocurrent was ∼20 μA cm−2 under light intensity 40 mW cm−2. The PSII–DMPC anode was used in a photobiofuel cell with a platinum black mesh cathode in perchloric acid solution to give an output voltage of 0.6 V and a maximum output power of 14 μW cm−2. Part of this large output is related to a five-unit anode–cathode pH gradient. With catholytes at higher pH or no perchlorate, or using an MnO2 oxygen-reduction cathode, the power output was smaller. The results described raise the possibility of using PSII–DMPC films in small portable power conversion devices.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| | - Nikki M Magdaong
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| | - Min Shen
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| | - Harry A Frank
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| | - James F Rusling
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA ; Institute of Materials Science, University of Connecticut 97 N. Eagleville Rd, Storrs, CT, 06269-3136, USA ; Department of Cell Biology, University of Connecticut Health Center 263 Farmington Ave, Farmington, CT, 06032, USA
| |
Collapse
|
46
|
Jinnouchi R, Kodama K, Suzuki T, Morimoto Y. Kinetically induced irreversibility in electro-oxidation and reduction of Pt surface. J Chem Phys 2015; 142:184709. [PMID: 25978907 DOI: 10.1063/1.4920974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A mean field kinetic model was developed for electrochemical oxidations and reductions of Pt(111) on the basis of density functional theory calculations, and the reaction mechanisms were analyzed. The model reasonably describes asymmetric shapes of cyclic voltammograms and small Tafel slopes of relevant redox reactions observed in experiments without assuming any unphysical forms of rate equations. Simulations using the model indicate that the oxidation of Pt(111) proceeds via an electrochemical oxidation from Pt to PtOH and a disproportionation reaction from PtOH to PtO and Pt, while its reduction proceeds via two electrochemical reductions from PtO to PtOH and from PtOH to Pt.
Collapse
Affiliation(s)
- Ryosuke Jinnouchi
- Toyota Central R&D Labs., Inc. 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan
| | - Kensaku Kodama
- Toyota Central R&D Labs., Inc. 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan
| | - Takahisa Suzuki
- Toyota Central R&D Labs., Inc. 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan
| | - Yu Morimoto
- Toyota Central R&D Labs., Inc. 41-1 Yokomichi Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
47
|
Role of oxygen-containing species at Pt(111) on the oxygen reduction reaction in acid media. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2850-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Oxygen reduction on nanostructured platinum surfaces in acidic media: Promoting effect of surface steps and ideal response of Pt(111). Catal Today 2015. [DOI: 10.1016/j.cattod.2014.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Fortunelli A, Goddard WA, Sementa L, Barcaro G. Optimizing the oxygen evolution reaction for electrochemical water oxidation by tuning solvent properties. NANOSCALE 2015; 7:4514-4521. [PMID: 25682836 DOI: 10.1039/c4nr07277d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrochemical water-based energy cycles provide a most promising alternative to fossil-fuel sources of energy. However, current electrocatalysts are not adequate (high overpotential, lack of selectivity toward O2 production, catalyst degradation). We propose here mechanistic guidelines for experimental examination of modified catalysts based on the dependence of kinetic rates on the solvent dielectric constant. To illustrate the procedure we consider the fcc(111) platinum surface and show that the individual steps for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) change systematically with the polarizability of the medium. Thus changing this environmental variable can be used to tune the rate determining steps and the barriers, providing a means for screening and validating new systems to optimize the rate determining steps for the ORR and OER reaction pathways.
Collapse
Affiliation(s)
- Alessandro Fortunelli
- CNR-ICCOM and IPCF, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | | | | | | |
Collapse
|
50
|
Tanaka H, Sugawara S, Shinohara K, Ueno T, Suzuki S, Hoshi N, Nakamura M. Infrared Reflection Absorption Spectroscopy of OH Adsorption on the Low Index Planes of Pt. Electrocatalysis (N Y) 2014. [DOI: 10.1007/s12678-014-0245-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|