1
|
Zeng Y, Dai Y, Yin L, Huang J, Hoffmann MR. Rethinking alternatives to fluorinated pops in aqueous environment and corresponding destructive treatment strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174200. [PMID: 38936705 DOI: 10.1016/j.scitotenv.2024.174200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Alternatives are being developed to replace fluorinated persistent organic pollutants (POPs) listed in the Stockholm Convention, bypass environmental regulations, and overcome environmental risks. However, the extensive usage of fluorinated POPs alternatives has revealed potential risks such as high exposure levels, long-range transport properties, and physiological toxicity. Therefore, it is imperative to rethink the alternatives and their treatment technologies. This review aims to consider the existing destructive technologies for completely eliminating fluorinated POPs alternatives from the earth based on the updated classification and risks overview. Herein, the types of common alternatives were renewed and categorized, and their risks to the environment and organisms were concluded. The efficiency, effectiveness, energy utilization, sustainability, and cost of various degradation technologies in the treatment of fluorinated POPs alternatives were reviewed and evaluated. Meanwhile, the reaction mechanisms of different fluorinated POPs alternatives are systematically generalized, and the correlation between the structure of alternatives and the degradation characteristics was discussed, providing mechanistic insights for their removal from the environment. Overall, the review supplies a theoretical foundation and reference for the control and treatment of fluorinated POPs alternatives pollution.
Collapse
Affiliation(s)
- Yuxin Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China.
| | - Michael R Hoffmann
- Department of Environmental Science & Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
2
|
Samuel MS, Kadarkarai G, Ryan DR, McBeath ST, Mayer BK, McNamara PJ. Enhanced perfluorooctanoic acid (PFOA) degradation by electrochemical activation of peroxydisulfate (PDS) during electrooxidation for water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173736. [PMID: 38839010 DOI: 10.1016/j.scitotenv.2024.173736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Improved treatment of per- and polyfluoroalkyl substances (PFAS) in water is critically important in light of the proposed United States Environmental Protection Agency (USEPA) drinking water regulations at ng L-1 levels. The addition of peroxymonosulfate (PMS) during electrooxidation (EO) can remove and destroy PFAS, but ng L-1 levels have not been tested, and PMS itself can be toxic. The objective of this research was to test peroxydisulfate (PDS, an alternative to PMS) activation by boron-doped diamond (BDD) electrodes for perfluorooctanoic acid (PFOA) degradation. The influence of PDS concentration, temperature, and environmental water matrix effects, and PFOA concentration on PDS-EO performance were systematically examined. Batch reactor experiments revealed that 99 % of PFOA was degraded and 69 % defluorination was achieved, confirming PFOA mineralization. Scavenging experiments implied that sulfate radicals (SO4-) and hydroxyl radicals (HO) played a more important role for PFOA degradation than 1O2 or electrons (e-). Further identification of PFOA degradation and transformation products by liquid chromatography-mass spectrometry (LC-MS) analysis established plausible PFOA degradation pathways. The analysis corroborates that direct electron transfers at the electrode initiate PFOA oxidation and SO4- improves overall treatment by cleaving the CC bond between the C7F15 and COOH moieties in PFOA, leading to possible products such as C7F15 and F-. The perfluoroalkyl radicals can be oxidized by SO4- and HO, resulting in the formation of shorter chain perfluorocarboxylic acids (e.g., perfluorobutanoic acid [PFBA]), with eventual mineralization to CO2 and F-. At an environmentally relevant low initial concentration of 100 ng L-1 PFOA, 99 % degradation was achieved. The degradation of PFOA was slightly affected by the water matrix as less removal was observed in an environmental river water sample (91 %) compared to tests conducted in Milli-Q water (99 %). Overall, EO with PDS provided a destructive approach for the elimination of PFOA.
Collapse
Affiliation(s)
- Melvin S Samuel
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Govindan Kadarkarai
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Donald R Ryan
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Sean T McBeath
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States.
| |
Collapse
|
3
|
Mirabediny M, Sun J, Yu TT, Åkermark B, Das B, Kumar N. Effective PFAS degradation by electrochemical oxidation methods-recent progress and requirement. CHEMOSPHERE 2023; 321:138109. [PMID: 36787844 DOI: 10.1016/j.chemosphere.2023.138109] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.
Collapse
Affiliation(s)
- Maryam Mirabediny
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Jun Sun
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney, 2052, Australia.
| |
Collapse
|
4
|
Veciana M, Bräunig J, Farhat A, Pype ML, Freguia S, Carvalho G, Keller J, Ledezma P. Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128886. [PMID: 35436757 DOI: 10.1016/j.jhazmat.2022.128886] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.
Collapse
Affiliation(s)
- Mersabel Veciana
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane QLD 4102, Australia
| | - Ali Farhat
- GHD Pty Ltd, Brisbane QLD 4000, Australia
| | - Marie-Laure Pype
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürg Keller
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Pablo Ledezma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
5
|
Barisci S, Suri R. Occurrence and removal of poly/perfluoroalkyl substances (PFAS) in municipal and industrial wastewater treatment plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3442-3468. [PMID: 34928819 DOI: 10.2166/wst.2021.484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The presence of poly- and perfluoroalkyl substances (PFAS) has caused serious problems for drinking water supplies especially at intake locations close to PFAS manufacturing facilities, wastewater treatment plants (WWTPs), and sites where PFAS-containing firefighting foam was regularly used. Although monitoring is increasing, knowledge on PFAS occurrences particularly in municipal and industrial effluents is still relatively low. Even though the production of C8-based PFAS has been phased out, they are still being detected at many WWTPs. Emerging PFAS such as GenX and F-53B are also beginning to be reported in aquatic environments. This paper presents a broad review and discussion on the occurrence of PFAS in municipal and industrial wastewater which appear to be their main sources. Carbon adsorption and ion exchange are currently used treatment technologies for PFAS removal. However, these methods have been reported to be ineffective for the removal of short-chain PFAS. Several pioneering treatment technologies, such as electrooxidation, ultrasound, and plasma have been reported for PFAS degradation. Nevertheless, in-depth research should be performed for the applicability of emerging technologies for real-world applications. This paper examines different technologies and helps to understand the research needs to improve the development of treatment processes for PFAS in wastewater streams.
Collapse
Affiliation(s)
- Sibel Barisci
- Civil and Environmental Engineering Department, Water and Environmental Technology (WET) Center, Temple University, 1947 N 12th Street, Philadelphia, PA 19122, USA E-mail:
| | - Rominder Suri
- Civil and Environmental Engineering Department, Water and Environmental Technology (WET) Center, Temple University, 1947 N 12th Street, Philadelphia, PA 19122, USA E-mail:
| |
Collapse
|
6
|
Enhanced treatment of perfluoroalkyl acids in groundwater by membrane separation and electrochemical oxidation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100042] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
7
|
Saha P, Bruning H, Wagner TV, Rijnaarts HHM. Removal of organic compounds from cooling tower blowdown by electrochemical oxidation: Role of electrodes and operational parameters. CHEMOSPHERE 2020; 259:127491. [PMID: 32650167 DOI: 10.1016/j.chemosphere.2020.127491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The reuse of cooling tower blowdown (CTBD) in the cooling tower itself requires CTBD deionization and a pre-treatment before deionization to remove organic compounds (OCs) that induce membrane fouling. This study assesses the potential of electrochemical oxidation (EO) with a boron-doped diamond (BDD) and a Ti/RuO2 mixed-metal oxide (MMO) anode for CTBD pre-treatment. Also, the influence of the applied current density (j), initial pH, hydrodynamic conditions, and supporting electrolyte on the process performance was evaluated. Results show that COD and TOC removal were 85 and 51%, respectively, with the BDD-anode; however, they were 50 and 12% with MMO-anode at a j-value of 8.7 mA cm-2 and neutral pH. An increased j-value increased the COD and TOC removal; however, different pHs, hydrodynamic conditions, and the addition of supporting electrolytes had a minor impact on the removal with both anodes. Liquid chromatography-organic carbon detection analysis showed that the OC in CTBD mainly consisted of humic substances (HS). EO with the BDD-anode resulted in 35% HS mineralization, while the rest of the HS were partially oxidized into low molecular weight compounds and building blocks. However, HS mineralization was limited with the MMO-anode. The mineralization and oxidation were accompanied by the formation of organic and inorganic chlorinated species. These species increased the toxicity to Vibrio fischeri 20-fold compared to the initially low-toxic CTBD. Thus, EO with a BDD-anode is a promising pre-treatment technology for the removal of OCs before CTBD deionization, but measures to minimize the chlorinated species formation are required before its application.
Collapse
Affiliation(s)
- Pradip Saha
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Harry Bruning
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Thomas V Wagner
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Effect of Boron Doping on Diamond Film and Electrochemical Properties of BDD According to Thickness and Morphology. COATINGS 2020. [DOI: 10.3390/coatings10040331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diamond coating using hot-filament chemical vapor deposition (HFCVD) is now widely used in many fields. The quality of the diamond film and many factors determine the success of the coating, such as temperature, time, and pressure during coating. The purpose of this study was to produce coated boron-doped diamond (BDD) films by doping boron in the diamond film and to assess them through comparative analysis with foreign acid BDD, which is widely used as a water-treatment electrode in the present industry. The bending of the titanium substrate due to the high temperature during the diamond deposition was avoided by adding an intermediate layer with a columnar structure to niobium film. The filament temperature and pressure were determined through preliminary experiments, and BDD films were coated. The BDD film deposition rate was confirmed to be 100 nm/h, and the potential window increased with increasing thickness. The electrochemical activation and catalytic performance were confirmed according to the surface characteristics. Although the high deposition rate of the BDD coating is also an important factor, it was confirmed that conducting coating so that amorphous carbonization does not occur by controlling the temperature during coating can improve the electrochemical properties of BDD film.
Collapse
|
9
|
Barisci S, Suri R. Electrooxidation of short and long chain perfluorocarboxylic acids using boron doped diamond electrodes. CHEMOSPHERE 2020; 243:125349. [PMID: 31756655 DOI: 10.1016/j.chemosphere.2019.125349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
This study investigates electrooxidation of short (C3-C6) and long (C7-C-18) chain perfluorocarboxylic acids (PFCAs) including perfluorooctane sulfonate (PFOA) using Si/BDD electrode. The effect of operational parameters (supporting electrolyte type, applied current density, and initial pH) were explored for PFOA removal. At the optimized conditions, 74% TOC removal and 37% defluorination ratio were gained for 10 mg L-1 of PFOA solution which evidences that the shorter chain PFCAs were formed. The PFOA degradation pathway followed one direct electron transfer from PFOA molecule to anode surface. Then two different degradation pathways were proposed. The first proposed degradation mechanism involved the reaction of perfluoroheptyl radical and hydroxyl radical, the release of HF and hydrolysis. The second mechanism involved the reaction between perfluoroheptyl radical and O2, formation of C7F15O and perfluorohexyl radical with releasing COF2. The removal of short- (C3-C6) and long-chain PFCAs (C7-C18) was also characterized. More than 95% of removal efficiency was gained for all long-chain PFCAs, excluding C7. The removal ratios of short-chain PFCAs (C3-C6) were 39%, 41%, 66% and 70% for C3, C4, C5 and C6, respectively. Contrary to long-chain PFCAs, chain-length dependence for short-chain PFCAs were observed. Defluorination ratio of short-chain PFCAs was only 45% signifying that defluorination partially occurred. Water matrix did not significantly affect the degradation of short-chain PFCAs in deionized water (DI), river water and secondary effluent of a wastewater treatment plant (WWTP). In contrast, defluorination ratio of long-chain PFCAs was noticeably affected by water matrix with the order of DI water > WWTP effluent > river water.
Collapse
Affiliation(s)
- Sibel Barisci
- Temple University, Civil and Environmental Engineering Department, NSF Water and Environmental Technology (WET) Center, 1947 N 12thStreet, Philadelphia, PA, 19122, USA.
| | - Rominder Suri
- Temple University, Civil and Environmental Engineering Department, NSF Water and Environmental Technology (WET) Center, 1947 N 12thStreet, Philadelphia, PA, 19122, USA.
| |
Collapse
|
10
|
Nidheesh PV, Divyapriya G, Oturan N, Trellu C, Oturan MA. Environmental Applications of Boron‐Doped Diamond Electrodes: 1. Applications in Water and Wastewater Treatment. ChemElectroChem 2019. [DOI: 10.1002/celc.201801876] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- P. V. Nidheesh
- CSIR-National Environmental Engineering Research Institute Nagpur, Maharashtra India
| | - G. Divyapriya
- Environmental Water Resources Engineering DivisionDepartment of Civil EngineeringIndian Institute of Technology Madra Chennai, Tamilnadu India
| | - Nihal Oturan
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| | - Mehmet A. Oturan
- Laboratoire Géomatériaux et Environnement, (LGE), EA 4508UPEM 5 Bd Descartes 77454 Marne-la-Vallée Cedex 2 France
| |
Collapse
|
11
|
Diban N, Urtiaga A. Electrochemical mineralization and detoxification of naphthenic acids on boron-doped diamond anodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34922-34929. [PMID: 29305801 DOI: 10.1007/s11356-017-1124-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Electrochemical oxidation (ELOX) with boron-doped diamond (BDD) anodes was successfully applied to degrade a model aqueous solution of a mixture of commercial naphthenic acids (NAs). The model mixture was prepared resembling the NA and salt composition of oil sands process-affected water (OSPW) as described in the literature. The initial concentration of NAs between 70 and 120 mg/L did not influence the electrooxidation kinetics. However, increasing the applied current density from 20 to 100 A/m2 and the initial chloride concentration from 15 to 70 and 150 mg/L accelerated the rate of NA degradation. At higher chloride concentration, the formation of indirect oxidative species could contribute to the faster oxidation of NAs. Complete chemical oxygen demand removal at an initial NA concentration of 120 mg/L, 70 mg/L of chloride and applied 50 A/m2 of current density was achieved, and 85% mineralization, defined as the decrease of the total organic carbon (TOC) content, was attained. Moreover, after 6 h of treatment and independently on the experimental conditions, the formation of more toxic species, i.e. perchlorate and organochlorinated compounds, was not detected. Finally, the use of ELOX with BDD anodes produced a 7 to 11-fold reduction of toxicity (IC50 towards Vibrio fischeri) after 2 h of treatment.
Collapse
Affiliation(s)
- Nazely Diban
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. de Los Castros s/n, 39005, Santander, Spain.
| | - Ane Urtiaga
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. de Los Castros s/n, 39005, Santander, Spain
| |
Collapse
|
12
|
Carrillo-Abad J, Pérez-Herranz V, Urtiaga A. Electrochemical oxidation of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) on BDD: electrode characterization and mechanistic investigation. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1180-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Shi G, Xie Y, Guo Y, Dai J. 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), a novel perfluorooctane sulfonate alternative, induced developmental toxicity in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:24-32. [PMID: 29247975 DOI: 10.1016/j.aquatox.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/28/2017] [Accepted: 12/06/2017] [Indexed: 05/05/2023]
Abstract
6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) is a major component of Forafac®1157, a novel perfluorooctane sulfonate (PFOS) alternative used globally in aqueous film forming foams (AFFFs). Although 6:2 FTAB has been recently detected in the aquatic environment, its toxic effects on aquatic organisms remain unclear. Here, zebrafish embryos were exposed to various concentrations of 6:2 FTAB (0, 5, 10, 20, 40, 60, 80, and 100 mg/L) from 6 to 120 h post-fertilization (hpf) to investigate its developmental toxicity and possible mechanism of action. Results showed that exposure to 40 mg/L or higher concentrations of 6:2 FTAB significantly decreased the survival percentage and increased the malformation percentage. The median lethal concentration (LC50) at 120 hpf was 43.73 ± 3.24 mg/L, and the corresponding benchmark dose lower limit (BMDL) of lethal effect was 33.79 mg/L. These values were both higher than those for PFOS, supporting the notion that 6:2 FTAB is less toxic than PFOS to zebrafish embryos. The most common developmental defect in 6:2 FTAB-treated embryos was rough-edged skin/fins. TUNEL assay showed that 6:2 FTAB exposure induced cell apoptosis in the tail region compared with that of the control, which might explain the rough-edged skin/fins. The increased transcriptional levels of p53, bax, and apaf1 and the increased activities of caspase-3, -8, and -9 provided further evidence of 6:2 FTAB-induced apoptosis. We also analyzed the effects of 6:2 FTAB on oxidative stress and the immune system. Results showed that reactive oxygen species and malondialdehyde accumulated in concentration-dependent manners after exposure to 6:2 FTAB, and antioxidant enzyme activities (catalase and glutathione peroxidase) also changed. Exposure to 6:2 FTAB also altered the transcriptional levels of ccl1, il-1β, il-8, tnfα, ifn, and cxcl-c1c, which play important roles in the innate immune system. Collectively, our data suggest that 6:2 FTAB exposure can induce cell apoptosis, oxidative stress, and immunotoxicity, thus highlighting the developmental toxicity of 6:2 FTAB in zebrafish embryos.
Collapse
Affiliation(s)
- Guohui Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|