1
|
Sharma KS, Panchal K, Kumar D. Inhibit-AND logic gate enabled versatile BoF-AgNPs as ultrasensitive and selective nanoprobe for Mn(II) ions and nanocatalyst for rapid MB decoloration. Talanta 2024; 279:126579. [PMID: 39067206 DOI: 10.1016/j.talanta.2024.126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
There is great interest in fabricating devices that can detect and remove water pollutants, especially heavy metal ions and dyes from wastewater, to promote sustainable water use. In this study, an extract of Borassus flabellifer leaves (BoF-LE) was used to synthesize silver nanoparticles (BoF-AgNPs), with the BoF-LE serving as a reducing and capping agent. The sensitivity and selectivity of BoF-AgNPs for Mn(II) ions were tested by comparing with the control sample and other competent metal ions. Our results showed that BoF-AgNPs are extremely sensitive and selective in detecting Mn(II) ions, with a detection limit of 0.3 ppb. HR-TEM, UV-Vis spectroscopy, and DLS investigations were used to confirm that BoF-AgNPs detect Mn(II) ions by an aggregation-based mechanism. Additionally, it was found that BoF-AgNPs are effective in rapidly decolorizing MB dye, as demonstrated by their ability to decolorize MB by 92.66% within 7 min. This study is the first to report successful synthesis of BoF-AgNPs and their two applications, which are enabled with an Inhibit-AND logic gate. Using BoF-AgNPs to detect and degrade water pollutants may promote sustainable water use.
Collapse
Affiliation(s)
- Kritika S Sharma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Kajal Panchal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
2
|
Behera M, Alqahtani FO, Chakrabortty S, Nayak J, Banerjee S, Kumar R, Jeon BH, Tripathy SK. CuO/TiO 2/ZnO NPs Anchored Hydrogen Exfoliated Graphene: To Comprehend the Role of Graphene in Catalytic Reduction of p-Nitrophenol. ACS OMEGA 2023; 8:42164-42176. [PMID: 38024706 PMCID: PMC10652271 DOI: 10.1021/acsomega.3c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023]
Abstract
The present study deals with sonochemically in situ synthesis of a novel functional catalyst using hydrogen exfoliated graphene (HEG) supported titanium dioxide (TiO2) and copper sulfate (CuSO4) doped with zinc oxide (ZnO) (abbreviated as Ti/Cu/Zn-HEG). The synthesis of the Ti/Cu/Zn-HEG nanocomposite (NCs) catalyst was confirmed through its characterizations by XRD, SEM-EDX, TEM, XPS, FTIR, and BET methods. It was assessed for catalytic conversion of a model aromatic compound para-nitrophenol (p-NP) in an aqueous solution. The p-NP is a nitroaromatic compound that has a toxic and mutagenic effect. Its removal from the water system is necessary to protect the environment and living being. The newly synthesized Ti/Cu/Zn-HEG NCs were applied for their higher stability and catalytic activity as a potential candidate for reducing p-NP in practice. The operating parameters, such as p-NP concentration, catalyst dosage, and operating time were optimized for 150 ppm, 400 ppm, and 10 min through response surface methodology (RSM) in Design-Expert software to obtain the maximum reduction p-NP up to 98.4% at its normal pH of 7.1 against the controls (using HEG, Ti/Cu-HEG, and Zn-HEG). Analysis of variance of the response suggested the regression equation to be significant for the process with a major impact on catalyst concentration and operating time. The model prediction data (from RSM) and experimental data were corroborated well as reflected through model's low relative error (RE < 0.10), high regression coefficient (R2 > 0.97), and Willmott d-index (dwill-index > 0.95) values.
Collapse
Affiliation(s)
- Meerambika Behera
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Fatimah Othman Alqahtani
- Department
of Chemistry, College of Science, King Faisal
University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - Sankha Chakrabortty
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Jayato Nayak
- Centre
for Life Science, Mahindra University, Bahadurpally, Jeedimetla, Hyderabad, Telangana 500043, India
| | - Shirsendu Banerjee
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Ramesh Kumar
- Department
of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic
of Korea
| | - Byong-Hun Jeon
- Department
of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic
of Korea
| | - Suraj K Tripathy
- School
of Chemical Technology, Kalinga Institute
of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
3
|
Suganthi S, Vignesh S, Kalyana Sundar J, Alqarni SA, Pandiaraj S, Hwan Oh T. Cobalt oxide coupled with graphitic carbon nitride composite heterojunction for efficient Z-scheme photocatalytic environmental pollutants degradation performance. ENVIRONMENTAL RESEARCH 2023; 235:116574. [PMID: 37423360 DOI: 10.1016/j.envres.2023.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The Co3O4/g-C3N4 Z-scheme composite heterojunction has been effectively built in a facile sonication-assisted hydrothermal manner. The as-synthesized optimal 0.2 M Co3O4/g-C3N4 (GCO2) composite photocatalysts (PCs) revealed admirable degradation efficiency towards methyl orange (MO, 65.1%) and methylene blue (MB, 87.9%) organic pollutant compared with bare g-C3N4 within 210 min under light irradiation. Besides, the features of investigating structural, morphological and optical properties have evidence that the unique decoration effect of Co3O4 nanoparticles (NPs) on the g-C3N4 structure with intimate interface heterojunction of well-matched band structures noticeably facilitates the photo-generated charge transport/separation efficiency, reduces the recombination rates and widens the visible-light fascination which could advantageous to upgrading photocatalytic action with superior redox ability. Especially, the probable Z-scheme photocatalytic mechanism pathway is also elucidated in detail based on the quenching results. Hence, this work delivers a facile and hopeful candidate for contaminated water remediation via visible-light photocatalysis over the efficient g-C3N4-based catalysts.
Collapse
Affiliation(s)
- Sanjeevamuthu Suganthi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Shanmugam Vignesh
- Materials Science Research Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Jeyaperumal Kalyana Sundar
- Materials Science Research Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamil Nadu, India
| | | | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
4
|
Yusuf TL, Orimolade BO, Masekela D, Mamba B, Mabuba N. The application of photoelectrocatalysis in the degradation of rhodamine B in aqueous solutions: a review. RSC Adv 2022; 12:26176-26191. [PMID: 36275103 PMCID: PMC9490539 DOI: 10.1039/d2ra04236c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pollution of the water environment by industrial effluents is an ongoing challenge due to the rate of industrialisation and globalisation. Photoelectrocatalysis (PEC), an electrochemical advanced oxidation process, has proven to be an effective method for removing organics from wastewater. Photoelectrocatalysis is environmentally benign, cost-effective and easy to operate. In this present review, we examine the recent progress in the removal of rhodamine B dye, a common constituent of textile effluent released into the environment, through photoelectrocatalytic degradation. We present a detailed discussion on the use of different kinds of unmodified and modified photoanodes that have been explored for the photoelectrocatalytic removal of this dye. More importantly, discussions are presented on the mechanisms and kinetics of the degradation of rhodamine B dye using these photoanodes. Hence, this review will be beneficial for researchers in developing future projects in the area of wastewater treatments through photoelectrocatalysis.
Collapse
Affiliation(s)
- Tunde Lewis Yusuf
- Department of Chemical Sciences, University of Johannesburg Doornfontein, P.O. BOX 17011 2028 Johannesburg South Africa
| | - Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Private Bag X6, Florida Science Campus 1709 Johannesburg South Africa
| | - Daniel Masekela
- Department of Chemical Sciences, University of Johannesburg Doornfontein, P.O. BOX 17011 2028 Johannesburg South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Private Bag X6, Florida Science Campus 1709 Johannesburg South Africa
| | - Nonhlangabezo Mabuba
- Department of Chemical Sciences, University of Johannesburg Doornfontein, P.O. BOX 17011 2028 Johannesburg South Africa
| |
Collapse
|
5
|
Govindasamy P, Kandasamy B, Thangavelu P, Barathi S, Thandavarayan M, Shkir M, Lee J. Biowaste derived hydroxyapatite embedded on two-dimensional g-C 3N 4 nanosheets for degradation of hazardous dye and pharmacological drug via Z-scheme charge transfer. Sci Rep 2022; 12:11572. [PMID: 35799052 PMCID: PMC9262945 DOI: 10.1038/s41598-022-15799-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, there has been an increase in demand for inexpensive biowaste-derived photocatalysts for the degradation of hazardous dyes and pharmacological drugs. Here, we developed eggshell derived hydroxyapatite nanoparticles entrenched on two-dimensional g-C3N4 nanosheets. The structural, morphological and photophysical behavior of the materials is confirmed through various analytical techniques. The photocatalytic performance of the highly efficient HAp/gC3N4 photocatalyst is evaluated against methylene blue (MB) and doxycycline drug contaminates under UV-visible light exposure. The HAp/gC3N4 photocatalyst exhibit excellent photocatalytic performance for MB dye (93.69%) and doxycycline drug (83.08%) compared to bare HAp and g-C3N4 nanosheets. The ultimate point to note is that the HAp/gC3N4 photocatalyst was recycled in four consecutive cycles without any degradation performance. Superoxide radicals play an important role in degradation performance, which has been confirmed by scavenger experiments. Therefore, the biowaste-derived HAp combined with gC3N4 nanosheets is a promising photocatalyst for the degradation of hazardous dyes and pharmacological drug wastes.
Collapse
Affiliation(s)
- Palanisamy Govindasamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Bhuvaneswari Kandasamy
- Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Tamil Nadu, Kalavakkam, 603 110, India
| | - Pazhanivel Thangavelu
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Tamil Nadu, Salem, 636 011, India
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Maiyalagan Thandavarayan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Mohd Shkir
- Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry and University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
6
|
Divyapriya G, Singh S, Martínez-Huitle CA, Scaria J, Karim AV, Nidheesh PV. Treatment of real wastewater by photoelectrochemical methods: An overview. CHEMOSPHERE 2021; 276:130188. [PMID: 33743419 DOI: 10.1016/j.chemosphere.2021.130188] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
An inadequate and inefficient performance ability of conventional methods to remove persistent organic pollutants urges the need of alternative or complementary advanced wastewater treatments methods to ensure the safer reuse of reclaimed water. Photoelectrochemical methods are emerging as promising options among other advanced oxidation processes because of the higher treatment efficiency achieved due to the synergistic effects of combined photochemical and electrolysis reactions. Synergistic effects of integrated photochemical, electrochemical and photoelectrochemical processes not only increase the hydroxyl radical production; an enhancement on the mineralization ability through various side reactions is also achieved. In this review, fundamental reaction mechanisms of different photoelectrochemical methods including photoelectrocatalysis, photo/solar electro-Fenton, photo anodic oxidation, photoelectroperoxone and photocatalytic fuel cell are discussed. Various integrated photochemical, electrochemical and photoelectrochemical processes and their synergistic effects are elaborated. Different reactor configurations along with the positioning of electrodes, photocatalysts and light source of the individual/combined photoelectrochemical treatment systems are discussed. Modified photoanode and cathode materials used in the photoelectrochemical reactors and their performance ability is presented. Photoelectrochemical treatment of real wastewater such as landfill leachate, oil mill, pharmaceutical, textile, and tannery wastewater are reviewed. Hydrogen production efficiency in the photoelectrochemical process is further elaborated. Cost and energy involved in these processes are briefed, but the applicability of photocatalytic fuel cells to reduce the electrical dependence is also summarised. Finally, the use of photoelectrochemical approaches as an alternative for treating soil washing effluents is currently discussed.
Collapse
Affiliation(s)
- G Divyapriya
- Virginia Polytechnic Institute and State University, USA
| | - Seema Singh
- Omvati Devi Degree College, Bhalaswagaj, Haridwar, India
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil.
| | - Jaimy Scaria
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
7
|
Paumo HK, Dalhatou S, Katata-Seru LM, Kamdem BP, Tijani JO, Vishwanathan V, Kane A, Bahadur I. TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment—an Overview. Catalysts 2020. [DOI: 10.3390/catal10040439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Industrial sources of environmental pollution generate huge amounts of industrial wastewater containing various recalcitrant organic and inorganic pollutants that are hazardous to the environment. On the other hand, industrial wastewater can be regarded as a prospective source of fresh water, energy, and valuable raw materials. Conventional sewage treatment systems are often not efficient enough for the complete degradation of pollutants and they are characterized by high energy consumption. Moreover, the chemical energy that is stored in the wastewater is wasted. A solution to these problems is an application of photoelectrocatalytic treatment methods, especially when they are coupled with energy generation. The paper presents a general overview of the semiconductor materials applied as photoelectrodes in the treatment of various pollutants. The fundamentals of photoelectrocatalytic reactions and the mechanism of pollutants treatment as well as parameters affecting the treatment process are presented. Examples of different semiconductor photoelectrodes that are applied in treatment processes are described in order to present the strengths and weaknesses of the photoelectrocatalytic treatment of industrial wastewater. This overview is an addition to the existing knowledge with a particular focus on the main experimental conditions employed in the photoelectrocatalytic degradation of various pollutants with the application of semiconductor photoelectrodes.
Collapse
|
9
|
Becerril-Estrada V, Robles I, Martínez-Sánchez C, Godínez LA. Study of TiO 2/Ti4O 7 photo-anodes inserted in an activated carbon packed bed cathode: Towards the development of 3D-type photo-electro-Fenton reactors for water treatment. Electrochim Acta 2020; 340:135972. [PMID: 32355361 PMCID: PMC7182296 DOI: 10.1016/j.electacta.2020.135972] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, commercially available Polymethyl-meta-acrylate (PMMA) spectroscopy cells were modified on the external walls with films of TiO2, Ti4O7 or TiO2/Ti4O7 mixtures. Film characterization was carried out using SEM and UV–vis spectroscopy. The results of photocatalytic (PC), electro-oxidation (EO), and photoelectrochemical (PEC) experiments on the decolorization of a methyl orange (MO) model dye solution showed that while anatase provides better photocatalytic properties and the partially reduced Ti4O7 larger electronic conductivity, the TiO2/Ti4O7 composite film behaves as a semiconductor substrate that combines the advantages of both materials (for PEC experiments for instance, decolorization values for the model dye solution using TiO2, Ti4O7 and a TiO2/Ti4O7 mixed film, corresponded to 35%, 46% and 53%, respectively). In order to test this film as an effective photoanode material in a 3-D type reactor for water treatment processes, a TiO2/Ti4O7 modified PMMA spectroscopy cell was inserted in an activated carbon (AC) bed so that the semiconductor material could be illuminated using an external UV source positioned inside the PMMA cell. The connected AC particles that were previously saturated with MO dye were used as cathode sites for the oxygen reduction reaction so that the photoelectrochemical reactions that take place in the anode could be complemented with coupled electro-Fenton processes in the cathode. As expected, the combination resulted in an effective decolorization of the dye solution that results from a complex combination of processes. The experimental decolorization data was successfully fitted to a pseudo-first order kinetic model so that a deeper understanding of the contribution of each process in the reactor could be obtained.
Collapse
Affiliation(s)
- V Becerril-Estrada
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - I Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - C Martínez-Sánchez
- CONACYT - Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| |
Collapse
|
10
|
Liu H, Cheng Y, Chen Y, Xiao H, Sui Y, Xie Q, Liu R, Yang X. Dual-signal sandwich-type electrochemical immunoassay of galectin-3 using methylene blue and gold nanoparticles biolabels. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Orimolade BO, Koiki BA, Peleyeju GM, Arotiba OA. Visible light driven photoelectrocatalysis on a FTO/BiVO4/BiOI anode for water treatment involving emerging pharmaceutical pollutants. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.217] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Photocatalytic performance of cerium doped copper aluminate nanoparticles under visible light irradiation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Malefane ME, Feleni U, Kuvarega AT. A tetraphenylporphyrin/WO3/exfoliated graphite nanocomposite for the photocatalytic degradation of an acid dye under visible light irradiation. NEW J CHEM 2019. [DOI: 10.1039/c9nj02747e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Charge carrier separation in visible light photocatalytic degradation of a dye was achieved by the fabrication of a tetraphenylporphyrin/WO3/exfoliated graphite nanocomposite.
Collapse
Affiliation(s)
- Mope Edwin Malefane
- Nanotechnology and Water Sustainability Research Unit
- University of South Africa
- College of Science
- Engineering and Technology
- Johannesburg
| | - Usisipho Feleni
- Nanotechnology and Water Sustainability Research Unit
- University of South Africa
- College of Science
- Engineering and Technology
- Johannesburg
| | - Alex Tawanda Kuvarega
- Nanotechnology and Water Sustainability Research Unit
- University of South Africa
- College of Science
- Engineering and Technology
- Johannesburg
| |
Collapse
|
14
|
Efficient and Cost-effective Photoelectrochemical Degradation of Dyes in Wastewater over an Exfoliated Graphite-MoO3 Nanocomposite Electrode. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0471-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|