1
|
Guo W, Chai DF, Li J, Yang X, Fu S, Sui G, Zhuang Y, Guo D. Strain Engineering for Electrocatalytic Overall Water Splitting. Chempluschem 2024; 89:e202300605. [PMID: 38459914 DOI: 10.1002/cplu.202300605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
Strain engineering is a novel method that can achieve superior performance for different applications. The lattice strain can affect the performance of electrochemical catalysts by changing the binding energy between the surface-active sites and intermediates and can be affected by the thickness, surface defects and composition of the materials. In this review, we summarized the basic principle, characterization method, introduction strategy and application direction of lattice strain. The reactions on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are focused. Finally, the present challenges are summarized, and suggestions for the future development of lattice strain in electrocatalytic overall water splitting are put forward.
Collapse
Affiliation(s)
- Wenxin Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Yan Zhuang
- Mat Sci & Engn, Jiamusi, 154007, Heilongjiang, Peoples R China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
2
|
Chen Y, Zhao X, Yan H, Sun L, Chen S, Zhang S, Zhang J. Manipulating Pt-skin of porous network Pt-Cu alloy nanospheres toward efficient oxygen reduction. J Colloid Interface Sci 2023; 652:1006-1015. [PMID: 37639923 DOI: 10.1016/j.jcis.2023.08.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Designing Pt-skin on the catalyst surface is critical to developing efficient and stable electrocatalysts toward oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this paper, an acidic reductant is proposed to synchronously manipulate in-situ growth of Pt-skin on the surface of alloyed Pt-Cu nanospheres (PtCuNSs) by a facile one-pot synthesis in an aqueous solution. Ascorbic acid can create a Pt-skin of three atomic layers to make the typical PtCu-alloy@Pt-skin core/shell nanostructure rather than the uniform alloys generated by using alkaline reductants. Surfactant as soft-template can make the alloyed PtCuNSs with a three-dimensional porous network structure. Multiple characterizations of XRD, XPS and XAFS are used to confirm Pt-alloying with Cu and formation of core/shell structure of such a catalyst. This PtCuNSs/C exhibits a half-wave potential of 0.913 V (vs. RHE), with mass activity and specific activity about 3.5 and 6.4 times higher than those of Pt/C, respectively. Fuel cell tests verify the excellent activity of PtCuNSs/C catalyst with a maximum power density of about 1.2 W cm-2. Moreover, this catalyst shows excellent stability, achieving a long-term operation of 40,000 cycles. Furthermore, theoretical calculations reveal the enhancement effect of characteristic PtCu-alloy@Pt-skin nanostructure on both catalytic ORR activity and stability.
Collapse
Affiliation(s)
- Yizhe Chen
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Huangli Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan 430072, Hubei, China
| | - Liangyu Sun
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan 430072, Hubei, China
| | - Shiming Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Abdelhafiz A, Choi JI, Zhao B, Cho J, Ding Y, Soule L, Jang SS, Liu M, Alamgir FM. Catalysis Sans Catalyst Loss: The Origins of Prolonged Stability of Graphene-Metal-Graphene Sandwich Architecture for Oxygen Reduction Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304616. [PMID: 37863808 DOI: 10.1002/advs.202304616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Indexed: 10/22/2023]
Abstract
Over the past decades, the design of active catalysts has been the subject of intense research efforts. However, there has been significantly less deliberate emphasis on rationally designing a catalyst system with a prolonged stability. A major obstacle comes from the ambiguity behind how catalyst degrades. Several degradation mechanisms are proposed in literature, but with a lack of systematic studies, the causal relations between degradation and those proposed mechanisms remain ambiguous. Here, a systematic study of a catalyst system comprising of small particles and single atoms of Pt sandwiched between graphene layers, GR/Pt/GR, is studied to unravel the degradation mechanism of the studied electrocatalyst for oxygen reduction reaction(ORR). Catalyst suffers from atomic dissolution under ORR harsh acidic and oxidizing operation voltages. Single atoms trapped in point defects within the top graphene layer on their way hopping through toward the surface of GR/Pt/GR architecture. Trapping mechanism renders individual Pt atoms as single atom catalyst sites catalyzing ORR for thousands of cycles before washed away in the electrolyte. The GR/Pt/GR catalysts also compare favorably to state-of-the-art commercial Pt/C catalysts and demonstrates a rational design of a hybrid nanoarchitecture with a prolonged stability for thousands of operation cycles.
Collapse
Affiliation(s)
- Ali Abdelhafiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, MA, 02139, USA
| | - Ji Il Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Bote Zhao
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jinwon Cho
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Luke Soule
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Faisal M Alamgir
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Guo K, Xu D, Xu L, Li Y, Tang Y. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications. MATERIALS HORIZONS 2023; 10:1234-1263. [PMID: 36723011 DOI: 10.1039/d2mh01408d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inorganic nanodendrites (NDs) have become a kind of advanced nanomaterials with broad application prospects because of their unique branched architecture. The structural characteristics of nanodendrites include highly branched morphology, abundant tips/edges and high-index crystal planes, and a high atomic utilization rate, which give them great potential for usage in the fields of electrocatalysis, sensing, and therapeutics. Therefore, the rational design and controlled synthesis of inorganic (especially noble metals) nanodendrites have attracted widespread attention nowadays. The development of synthesis strategies and characterization methodology provides unprecedented opportunities for the preparation of abundant nanodendrites with interesting crystallographic structures, morphologies, and application performances. In this review, we systematically summarize the formation mechanisms of noble metal nanodendrites reported in recent years, with a special focus on surfactant-mediated mechanisms. Some typical examples obtained by innovative synthetic methods are then highlighted and recent advances in the application of noble metal nanodendrites are carefully discussed. Finally, we conclude and present the prospects for the future development of nanodendrites. This review helps to deeply understand the synthesis and application of noble metal nanodendrites and may provide some inspiration to develop novel functional nanomaterials (especially electrocatalysts) with enhanced performance.
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
5
|
Abdelgawad A, Salah B, Eid K, Abdullah AM, Al-Hajri RS, Al-Abri M, Hassan MK, Al-Sulaiti LA, Ahmadaliev D, Ozoemena KI. Pt-Based Nanostructures for Electrochemical Oxidation of CO: Unveiling the Effect of Shapes and Electrolytes. Int J Mol Sci 2022; 23:15034. [PMID: 36499359 PMCID: PMC9737813 DOI: 10.3390/ijms232315034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.
Collapse
Affiliation(s)
- Ahmed Abdelgawad
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
| | - Kamel Eid
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
| | | | - Rashid S. Al-Hajri
- Petroleum and Chemical Engineering Department, Sultan Qaboos University, Muscat 123, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Centre, Sultan Qaboos University, P.O. Box 17, PC 123, SQU, Al-Khoudh 123, Oman
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, PC 123, SQU, A-Khoudh 123, Oman
| | | | - Leena A. Al-Sulaiti
- Department of Mathematics, Statistics, and Physics, Qatar University, Doha 2713, Qatar
| | - Doniyorbek Ahmadaliev
- Andijan State Pedagogical Institute, Andijan 170100, Uzbekistan
- Presidential School in Andijan, Agency for Presidential Educational Institutions of the Republic of Uzbekistan, Andijan 170100, Uzbekistan
| | - Kenneth I. Ozoemena
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
6
|
Ipadeola AK, Eid K, Lebechi AK, Abdullah AM, Ozoemena KI. Porous multi-metallic Pt-based nanostructures as efficient electrocatalysts for ethanol oxidation: A mini-review. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
Facile One-step Aqueous-phase Synthesis of Porous PtBi Nanosponges for Efficient Electrochemical Methanol Oxidation with a High CO Tolerance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
PtCo-Based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Song S, Li Y, Shi Y, Xu Y, Niu Y. Oxygen-doped MoS2 nanoflowers with sulfur vacancies as electrocatalyst for efficient hydrazine oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Eid K, Abdullah AM. Porous Ternary Pt-based Branched Nanostructures for Electrocatalytic Oxygen Reduction. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
11
|
Ipadeola AK, Lebechi AK, Gaolatlhe L, Haruna AB, Chitt M, Eid K, Abdullah AM, Ozoemena KI. Porous High-Entropy Alloys as Efficient Electrocatalysts for Water-Splitting Reactions. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Xiao Z, Wu H, Zhong H, Abdelhafiz A, Zeng J. De-alloyed PtCu/C catalysts with enhanced electrocatalytic performance for the oxygen reduction reaction. NANOSCALE 2021; 13:13896-13904. [PMID: 34477663 DOI: 10.1039/d1nr02820k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In electrochemical reactions, interactions between reaction intermediates and catalytic surfaces control the catalytic activity, and thereby require to be optimized. Electrochemical de-alloying of mixed-metal nanoparticles is a promising strategy to modify catalysts' surface chemistry and/or induce lattice strain to alter their electronic structure. Perfect design of the electrochemical de-alloying strategy to modify the catalyst's d-band center position can yield significant improvement on the catalytic performance of the oxygen reduction reaction (ORR). Herein, carbon supported PtCu catalysts are prepared by a simple polyol method followed by an electrochemical de-alloying treatment to form PtCu/C catalysts with a Pt-enriched porous shell with improved catalytic activity. Although the pristine PtCu/C catalyst exhibits a mass activity of 0.64 A mg-1Pt, the dissolution of Cu atoms from the catalyst surface after electrochemical de-alloying cycling leads to a significant enhancement in mass activity (1.19 A mg-1Pt), which is 400% better than that of state-of-the-art commercial Pt/C (0.24 A mg-1Pt). Furthermore, the de-alloyed PtCu/C-10 catalyst with a Pt-enriched shell delivers prolonged stability (loss of only 28.6% after 30 000 cycles), which is much better than that of Pt/C with a loss of 45.8%. By virtue of scanning transmission electron microscopy and elemental mapping experiments, the morphology and composition evolution of the catalysts could clearly be elucidated. This work helps in drawing a roadmap to design highly active and stable catalyst platforms for the ORR and relevant proton exchange membrane fuel cell applications.
Collapse
Affiliation(s)
- Zhuojie Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology; Guangdong Key Lab for Fuel Cell Technology, Guangzhou 510641, China.
| | | | | | | | | |
Collapse
|
13
|
Catalytic Methane Decomposition to Carbon Nanostructures and CO x-Free Hydrogen: A Mini-Review. NANOMATERIALS 2021; 11:nano11051226. [PMID: 34066547 PMCID: PMC8148609 DOI: 10.3390/nano11051226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/21/2023]
Abstract
Catalytic methane decomposition (CMD) is a highly promising approach for the rational production of relatively COx-free hydrogen and carbon nanostructures, which are both important in multidisciplinary catalytic applications, electronics, fuel cells, etc. Research on CMD has been expanding in recent years with more than 2000 studies in the last five years alone. It is therefore a daunting task to provide a timely update on recent advances in the CMD process, related catalysis, kinetics, and reaction products. This mini-review emphasizes recent studies on the CMD process investigating self-standing/supported metal-based catalysts (e.g., Fe, Ni, Co, and Cu), metal oxide supports (e.g., SiO2, Al2O3, and TiO2), and carbon-based catalysts (e.g., carbon blacks, carbon nanotubes, and activated carbons) alongside their parameters supported with various examples, schematics, and comparison tables. In addition, the review examines the effect of a catalyst’s shape and composition on CMD activity, stability, and products. It also attempts to bridge the gap between research and practical utilization of the CMD process and its future prospects.
Collapse
|
14
|
Wang Y, Jin L, Wang C, Du Y. Nitrogen-doped graphene nanosheets supported assembled Pd nanoflowers for efficient ethanol electrooxidation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yi S, Jiang H, Bao X, Zou S, Liao J, Zhang Z. Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113279] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Cu@Pt catalysts prepared by galvanic replacement of polyhedral copper nanoparticles for polymer electrolyte membrane fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Vitale A, Murad H, Abdelhafiz A, Buntin P, Alamgir FM. Sandwiched Graphene Interdiffusion Barrier for Preserving Au@Pt Atomically Thin Core@Shell Structure and the Resulting Oxygen Reduction Reaction Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1026-1032. [PMID: 30511825 DOI: 10.1021/acsami.8b17274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The concept of a core-shell metallic structures, with a few atomic layers of the "shell" metal delineated from the "core" metal with atomic sharpness opens the door to a multitude of surface-driven materials properties that can be tuned. However, in practice, such architectures are difficult to retain due to the entropic cost of a segregated near-surface architecture, and the core and surface atoms inevitably mix through interdiffusion over time. We present here a systematic study of interdiffusion in a Pt on Au core-shell architecture and the role of an interrupting single layer of graphene sandwiched between them. The physical and chemical structure of the (near)surface is probed via mean-free-path tuned X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy (HRTEM), and electrochemistry (the oxygen reduction reaction, ORR). We find that at operating temperatures above 100 °C, there is potential for interdiffusion to occur between the primary and support metals of the core-shell catalyst system, which can diminish the catalyst activity toward ORR. The introduction of a single-layer graphene, as an interface between the core and shell metal layers, acts as a barrier that prevents unwanted surface alloying between the layered metals. HRTEM imaging shows that fully wetted Pt monolayers can be grown on a graphene template, allowing a high level of surface utilization of the catalyst material. We present how the use of graphene as a barrier to diffusion mitigates the loss of surface catalytic sites, showing much improved retention of Pt monolayer surface at elevated temperatures.
Collapse
Affiliation(s)
- Adam Vitale
- Department of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Hind Murad
- Department of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive , Atlanta , Georgia 30332 , United States
- Department of Physics, College of Science, Jadreya , University of Baghdad , Baghdad , Iraq
| | - Ali Abdelhafiz
- Department of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Parker Buntin
- Department of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Faisal M Alamgir
- Department of Materials Science and Engineering , Georgia Institute of Technology , 771 Ferst Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
18
|
Ahmed J, Ahamad T, Alhokbany N, Almaswari BM, Ahmad T, Hussain A, Al‐Farraj ESS, Alshehri SM. Molten Salts Derived Copper Tungstate Nanoparticles as Bifunctional Electro‐Catalysts for Electrolysis of Water and Supercapacitor Applications. ChemElectroChem 2018. [DOI: 10.1002/celc.201801196] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jahangeer Ahmed
- Department of ChemistryCollege of ScienceKing Saud University Riyadh 11451 Saudi Arabia
| | - Tansir Ahamad
- Department of ChemistryCollege of ScienceKing Saud University Riyadh 11451 Saudi Arabia
| | - Norah Alhokbany
- Department of ChemistryCollege of ScienceKing Saud University Riyadh 11451 Saudi Arabia
| | - Basheer M. Almaswari
- Department of ChemistryCollege of ScienceKing Saud University Riyadh 11451 Saudi Arabia
| | - Tokeer Ahmad
- Nanochemistry LaboratoryDepartment of Chemistry Jamia Millia Islamia New Delhi 110025 India
| | - Afzal Hussain
- Department of PharmacognosyCollege of PharmacyKing Saud University Riyadh 11451 Saudi Arabia
| | - Eida Salman Saad Al‐Farraj
- Al Imam Mohammad Ibn Saud Islamic University (IMSIU)College of SciencesDepartment ofChemistry 11623 Riyadh Saudi Arabia
| | - Saad M. Alshehri
- Department of ChemistryCollege of ScienceKing Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
19
|
Wang H, Yu H, Yin S, Li Y, Xue H, Li X, Xu Y, Wang L. One-step fabrication of bimetallic PtNi mesoporous nanospheres as an efficient catalyst for the oxygen reduction reaction. NANOSCALE 2018; 10:16087-16093. [PMID: 30109334 DOI: 10.1039/c8nr04526g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The controlled synthesis of Pt-based bimetallic porous nanostructures is highly important for the design of electrocatalysts with high performance. Herein, we report a one-step method for the direct synthesis of well-dispersed bimetallic PtNi mesoporous nanospheres (PtNi MNs) at high yield. Benefitting from the synergistic effect of composition (bimetallic PtNi) and structure (mesoporous and highly open structure), the as-obtained PtNi MNs exhibit superior catalytic activity and stability for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bai J, Xiao X, Xue YY, Jiang JX, Zeng JH, Li XF, Chen Y. Bimetallic Platinum-Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19755-19763. [PMID: 29799726 DOI: 10.1021/acsami.8b05422] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rationally designing and manipulating composition and morphology of precious metal-based bimetallic nanostructures can markedly enhance their electrocatalytic performance, including selectivity, activity, and durability. We herein report the synthesis of bimetallic PtRh alloy nanodendrites (ANDs) with tunable composition by a facile complex-reduction synthetic method under hydrothermal conditions. The structural/morphologic features, formation mechanism, and electrocatalytic performance of PtRh ANDs are investigated thoroughly by various physical characterization and electrochemical methods. The preformed Rh crystal nuclei effectively catalyze the reduction of Pt2+ precursor, resulting in PtRh alloy generation due to the catalytic growth and atoms interdiffusion process. The Pt atoms deposition distinctly interferes in Rh atoms deposition on Rh crystal nuclei, resulting in dendritic morphology of PtRh ANDs. For the ethanol oxidation reaction (EOR), PtRh ANDs display the chemical composition and solution pH co-dependent electrocatalytic activity. Because of the alloy effect and particular morphologic feature, Pt1Rh1 ANDs with optimized composition exhibit better reactivity and stability for the EOR than commercial Pt nanocrystals electrocatalyst.
Collapse
Affiliation(s)
- Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Xue Xiao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Yuan-Yuan Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Jia-Xing Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Jing-Hui Zeng
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Xi-Fei Li
- Institute of Advanced Electrochemical Energy , Xi'an University of Technology , Xi'an 710048 , P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| |
Collapse
|
21
|
Wang H, Yu H, Li Y, Yin S, Xue H, Li X, Xu Y, Wang L. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction. NANOTECHNOLOGY 2018; 29:175403. [PMID: 29443007 DOI: 10.1088/1361-6528/aaaf3f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
Collapse
Affiliation(s)
- Hongjing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Eid K, Ahmad YH, Yu H, Li Y, Li X, AlQaradawi SY, Wang H, Wang L. Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for CO-poisoning. NANOSCALE 2017; 9:18881-18889. [PMID: 29177288 DOI: 10.1039/c7nr07609f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Precise fabrication of porous ternary Pt-based nanodendrites is very important for electrochemical energy conversion owing to high surface area and great molecular accessibility of these nanodendrites. Herein, PtPdRu porous nanodendrites (PNDs) were prepared via a facile one-step ultrasonic irradiation approach at room temperature. Intriguingly, the ultrasonic irradiation drove the formation of PtPdRu PNDs with spatially interconnected porous structures, whereas magnetic stirring produced PtPdRu nanoflowers (NFs) with less porosity. The formation mechanism was ascribed to the acoustic cavitation effect and fast-reduction kinetics under sonication. The as-made PtPdRu PNDs displayed a superior catalytic performance towards ethanol oxidation reaction with a high tolerance for CO-poisoning as compared to PtPdRu NFs, PtPd NDs, and commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Kamel Eid
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ahmed J, Ahamad T, AlShehri SM. Iron-Nickel Nanoparticles as Bifunctional Catalysts in Water Electrolysis. ChemElectroChem 2017. [DOI: 10.1002/celc.201600754] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jahangeer Ahmed
- Department of Chemistry; College of Sciences; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry; College of Sciences; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
| | - Saad M. AlShehri
- Department of Chemistry; College of Sciences; King Saud University; Riyadh 11451 Kingdom of Saudi Arabia
- Department of Chemistry; College of Science & General Studies; Alfaisal University; Riyadh 11533 Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Lu S, Eid K, Ge D, Guo J, Wang L, Wang H, Gu H. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. NANOSCALE 2017; 9:1033-1039. [PMID: 28009900 DOI: 10.1039/c6nr08895c] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bimetallic Pt-based nanodendrites are of particular interest in various catalytic applications due to their high surface areas and low densities. Herein, we provide a facile method for one-pot synthesis of PtRu nanodendrites via the co-reduction of Pt and Ru precursors in oleylamine by H2. The as-fabricated PtRu nanodendrites exhibit superior catalytic activity and durability compared with PtRu nanocrystals (NCs), synthesized under the same reaction conditions, and the commercial Pt/C catalyst towards the methanol oxidation reaction (MOR).
Collapse
Affiliation(s)
- Shuanglong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P.R. China.
| | - Kamel Eid
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | - Danhua Ge
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P.R. China.
| | - Jun Guo
- Analysis and Testing Centre, Soochow University, Suzhou 215123, P.R. China
| | - Liang Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | - Hongjing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
25
|
AlShehri S, Ahmed J, Ahamad T, Arunachalam P, Ahmad T, Khan A. Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR). RSC Adv 2017. [DOI: 10.1039/c7ra07256b] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, we report the synthesis of cube shaped nanoparticles of CoWO4 (∼30 nm) by molten salts and their bifunctional electro-catalytic activities in water redox reactions for oxygen evolution and oxygen reduction reactions (OER and ORR).
Collapse
Affiliation(s)
- Saad M. AlShehri
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Jahangeer Ahmed
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Prabhakarn Arunachalam
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Tokeer Ahmad
- Nanochemistry Laboratory
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi 110025
- India
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology
- King Saud University
- Riyadh 11451
- Kingdom Saudi Arabia
| |
Collapse
|
26
|
Eid K, Ahmad YH, AlQaradawi SY, Allam NK. Rational design of porous binary Pt-based nanodendrites as efficient catalysts for direct glucose fuel cells over a wide pH range. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00860k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous binary PtPd, AuPt, PtCu, and PtNi nanodendrites prepared by a facile one-step reduction under ultrasonic irradiation at room temperature, exhibited a substantial catalytic activity towards glucose oxidation reaction at different pH values relative to a commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Kamel Eid
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Yahia H. Ahmad
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Siham Y. AlQaradawi
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Nageh K. Allam
- Energy Materials Lab (EML)
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| |
Collapse
|
27
|
Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides. Sci Rep 2016; 6:26196. [PMID: 27184228 PMCID: PMC4869020 DOI: 10.1038/srep26196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/27/2016] [Indexed: 11/16/2022] Open
Abstract
Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F−, Cl−, Br−). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs.
Collapse
|
28
|
Eid K, Wang H, Malgras V, Alothman ZA, Yamauchi Y, Wang L. Facile Synthesis of Porous Dendritic Bimetallic Platinum-Nickel Nanocrystals as Efficient Catalysts for the Oxygen Reduction Reaction. Chem Asian J 2016; 11:1388-93. [PMID: 26879517 DOI: 10.1002/asia.201600055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 11/07/2022]
Abstract
Certain bimetallic nanocrystals (NCs) possess promising catalytic properties for electrochemical energy conversion. Herein, we report a facile method for the one-step synthesis of porous dendritic PtNi NCs in aqueous solution at room temperature that contrasts with the traditional multistep thermal decomposition approach. The dendritic PtNi NCs assembled by interconnected arms are efficient catalysts for the oxygen reduction reaction. This direct and efficient method is favorable for the up-scaled synthesis of active catalysts used in electrochemical applications.
Collapse
Affiliation(s)
- Kamel Eid
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P.R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Hongjing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P.R. China.
| | - Victor Malgras
- World Premier International (WPI) Research Center for Materials, Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Zeid Abdullah Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yusuke Yamauchi
- World Premier International (WPI) Research Center for Materials, Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Liang Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P.R. China.
| |
Collapse
|