1
|
Luo X, Zhu R, Zhao L, Gong X, Zhang L, Fan L, Liu Y. Defective nitrogen doped carbon material derived from nano-ZIF-8 for enhanced in-situ H 2O 2 generation and tetracycline hydrochloride degradation in electro-Fenton system. ENVIRONMENTAL RESEARCH 2024; 251:118644. [PMID: 38485074 DOI: 10.1016/j.envres.2024.118644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Tetracycline hydrochloride (TC) accumulates in large quantities in the water environment, causing a serious threat to human health and ecological environment safety. This research focused on developing cost-effective catalysts with high 2e- selectivity for electro-Fenton (EF) technology, a green pollution treatment method. Defective nitrogen-doped porous carbon (d-NPC) was prepared using the metal-organic framework as the precursor to achieve in-situ H2O2 production and self-decomposition into high activity ·OH for degradation of TC combined with Co2+/Co3+. The d-NPC produced 172.1 mg L-1 H2O2 within 120 min, and could degrade 96.4% of TC in EF system. The self-doped defects and graphite-nitrogen in d-NPC improved the oxygen reduction performance and increased the H2O2 yield, while pyridine nitrogen could catalyze H2O2 to generate ·OH. The possible pathway of TC degradation was also proposed. In this study, defective carbon materials were prepared by ball milling, which provided a new strategy for efficient in-situ H2O2 production and the degradation of pollutants.
Collapse
Affiliation(s)
- Xuan Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Ruiying Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Li Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Xiaobo Gong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment, Sichuan Province Higher Education System, Chengdu, Sichuan, 610066, China; Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling (Sichuan Normal University), China.
| | - Lingrui Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Lu Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment, Sichuan Province Higher Education System, Chengdu, Sichuan, 610066, China.
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment, Sichuan Province Higher Education System, Chengdu, Sichuan, 610066, China
| |
Collapse
|
2
|
Huang X, Song M, Zhang J, Shen T, Luo G, Wang D. Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production. NANO-MICRO LETTERS 2023; 15:86. [PMID: 37029260 PMCID: PMC10082148 DOI: 10.1007/s40820-023-01044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical synthesis of H2O2 via a selective two-electron oxygen reduction reaction has emerged as an attractive alternative to the current energy-consuming anthraquinone process. Herein, the progress on electrocatalysts for H2O2 generation, including noble metal, transition metal-based, and carbon-based materials, is summarized. At first, the design strategies employed to obtain electrocatalysts with high electroactivity and high selectivity are highlighted. Then, the critical roles of the geometry of the electrodes and the type of reactor in striking a balance to boost the H2O2 selectivity and reaction rate are systematically discussed. After that, a potential strategy to combine the complementary properties of the catalysts and the reactor for optimal selectivity and overall yield is illustrated. Finally, the remaining challenges and promising opportunities for high-efficient H2O2 electrochemical production are highlighted for future studies.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, People's Republic of China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Guanyu Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
3
|
Na Zhao L, Peng Li Z, You H, Hong Jia Y. A novel three-dimensional flow-through graphite felt-matrix cathode for in-situ hydrogen peroxide generation in multi-environment systems-Multiphysics modeling for in-situ hydrogen peroxide generation. J Colloid Interface Sci 2022; 622:357-366. [PMID: 35525139 DOI: 10.1016/j.jcis.2022.04.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
In order to achieve in-situ H2O2 generation in multi-environment systems, polyvinylpyrrolidone (PVP) and modified carbon nitride (t-g-C3N4) are co-doped onto graphite felt-matrix (GF-matrix) by electrodeposition to develop a novel cathode electrode. By means of 3D-X-ray CT, High-Resolution Transmission Electron Microscope (HRTEM), X-ray Photoelectron Spectrometer (XPS), Raman and Electrochemical Workstation, microscopic physical-chemical properties of materials are researched to optimize the electrode structure. Results show that the optimal electrode presents over H2O2 production rate of 2000 mgL-1·h-1, and as high as current efficiency of 93% to 98% in simulated freshwater (50 mM Na2SO4, pH = 1-12) at 20 mAcm-2. Furthermore, we built an original three-dimensional (3D) flow-through GF-matrix cathode model on H2O2 generation in simulated freshwater, explaining solution pH change reasons from solution inlet to outlet.
Collapse
Affiliation(s)
- Li Na Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi Peng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Hong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
4
|
Wen Y, Zhang T, Wang J, Pan Z, Wang T, Yamashita H, Qian X, Zhao Y. Electrochemical Reactors for Continuous Decentralized H 2 O 2 Production. Angew Chem Int Ed Engl 2022; 61:e202205972. [PMID: 35698896 DOI: 10.1002/anie.202205972] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 12/21/2022]
Abstract
The global utilization of H2 O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2 O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid-liquid extraction of H2 O2 . The energy-intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low-carbon development. The electrocatalytic two-electron (2 e- ) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low-carbon, and greener route to produce H2 O2 . However, continuous and decentralized H2 O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2 O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Collapse
Affiliation(s)
- Yichan Wen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianying Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhelun Pan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Wen Y, Zhang T, Wang J, Pan Z, Wang T, Yamashita H, Qian X, Zhao Y. Electrochemical reactors for continuously decentralized H2O2 production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yichan Wen
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Ting Zhang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Jianying Wang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Zhelun Pan
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Tianfu Wang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Hiromi Yamashita
- Shanghai Jiao Tong University Division of Materials and Manufacturing Science, Graduate School of Engineering CHINA
| | - Xufang Qian
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Yixin Zhao
- Shanghai Jiao Tong University Environmental Science and Engineering 800 Dongchuan Road 44106 Shanghai CHINA
| |
Collapse
|
6
|
Li Y, Miller CJ, Wu L, Waite TD. Hydroxyl Radical Production via a Reaction of Electrochemically Generated Hydrogen Peroxide and Atomic Hydrogen: An Effective Process for Contaminant Oxidation? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5820-5829. [PMID: 35442646 DOI: 10.1021/acs.est.2c00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An electrochemical advanced oxidation process (EAOP) is demonstrated with a catalytic cathode capable of simultaneously catalyzing the hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR) with resultant in situ generation of atomic hydrogen (H*) and hydrogen peroxide (H2O2). A palladium-coated carbon-PTFE gas diffusion electrode (Pd/C GDE) was used as a catalytic cathode with hydroxyl radical (•OH) formed as a result of the reaction of electrogenerated H* with H2O2. As both the HER and ORR can be induced to occur at the same cathode, the H*/GDE process results in more effective degradation of organic contaminants than can be achieved by a conventional H*/H2O2 process involving direct addition of H2O2. At circumneutral pH, 82.7% of added formate was degraded after 2 h treatment at an applied potential of -1.0 V vs Ag/AgCl with relatively low concentrations of generated H2O2 remaining in the solution. We also show that H* and H2O2 (and thus •OH) can be electrogenerated effectively over a wide range of pH (3.2-7.0). These results suggest that by in situ generation of H* and H2O2, the H*/GDE process is able to produce significant amounts of •OH without external chemical addition and thus offers an alternative method for abatement of aqueous organic contaminants.
Collapse
Affiliation(s)
- Yang Li
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu 214206, P. R. China
| | - Christopher J Miller
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Lei Wu
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu 214206, P. R. China
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu 214206, P. R. China
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Hejazi SA, Taghipour F. A novel UV-LED hydrogen peroxide electrochemical photoreactor for point-of-use organic contaminant degradation. CHEMOSPHERE 2022; 292:133353. [PMID: 34942211 DOI: 10.1016/j.chemosphere.2021.133353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The degradation of organic contaminants is typically achieved by exposure of hydrogen peroxide (H2O2) containing influent to ultraviolet (UV) lamps as the source of radiation that can convert H2O2 to hydroxyl radicals (·OH), which oxidize organic pollutants. However, two factors prevent this process from being scaled down: the need to introduce H2O2, which requires special handling, and the use of bulky UV lamps, which have a high electric power consumption. In this work, an electrochemical cell was developed for the efficient in situ generation of H2O2 from water and atmospheric oxygen in a process called a two-electron oxygen reduction reaction (2e-ORR), so that the external addition of H2O2 is no longer needed. Moreover, the electrochemical cell was equipped with ultraviolet light-emitting diodes (UV-LEDs) to convert H2O2 to ·OH. The reactor exhibited a current efficiency of ∼90% for the H2O2 production at a flow rate of 50 mL min-1. The degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied at 277 nm based on different operational parameters, such as UV fluence rate, initial concentration, and initial pH. A high degradation of >70% was obtained at a UV output of 900 mW. Our approach, the first of its kind, has novel features applied, including: optimal radiation distribution in the reactor by applying a new UV source, UV-LEDs that offer much more control for the radiation profile in the reaction system compared to traditional UV lamps, controlled hydrodynamics by implementing special flow channels to provide a more uniform residence time and offer enhanced mixing, and integrating UV reactor and electrochemical cell in a single unit which could lead to superior performance and space efficiency of the device. These features make the device very suitable for point-of-use (POU) water treatment applications to eliminate both microbial and chemical contaminants.
Collapse
Affiliation(s)
- Seyyed Arman Hejazi
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Fariborz Taghipour
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Cornejo OM, Sirés I, Nava JL. Cathodic generation of hydrogen peroxide sustained by electrolytic O2 in a rotating cylinder electrode (RCE) reactor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Effective and continuous degradation of levofloxacin via the graphite felt electrode loaded with Fe3O4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
|
11
|
Cornejo OM, Ortiz M, Aguilar ZG, Nava JL. Degradation of Acid Violet 19 textile dye by electro-peroxone in a laboratory flow plant. CHEMOSPHERE 2021; 271:129804. [PMID: 33736209 DOI: 10.1016/j.chemosphere.2021.129804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with the degradation of Acid Violet 19 (AV19) textile dye by the electro-peroxone (E-peroxone) process in a laboratory flow plant using a filter press cell fitted with a 3D gas diffusion electrode (3D GDE) containing a graphite felt positioned on carbon-cloth PTFE as cathode, and a Ti|IrSnSb-oxides plate as anode. H2O2 was formed by the oxygen reduction reaction (ORR) in the cathode; the air was supplied by an external compressor. The O3 produced externally by an ozonator was added in the pipeline at the outlet of the electrolyzer to promote the reaction between the H2O2 and O3 to produce OH, which is the responsible for the mineralization of the dye. The effect of electrolyte flow rate (Q), current density (j), and initial concentration of AV19 dye on its degradation was addressed. The best electrolysis in a solution containing 40 mg TOC L-1, 0.05 M Na2SO4, at pH 3, was obtained at j = 20 mA cm-2, Q = 2.0 L min-1, using a pressure of the air fed to the 3D GDE of PGDE = 3 psi, and an ozone inlet mass flow rate of [Formula: see text] = 14.5 mg L-1, achieving 100% discoloration, 60% mineralization, with mineralization current efficiency and energy consumption of 36% and 0.085 kWh(gTOC)-1. The degradation of AV19 dye was also performed by anodic oxidation plus H2O2 electrogenerated (AO-H2O2) and ozonation. The oxidation power was AO-H2O2 < ozonation < E-peroxone. Three carboxylic acids were quantified by chromatography as oxidation end products.
Collapse
Affiliation(s)
- Oscar M Cornejo
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| | - Mariela Ortiz
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| | - Zaira G Aguilar
- Departamento de Ingeniería Química, Tecnológico Nacional de Mexico-Instituto Tecnológico de Celaya, Av. García Cubas 600, 38010, Celaya, Guanajuato, Mexico.
| | - José L Nava
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
12
|
Cornejo OM, Nava JL. Mineralization of the antibiotic levofloxacin by the electro-peroxone process using a filter-press flow cell with a 3D air-diffusion electrode. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Electrocatalytic activities of engineered carbonaceous cathodes for generation of hydrogen peroxide and oxidation of recalcitrant reactive dye. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Márquez AA, Sirés I, Brillas E, Nava JL. Mineralization of Methyl Orange azo dye by processes based on H 2O 2 electrogeneration at a 3D-like air-diffusion cathode. CHEMOSPHERE 2020; 259:127466. [PMID: 32615456 DOI: 10.1016/j.chemosphere.2020.127466] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This work addresses the mineralization of the widely used Methyl Orange (MO) azo dye by technologies based on H2O2 electrogeneration at a 3D-like air-diffusion cathode. These include two Fe2+-catalyzed processes such as electro-Fenton (EF) and photoelectro-Fenton (PEF). Bulk electrolyses were performed in a recirculation flow plant, in which the Eco-Cell filter-press electrochemical reactor was connected in series with a UVA photoreactor. The former reactor was equipped with a Ti|Ir-Sn-Sb oxide plate anode alongside a 3D-like air-diffusion cathode made from graphite felt and hydrophobized carbon cloth, aimed at electrogenerating H2O2 on site. The influence of current density (j), volumetric flow rate (Q) and initial MO concentration was examined. The greatest oxidation power corresponded to PEF process. The best operation conditions to treat 30 mg L-1 of total organic carbon of MO in a 50 mM Na2SO4 solution by PEF were found at 0.50 mM Fe2+, pH 3.0, j = 20 mA cm-2 and Q = 2.0 L min-1, obtaining 100% and 94% of color and TOC removals at 30 and 240-300 min, respectively. This accounted for 35% of mineralization current efficiency and 0.12 kWh (g TOC)-1 of energy consumption at the end of the electrolysis. The oxidation power of EF and PEF was compared with that of anodic oxidation (AO), and the sequence obtained was: PEF > EF > AO. The dye was gradually degraded, yielding non-toxic short carboxylic acids, like maleic, fumaric, formic, oxalic and oxamic, whose Fe(III) complexes were rapidly photolyzed.
Collapse
Affiliation(s)
- Ana A Márquez
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - José L Nava
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
15
|
Liu JM, Ji ZY, Shi YB, Yuan P, Guo XF, Zhao LM, Li SM, Li H, Yuan JS. Effective treatment of levofloxacin wastewater by an electro-Fenton process with hydrothermal-activated graphite felt as cathode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115348. [PMID: 32841862 DOI: 10.1016/j.envpol.2020.115348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The performance of the cathode significantly affects the ability of the electro-Fenton (EF) process to degrade chemicals. In this study, a simple method to modify the graphite felt (GF) cathode was proposed, i.e. oxidizing GF by hydrothermal treatment in nitric acid. The surface physical and electrochemical properties of modified graphite felt were characterized by several techniques: scanning electron microscope (SEM), water contact angle, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and linear scanning voltammetry (LSV). Compared with an unmodified GF (GF-0), the oxygen reduction reaction (ORR) activity of a modified GF was significantly improved due to the introduction of more oxygen-containing functional groups (OGs). Furthermore, the results showed that GF was optimally modified after 9 h (GF-9) of treatment. As an example, the H2O2 generation by GF-9 was 2.26 times higher than that of GF-0. After optimizing the process parameters, which include the initial Fe2+ concentration and current density, the apparent degradation rate constant of levofloxacin (LEV) could reach as high as 0.40 min-1. Moreover, the total organic carbon (TOC) removal rate and mineralization current efficiency (MCE) of the modified cathode were much higher than that of the GF-0. Conclusively, GF-9 is a promising cathode for the future development in organic pollutant removal via EF.
Collapse
Affiliation(s)
- Jia-Ming Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Zhi-Yong Ji
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China.
| | - Ya-Bin Shi
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China; Department of Chemical Engineering, Beijing Jiaotong University Haibin College, Huanghua, 061199, China
| | - Peng Yuan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Xiao-Fu Guo
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Li-Ming Zhao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Shu-Ming Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Hong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| | - Jun-Sheng Yuan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, 300130, China
| |
Collapse
|
16
|
Ye Z, Schukraft GEM, L'Hermitte A, Xiong Y, Brillas E, Petit C, Sirés I. Mechanism and stability of an Fe-based 2D MOF during the photoelectro-Fenton treatment of organic micropollutants under UVA and visible light irradiation. WATER RESEARCH 2020; 184:115986. [PMID: 32683142 DOI: 10.1016/j.watres.2020.115986] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
This work reports the novel application of an Fe-based 2D metal-organic framework (MOF), prepared with 2,2'-bipyridine-5,5'-dicarboxylate (bpydc) as organic linker, as highly active catalyst for heterogeneous photoelectro-Fenton (PEF) treatment of the lipid regulator bezafibrate in a model matrix and urban wastewater. Well-dispersed 2D structures were successfully synthesized and their morphological, physicochemical and photocatalytic properties were assessed. UV/Vis PEF using an IrO2/air-diffusion cell with an extremely low catalyst concentration (0.05 g L-1, tenfold lower than reported 3D MOFs) outperformed electro-oxidation with electrogenerated H2O2, electro-Fenton and visible-light PEF. Its excellent performance was explained by: (i) the enhanced mass transport of H2O2 (and organic molecules) at the 2D structure, providing active sites for heterogeneous Fenton's reaction and in-situ Fe(II) regeneration; (ii) the ability of photoinduced electrons to reduce H2O2 to •OH, and Fe(III) to Fe(II); and (iii) the enhanced charge transfer and excitation of Fe-O clusters, which increased the number of electron-hole pairs. LC-QToF-MS and GC-MS allowed the identification of 16 aromatic products of bezafibrate. The complete removal of four micropollutants mixed in urban wastewater at pH 7.4 revealed the great potential of (Fe-bpydc)-catalyzed PEF process.
Collapse
Affiliation(s)
- Zhihong Ye
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Giulia E M Schukraft
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anouk L'Hermitte
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Ying Xiong
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Camille Petit
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
17
|
Li D, Zheng T, Liu Y, Hou D, Yao KK, Zhang W, Song H, He H, Shi W, Wang L, Ma J. A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced electrogeneration of H 2O 2 and cycle of Fe 3+/Fe 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122591. [PMID: 32298862 DOI: 10.1016/j.jhazmat.2020.122591] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced generation of H2O2 and cycle of Fe3+/Fe2+ was proposed. The new type of Electro-Fenton process was used to degrade organic pollutants via graphite felt electrode aeration (GF-EA). The H2O2 concentration by GF-EA could reach 152-169 mg/L in a wide pH range (3-10), which was much higher than that achieved by graphite felt using solution aeration (GF-SA, 37-113 mg/L). For the degradation of nitrobenzene (NB), benzoic acid (BA), bisphenol A (BPA), and sulfamethoxazole (SMX) at pH 5.5, the percentage degradation by GF-EA could reach 55%, 56%, 80%, and 60% higher than those obtained by GF-SA, respectively. The solution TOC removal by GF-EA were enhanced by 29-51% relative to GF-SA. Mechanism analysis showed both OH and ferryl species were involved in the reaction system, and the amounts of OH and dissolved iron species in GF-EA group were 7.7 times and 4-8 times higher than those in GF-SA group, respectively. Besides, the mass transfer rate of GF-EA system was 5.4 times higher than that of GF-SA system. High amounts of H2O2, dissolved iron species and OH were attributed to the enhanced mass transfer of O2 and the solution.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yulei Liu
- School of Environment and Civil Engineering, Research Center for Eco-environment Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ding Hou
- School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Keyi Kang Yao
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Haoran Song
- School of Environment and Civil Engineering, Research Center for Eco-environment Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; China Everbright Water Limited, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
18
|
Cornejo OM, Sirés I, Nava JL. Electrosynthesis of hydrogen peroxide sustained by anodic oxygen evolution in a flow-through reactor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Ye Z, Padilla JA, Xuriguera E, Beltran JL, Alcaide F, Brillas E, Sirés I. A Highly Stable Metal-Organic Framework-Engineered FeS 2/C Nanocatalyst for Heterogeneous Electro-Fenton Treatment: Validation in Wastewater at Mild pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4664-4674. [PMID: 32108464 DOI: 10.1021/acs.est.9b07604] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Herein, the novel application of FeS2/C nanocomposite as a highly active, stable, and recyclable catalyst for heterogeneous electro-Fenton (EF) treatment of organic water pollutants is discussed. The simultaneous carbonization and sulfidation of an iron-based metal-organic framework (MOF) yielded well-dispersed pyrite FeS2 nanoparticles of ∼100 nm diameter linked to porous carbon. XPS analysis revealed the presence of doping N atoms. EF treatment with an IrO2/air-diffusion cell ensured the complete removal of the antidepressant fluoxetine spiked into urban wastewater at near-neutral pH after 60 min at 50 mA with 0.4 g L-1 catalyst as optimum dose. The clear enhancement of catalytic activity and stability of the material as compared to natural pyrite was evidenced, as deduced from its characterization before and after use. The final solutions contained <1.5 mg L-1 dissolved iron and became progressively acidified. Fluorescence excitation-emission spectroscopy with parallel factor analysis demonstrated the large mineralization of all wastewater components at 6 h, which was accompanied by a substantial decrease of toxicity. A mechanism with •OH as the dominant oxidant was proposed: FeS2 core-shell nanoparticles served as Fe2+ shuttles for homogeneous Fenton's reaction and provided active sites for the heterogeneous Fenton process, whereas nanoporous carbon allowed minimizing the mass transport limitations.
Collapse
Affiliation(s)
- Zhihong Ye
- Laboratori d'Electroquı́mica dels Materials i del Medi Ambient, Departament de Quı́mica Fı́sica, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José A Padilla
- DIOPMA, Departament de Ciència de Materials i Quı́mica Fı́sica, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Elena Xuriguera
- DIOPMA, Departament de Ciència de Materials i Quı́mica Fı́sica, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José L Beltran
- Secció de Quı́mica Analı́tica, Departament d'Enginyeria Quı́mica i Quı́mica Analı́tica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francisco Alcaide
- Laboratori d'Electroquı́mica dels Materials i del Medi Ambient, Departament de Quı́mica Fı́sica, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- CIDETEC, Paseo Miramón 196, 20014 Donostia-San Sebastián, Spain
| | - Enric Brillas
- Laboratori d'Electroquı́mica dels Materials i del Medi Ambient, Departament de Quı́mica Fı́sica, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquı́mica dels Materials i del Medi Ambient, Departament de Quı́mica Fı́sica, Facultat de Quı́mica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Muddemann T, Haupt DR, Sievers M, Kunz U. Improved Operating Parameters for Hydrogen Peroxide‐Generating Gas Diffusion Electrodes. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.201900137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thorben Muddemann
- Clausthal University of Technology Institute of Chemical and Electrochemical Process Engineering Leibnizstraße 17 38678 Clausthal-Zellerfeld Germany
| | - Dennis R. Haupt
- Clausthal University of Technology CUTEC Research Center for Environmental Technologies Leibnizstraße 23 38678 Clausthal-Zellerfeld Germany
| | - Michael Sievers
- Clausthal University of Technology CUTEC Research Center for Environmental Technologies Leibnizstraße 23 38678 Clausthal-Zellerfeld Germany
| | - Ulrich Kunz
- Clausthal University of Technology Institute of Chemical and Electrochemical Process Engineering Leibnizstraße 17 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
21
|
Ye Z, Brillas E, Centellas F, Cabot PL, Sirés I. Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex. WATER RESEARCH 2020; 169:115219. [PMID: 31689603 DOI: 10.1016/j.watres.2019.115219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
This work reports the first investigation on the use of EDDS as chelating agent in photoelectro-Fenton (PEF) treatment of water at near-neutral pH. As a case study, the removal of the antidepressant fluoxetine was optimized, using an electrochemical cell composed of an IrO2-based anode an air-diffusion cathode for in-situ H2O2 production. Electrolytic trials at constant current were made in ultrapure water with different electrolytes, as well as in urban wastewater (secondary effluent) at pH 7.2. PEF with Fe(III)-EDDS (1:1) complex as catalyst outperformed electro-Fenton and PEF processes with uncomplexed Fe(II) or Fe(III). This can be explained by: (i) the larger solubilization of iron ions during the trials, favoring the production of •OH from Fenton-like reactions between H2O2 and Fe(II)-EDDS or Fe(III)-EDDS, and (ii) the occurrence of Fe(II) regeneration from Fe(III)-EDDS photoreduction, which was more efficient than conventional photo-Fenton reaction with uncomplexed Fe(III). The greatest drug concentration decays were achieved at low pH, using only 0.10 mM Fe(III)-EDDS, although complete removal in wastewater was feasible only with 0.20 mM Fe(III)-EDDS due to the greater formation of •OH. The effect of the applied current and anode nature was rather insignificant. A progressive destruction of the catalytic complex was unveiled, whereupon the mineralization mainly progressed thanks to the action of •OH adsorbed on the anode surface. Despite the incomplete mineralization using BDD as the anode, a remarkable toxicity decrease was determined. Fluoxetine degradation yielded F- and NO3- ions, along with several aromatic intermediates. These included two chloro-organics, as a result of the anodic oxidation of Cl- to active chlorine. A detailed mechanism for the Fe(III)-EDDS-catalyzed PEF treatment of fluoxetine in urban wastewater is finally proposed.
Collapse
Affiliation(s)
- Zhihong Ye
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francesc Centellas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Pere Lluís Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
22
|
Cornejo OM, Murrieta MF, Castañeda LF, Nava JL. Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: A critical review. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135373] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Two-electron oxygen reduction on NiFe alloy enclosed carbonic nanolayers derived from NiFe-metal-organic frameworks. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Guelfi DR, Ye Z, Gozzi F, de Oliveira SC, Machulek Junior A, Brillas E, Sirés I. Ensuring the overall combustion of herbicide metribuzin by electrochemical advanced oxidation processes. Study of operation variables, kinetics and degradation routes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Deng F, Qiu S, Olvera-vargas H, Zhu Y, Gao W, Yang J, Ma F. Electrocatalytic sulfathiazole degradation by a novel nickel-foam cathode coated with nitrogen-doped porous carbon. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Divyapriya G, Nambi I, Senthilnathan J. Ferrocene functionalized graphene based electrode for the electro-Fenton oxidation of ciprofloxacin. CHEMOSPHERE 2018; 209:113-123. [PMID: 29920409 DOI: 10.1016/j.chemosphere.2018.05.148] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Ferrocene functionalized graphene based graphite felt electrode was firstly investigated for heterogeneous electro-Fenton oxidation of ciprofloxacin in neutral pH condition. Electrochemical reduction of Ferrocene functionalized graphene oxide (Fc-ErGO) was performed by cyclic voltammetry technique. At neutral pH condition, Fc-ErGO electrode (0.035 min─1) exhibited ∼3 times and ∼9 times higher removal rates in comparison with plane ErGO (0.010 min─1) and plane graphite felt (0.004 min─1) electrodes respectively. The effect of pH and applied potential were studied for the degradation of ciprofloxacin in Fc-ErGO based electrode. Higher removal rate was observed at acidic pH (0.222 min─1), whereas alkaline pH showed lower removal efficiency (0.014 min─1). > 99% removal of ciprofloxacin was achieved with in 15 min and 120 min of reactions period at pH 3.0 and pH 7.0, respectively. H2O2 generation was found to be high in plane ErGO electrode system in all of the pH conditions. Owing to the high redox ability of ferrocene, Fc-ErGO electrode generated high concentration of OH radicals (426 μM pH 3.0; 247 μM pH 7.0; 210 μM pH 9.0) than ErGO and plane graphite felt electrodes; The electrode reusability study was performed to understand the electrode stability. There was no significant change in removal efficiency even after the 5th cycle of reusability study at both acidic and neutral conditions. The possible mechanism of oxidation in Fc-ErGO based electro-Fenton process was also proposed based on the continuous monitoring of H2O2 and OH radicals generated in the system.
Collapse
Affiliation(s)
- Govindaraj Divyapriya
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Indumathi Nambi
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Jaganathan Senthilnathan
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|