1
|
Kubota K, Jiang J, Kamakura Y, Hisazumi R, Endo T, Miura D, Kubo S, Maeda S, Ito H. Using Mechanochemistry to Activate Commodity Plastics as Initiators for Radical Chain Reactions of Small Organic Molecules. J Am Chem Soc 2024; 146:1062-1070. [PMID: 38134051 DOI: 10.1021/jacs.3c12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Radical initiators such as azo compounds and organic peroxides have been widely used to facilitate numerous transformations of free radicals, which enable the efficient synthesis of structurally complex molecules, natural products, polymers, and functional materials. However, these high-energy reagents are potentially explosive and thus often require special precautions or delicate operating conditions. We postulated that a more convenient and safer alternative for radical chain initiation could be developed by mechanical activation of thermodynamically stable covalent bonds. Here, we show that commodity plastics such as polyethylene and poly(vinyl acetate) are capable of acting as efficient initiators for radical chain reactions under solvent-free mechanochemical conditions. In this approach, polymeric mechanoradicals, which are generated by homolytic cleavage of the polymer chains in response to the applied mechanical energy provided by ball milling, react with tris(trimethylsilyl)silane to initiate radical chain dehalogenation of organic halides. Preliminary calculations support our proposed force-induced radical chain mechanism.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Julong Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Yuri Kamakura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Reon Hisazumi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Tsubura Endo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Daiyo Miura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Shotaro Kubo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| |
Collapse
|
2
|
Dong J, Li G, Gao J, Zhang H, Bi S, Liu S, Liao C, Jiang G. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157695. [PMID: 35908699 DOI: 10.1016/j.scitotenv.2022.157695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive commercial use of brominated flame retardants (BFRs), human beings are chronically exposed to BFRs, causing great harms to human health, which imposes urgent demands to degrade them in the environment. Among various degradation techniques, catalytic degradation has been proven to be outstanding because of its rapidness and effectiveness. Therefore, much attention has been given to catalytic degradation, especially the extensively studied photocatalytic degradation and nanocatalytic reduction techniques. Recently, some novel advanced catalytic techniques have been developed and show excellent catalytic degradation efficiency for BFRs, including natural substances catalytic degradation, new Fenton catalytic degradation, new chemical reagent catalytic degradation, new material catalytic degradation, electrocatalytic degradation, plasma catalytic degradation, and composite catalytic degradation systems. In addition to the common features of traditional catalytic techniques, these novel techniques possess their own specific advantages in various aspects. Therefore, this review summarized the degradation mechanism of BFRs by the above new catalytic degradation methods under the laboratory conditions, simulated real environment, and real environment conditions, and further evaluated their advantages and disadvantages, aiming to provide some research ideas for the catalytic degradation of BFRs in the environment in the future. We suggested that more attention should focus on features of novel catalytic techniques, including eco-friendliness, cost-effectiveness, and pragmatic usefulness.
Collapse
Affiliation(s)
- Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Chou TH, Li YJ, Ko CF, Wu TY, Shih YH. Efficient hexabromocyclododecane-biodegrading microorganisms isolated in Taiwan. CHEMOSPHERE 2021; 271:129544. [PMID: 33445030 DOI: 10.1016/j.chemosphere.2021.129544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/11/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
The potential toxicity of hexabromocyclododecane (HBCD), its persistence in the environment, and its high bioaccumulation characteristics pose a need to remediate HBCD in the environment. Bacillus cereus and B. subtilis species complexes we isolated from Taiwan soil are capable of degrading HBCD. B. cereus can degrade HBCD with a half-life only 0.911 days. The highest efficiency of HBCD degradation by B. cereus was achieved at pH 7.0, 35 °C, and 0.10 ppm HBCD. The removal mechanism of HBCD by B. cereus is debromination and its pathway was proposed. The addition of surfactant Tween 60 improved HBCD removal but the addition of CaO2, slow-releasing oxygen, did not. These findings can facilitate the bioremediation of HBCD in the environment.
Collapse
Affiliation(s)
- Tzu-Ho Chou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yi-Jie Li
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Chi-Fong Ko
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Tien-Yu Wu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
4
|
Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Li C, Wang Q, Tao Y, Dai L, Qin Y, Meng B. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114908. [PMID: 32540566 DOI: 10.1016/j.envpol.2020.114908] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Collapse
Affiliation(s)
- Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shijing Lin
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuming Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Qin
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Chang TH, Wang R, Peng YH, Chou TH, Li YJ, Shih YH. Biodegradation of hexabromocyclododecane by Rhodopseudomonas palustris YSC3 strain: A free-living nitrogen-fixing bacterium isolated in Taiwan. CHEMOSPHERE 2020; 246:125621. [PMID: 31896015 DOI: 10.1016/j.chemosphere.2019.125621] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The persistent organic pollutant, brominated flame retardant, hexabromocyclododecane (HBCD), identified as an emerging contaminant has been detected in various environmental matrix. The increased level of this toxic organic compound in the environment has been associated with serious human health risks. The results obtained from this study revealed that various Rhodopseudomonas palustris strains isolated from paddy soil in Taiwan possessed good HBCD biodegradation capability when they were cultured aerobically. Among these strains, YSC3 was considered as one of the most potential isolates for HBCD degradation. The optimum HBCD biodegradation occurred at neutral pH and at 35 °C in all our pH and temperature tests at an initial HBCD concentration of 1 ppm. HBCD degradation kinetics generally decreased with the increase of initial HBCD concentration. The study also suggested that the cultivation temperature played a vital role on YSC3 for its initiation of cellular HBCD degradation. The relative-molar ratio of the released bromide ions during the biodegradation of HBCD was observed in the range between 1 and 3.5, suggesting that the debromination reactions occurred. Concomitant with the loss of HBCD, there was a concurrent production of two metabolites, pentabromocyclododecanol and pentabromocyclododecene, which were determined by liquid chromatography and mass spectrometry techniques. On the basis of the obtained results, the possible biodegradation pathways were also proposed in this study.
Collapse
Affiliation(s)
- Tse-Hao Chang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Reuben Wang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan; Department of Food Science, Tunghai University, No. 1727, Sec. 4 Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yu-Huei Peng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Tzu-Ho Chou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yi-Jie Li
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
6
|
Huang L, Wang W, Shah SB, Hu H, Xu P, Tang H. The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120833. [PMID: 31446271 DOI: 10.1016/j.jhazmat.2019.120833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Hexabromocyclododecanes (HBCDs) are the second-most widely used brominated flame retardants. They cause inappropriate antidiuretic hormone syndrome and can induce cancer. However, little information is available about bacterial degradation of HBCDs. In this study, HBCDs (α-, β- and γ-HBCD) degrading strain Pseudomonas aeruginosa HS9 was isolated, identified, and characterized. The strain HS9 could remove 69% (± 0.05%) of 1.7 mg/L HBCDs in 14 days. Based on identification of metabolites, this bacterium could oxidize HBCDs by two pathways. In the first, HBCDs are sequentially debromized to tetrabromocyclododecene, dibromocyclododecadiene, and then debromized once more to cis, trans, trans-1, 5, 9-cyclododecatriene (CDT). After that, CDT is then oxidized to 1,2-epoxy-5,9-cyclododecadiene. The second identified pathway is a simultaneous debrominating and hydroxylating process based on the detection of 2,5,6,9,10-pentabromocyclododecanols, which were newly identified. The strain's effects on plant-maize growth were tested and bioremediation evaluation trials were performed. The addition of strain HS9 could decrease HBCDs of 4.08 mg/g (87.6% removed) and 0.1 mg/g (25% removed) in soil and plants, respectively. Microbial diversity analysis shows that the addition of strain HS9 can promote the abundance of plant-beneficial bacteria, such as Methylobacillus, Nitrosomonas, Plancoccus, Bacillus, and Rhodococcus. The results provide insights for the bioremediation of HBCDs-contaminated soils.
Collapse
Affiliation(s)
- Ling Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Syed Bilal Shah
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
7
|
Le TT, Yoon H, Son MH, Kang YG, Chang YS. Treatability of hexabromocyclododecane using Pd/Fe nanoparticles in the soil-plant system: Effects of humic acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:444-450. [PMID: 31279191 DOI: 10.1016/j.scitotenv.2019.06.290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 05/24/2023]
Abstract
Hexabromocyclododecane (HBCD) is a persistent organic pollutant that accumulates in soil and sediments, however, it has been difficult to degrade HBCD with developed remediation technologies so far. In this study, degradation of HBCD by bimetallic iron-based nanoparticles (NPs) under both aqueous and soil conditions considering the effects of humic acids (HAs) and tobacco plant was investigated. In the aqueous solution, 99% of the total HBCD (15 mM) was transformed by Pd/nFe (1 g L-1) within 9 h of treatment and the HBCD debromination by Pd/nFe increased with the addition of HAs. In the soil system, 13%, 15%, 41% and 27% of the total HBCD were removed by treatments consisting of plant only, plant with HAs, plant with NPs and plant + NPs + HAs, respectively, compared to the HBCD removal in an unplanted soil. The 221-986 ng/g of HBCD were detected inside the plant after the treatments, and HAs showed considerable influence on the selective bioaccumulation of HBCD stereoisomers in the plant. Overall, this approach represents a meaningful attempt to develop an efficient and eco-friendly technology for HBCD removal, and it provides advantages for the sustainable remediation of recalcitrant emerging contaminants in soils.
Collapse
Affiliation(s)
- Thao Thanh Le
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hakwon Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Min-Hui Son
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yu-Gyeong Kang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
8
|
Transformation Products of Organic Contaminants and Residues-Overview of Current Simulation Methods. Molecules 2019; 24:molecules24040753. [PMID: 30791496 PMCID: PMC6413221 DOI: 10.3390/molecules24040753] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton’s reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods.
Collapse
|
9
|
Synergistic Effect of Photocatalytic Degradation of Hexabromocyclododecane in Water by UV/TiO2/persulfate. Catalysts 2019. [DOI: 10.3390/catal9020189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this work, the elimination of hexabromocyclododecane (HBCD) is explored by using photodegradation of the UV/TiO2 system, the UV/potassium persulfate (KPS) system, and the homo/heterogeneous UV/TiO2/KPS system. The experimental results show that the dosages of TiO2 and potassium persulfate have optimum values to increase the degradation degree. HBCD can be almost completely degraded and 74.3% of the total bromine content is achieved in the UV/TiO2/KPS homo/heterogeneous photocatalysis, much more than in the UV/persulfate system and the UV/TiO2 system. Roles of radicals SO4•− and OH• in the photocatalysis systems are discussed based on experimental measurements. The high yield of the concentration of bromide ions and decreased pH value indicates that synergistic effects exist in the UV/TiO2/KPS homo/heterogeneous photocatalysis, which can mineralize HBCD into inorganic small molecules like carboxylic acids, CO2 and H2O, thus much less intermediates are formed. The possible pathways of degradation of HBCD in the UV/TiO2/KPS system were also analyzed by GC/MS. This work will have practical application potential in the fields of pollution control and environmental management.
Collapse
|
10
|
Cao H, Wu S, He M. Quantum chemical study on isomerization and transformation of hexabromocyclododecanes. Struct Chem 2018. [DOI: 10.1007/s11224-018-1244-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Liu T, Luo J, Meng X, Yang L, Liang B, Liu M, Liu C, Wang A, Liu X, Pei Y, Yuan J, Crittenden J. Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:294-301. [PMID: 29990817 DOI: 10.1016/j.jhazmat.2018.06.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Although noble metal electrocatalysts are highly efficient in the dehalogenation of halogenated antibiotics, the prohibitive cost hinders their practical applications. In this study, a cobalt-phosphorous/oxide (CoP/O) composite prepared via a one-step electrodeposition was for the first time applied in electroreductive dechlorination of halogenated antibiotics (HA), including chloramphenicol (CAP), florfenicol (FLO) and thiamphenicol (TAP). CoP/O had a higher FLO dechlorination efficiency (91%) than Pd/C (69.3%) (t = 60 min, C0 = 20 mg L-1, applied voltage of -1.2 V vs. saturated calomel electrode (SCE)). Furthermore, the dechlorination efficiencies of CoP/O for CAP and TAP reached to 98.7 and 74.2%, respectively. The electron spin resonance and in situ Raman characterizations confirmed that atomic H* was produced via the CoP and the formation of CoCl bonds occurred on the CoO in CoP/O. The CoCl bond formation could trap HA molecules onto CoP/O and weaken the CCl bond strength. The synergistic effect of H* attack and CoCl bond was responsible for the high dechlorination efficiency. This study offers new insights into the interface mechanism of electroreductive dehalogenation process, and shows a great potential for the remediation of halogenated antibiotics contaminated wastewater.
Collapse
Affiliation(s)
- Tian Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Jinming Luo
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Xiaoyang Meng
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Liming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Meijun Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xia Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Jili Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - John Crittenden
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| |
Collapse
|
12
|
Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3 Biotech 2018; 8:291. [PMID: 29963351 DOI: 10.1007/s13205-018-1326-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/22/2018] [Indexed: 01/20/2023] Open
Abstract
Environmental pollution caused by the release of industrial chemicals is currently one of the most important environmental harms. Manufacturing chemicals can be biodegraded, and valuable intermediates can be used as pharmacophores in drug targeting and have several other useful purposes. Hexabromocyclododecane (HBCD), a non-aromatic brominated flame retardant, is a toxic compound that consists of a cycloaliphatic ring of 12 carbon atoms to which six bromine atoms are attached. It is formed by bromination of cis-trans-trans-1,5,9-cyclododecatriene, but its use is now restricted in several countries, because it is an environmental pollutant. Little is known about whether bacteria can degrade HBCD. A bacterial strain that degrades HBCD was recently isolated using enrichment culture techniques. Based on morphological, biochemical and phylogenetic analysis this isolate was categorized as Bacillus cereus and named strain HBCD-sjtu. Maximum growth and HBCD-degrading activity were observed when this strain was grown at 30 °C, pH 7.0 and 200 RPM in mineral salt medium containing 0.5 mm HBCD. The genome of strain HBCD-sjtu, which consists of only one circular chromosome, was sequenced. This whole genome sequence will be crucial for illuminating the molecular mechanisms of HBCD degradation.
Collapse
|
13
|
Na14[(H2P4W6O34)2Co2Na2(H2O)2]·26H2O: A New, Carbon-Free, Polyoxometalate Catalyst for Water Oxidation. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Ukisu Y. Complete catalytic debromination of hexabromocyclododecane using a silica-supported palladium catalyst in alkaline 2-propanol. CHEMOSPHERE 2017; 179:179-184. [PMID: 28365503 DOI: 10.1016/j.chemosphere.2017.03.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/27/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
Although the brominated flame retardant 1,2,5,6,9,10-hexabromocyclododecane (HBCD) has been widely used to reduce the flammability of polymeric materials, it is a toxic and persistent organic compound. In this paper, we report an efficient method for the debromination of HBCD by using a Pd-catalyzed system. HBCD was completely debrominated to the C12 cyclic compounds such as cyclododecatriene, cyclododecadiene, and cyclododecene in a solution of 2-propanol/methanol (99:1, v/v) containing dissolved NaOH in the presence of a silica-supported Pd catalyst (Pd/SiO2) at 35 °C. The reaction achieved product yields of 92% for the bromine-free products and 94% for the released Br ions. In the absence of Pd/SiO2, HBCD was partially debrominated to yield penta-, tetra-, and tribrominated C12 cyclic compounds. The HBCD debromination pathway seems to involve both HBr elimination by reaction with NaOH and Pd-catalyzed hydrodebromination by hydrogen transfer from 2-propanol.
Collapse
Affiliation(s)
- Yuji Ukisu
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
15
|
Martin ET, McGuire CM, Mubarak MS, Peters DG. Electroreductive Remediation of Halogenated Environmental Pollutants. Chem Rev 2016; 116:15198-15234. [DOI: 10.1021/acs.chemrev.6b00531] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erin T. Martin
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caitlyn M. McGuire
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Dennis G. Peters
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
16
|
Rose JA, McGuire CM, Hansen AM, Karty JA, Mubarak MS, Peters DG. Direct Reduction of 1-Bromo-6-chlorohexane and 1-Chloro-6-iodohexane at Silver Cathodes in Dimethylformamide. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Martin ET, Strawsine LM, Mubarak MS, Peters DG. Direct Reduction of 1,2- and 1,6-Dibromohexane at Silver Cathodes in Dimethylformamide. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Ourari A, Messali S, Bouzerafa B, Ouennoughi Y, Aggoun D, Mubarak MS, Strawsine LM, Peters DG. Synthesis, characterization, and electrochemical behavior of a cobalt(II) salen-like complex. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Peng X, Huang X, Jing F, Zhang Z, Wei D, Jia X. Study of novel pure culture HBCD-1, effectively degrading Hexabromocyclododecane, isolated from an anaerobic reactor. BIORESOURCE TECHNOLOGY 2015; 185:218-224. [PMID: 25770469 DOI: 10.1016/j.biortech.2015.02.093] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
In this study, two pure strains, named HBCD-1 and HBCD-2, were isolated from a continuous anaerobic reactor over 300-days acclimation, which processed high capability of biodegrading Hexabromocyclododecane. Both of the two strains degraded HBCD diastereomers in different extents, especially strain HBCD-1, which interestingly degraded α-HBCD effectively. All of the degrading results were well fitted with the first-order kinetics model. By morphological observation and 16S rRNA gene sequence analysis, the strain HBCD-1 showed highest similarity with Achromobacter sp. Under the optimal culturing conditions of 30°C, pH 7 and the initial HBCD concentration of 500μg/L, the biodegradation rate of HBCD-1 reached 90% after 8days treatment. Moreover, during the biodegradation process by HBCD-1 strain, the concentration of bromide ion was lower than the theoretical value. Finally, 4 metabolites were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), as well as a biodegradation pathway was proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remedidation Technology, Guangzhou 510275, China
| | - Xiangyan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remedidation Technology, Guangzhou 510275, China
| | - Fei Jing
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remedidation Technology, Guangzhou 510275, China
| | - Zaili Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remedidation Technology, Guangzhou 510275, China
| | - Dongyang Wei
- South China Institute of Environmental Sciences, Guangzhou 510655, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remedidation Technology, Guangzhou 510275, China.
| |
Collapse
|
20
|
Strawsine LM, Sengupta A, Raghavachari K, Peters DG. Direct Reduction of Alkyl Monohalides at Silver in Dimethylformamide: Effects of Position and Identity of the Halogen. ChemElectroChem 2015. [DOI: 10.1002/celc.201402410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lauren M. Strawsine
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Arkajyoti Sengupta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405 (USA)
| | - Dennis G. Peters
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405 (USA)
| |
Collapse
|
21
|
Wagoner ER, Baumberger CP, Gerroll BH, Peters DG. Catalytic reduction of 1,2,5,6,9,10-hexabromocyclododecane by nickel(I) salen electrogenerated at vitreous carbon cathodes in dimethylformamide. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|